
Universitá degli Studi di Perugia
Facoltá di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in

Informatica

Sistemi con Vincoli

Relazione Libreria SoftLib v5

Studenti: Professore:
Marco Bizzarri Prof. Stefano Bistarelli
Andrea Nardinocchi
Cristiano Santoni

Anno Accademico 2011 - 2012

1 Weights handling

The weights are one of the basic factors of the soft CSP and it is obvious that they need supporting
structures that incorporate these features and give the opportunity to the programmer to specify the
criteria for the calculation of the weights and to assign them to individual variables / couple of variables.

1.1 PrimitiveWeight

The heart of the library is curiously given, at least at the conceptual level, by this completely empty
class whose unique purpose is "bring together" two other abstract classes: PrimitiveBinaryWeight and
PrimitiveUnaryWeight.

public abstract class PrimitiveBinaryWeight extends PrimitiveWeight{
 public abstract Constraint setWeight(SoftStore store, SoftExtensionalSupport c);
 public abstract Constraint setWeight(SoftStore store, IntVar x, IntVar y);
 public abstract int evaluateWeight(int x, int y);
}

public abstract class PrimitiveUnaryWeight extends PrimitiveWeight{
 public abstract Constraint setWeight(SoftStore store, IntVar x);
 public abstract int evaluateWeight(int x);
}

These two classes define: the function prototype setWeight (illustrated below) and the function
evaluateWeight that returns the weight in the form of integer for each value of the domain (in case of
the unary) or for the couple of values ​​of the respective domains (in case of the binary). Inheriting from
these classes the programmer has the power to define his personal criteria to calculate weights and to
implement them in the library or in his personal project.

1.1.1 the setWeight function

Because everything works properly with the library JaCoP, is obviously necessary that we have to
transform the associated weight in a crisp constraint with the aim of leaving the difficult task of the
searching of the solutions directly to the standard functions of the library created by Krzysztof Kuchcinski
and Radoslaw Szymanek; the role is played by the function setWeight that receives as a parameters a
SoftStore and one or two variables, and returns as output the constraint built according to the type of
weight.

1.2 Implemented Weights

The library implements, however, the best known and useful methods for the calculation of weights unary
or binary, listed below:

1

WeightDistance
It assigns the weight by calculating the distance between the values ​​of the two domains. The
assignment x = 3 and y = 7 will have as the weight the distance between the values ​​3 and 7.

WeightMax / WeightMin
It chooses as the weight respectively the larger / smaller value between the values of the two
domains. The assignment x = 3 and y = 7 will have as the weight 3 (for WeightMin) or 7 (for
WeightMax).

WeightExtensional
It is natural that exists the possibility that the weights could not be calculated dynamically via
specially defined criteria but, instead, should be assigned by the user through lists that, for each
combination of values ​​of the domain, define a weight. The WeightExtensional does this retrieving
the list of weights directly from the constructor.

WeightUnaryDistance
It assigns the weight calculating the distance between the value of the domain and a constant
specified at the time of creation.

WeightUnaryProportional
It calculates the final weight by multiplying the value of the domain for a constant passed as
parameter to the constructor.

WeightUnaryExtensional
As for the binary WeightExtensional, is passed as parameter a list of weights that, sequentially,
are assigned to the values ​​of the domain.

2 Soft Constraints implementation

Of course, with the implementation of the weight functions, becomes necessary to extend the
management of constraints defining a superclass that allows the developer to add to the variable/couple of
variables a weight, given as a specialization of the class PrimitiveUnaryWeight /PrimitiveBinaryWeight.

2.1 SoftConstraint

This interface defines the only method needed to expand a crisp constraint to a soft constraint: getWeight.
This function is necessary for the execution of the soft arc consistency procedure and simply returns
the weight assigned from the impose of the constraint as PrimitiveWeight. Of course it is also necessary
to add a new prototype of impose that, in addition to take a custom implementation of the Store called
SoftStore, it takes a PrimitiveUnaryWeight or a PrimitiveBinaryWeight according to the specifications of
the constraint. To properly understand what we mean and how a user could implement its own personal
constraint show two specializations of SoftContraint widely used.

2.1.1 SoftXneqC

This Constraint allows the programmer to define as a constraint that the domain value assigned to
the variable must be different from the constant c passed as a parameter to the constructor together to

2

the variable x. Since this is a specification of XneqC, present into the JaCoP library, it is obviously
that extends from the same and, as we suggested earlier, that implements the interface SoftConstraint.
Moreover, being a soft constraint, any type of attempt to apply the constraint with the function impose
passing by a normal Store is interrupted by an exception that indicates a "unsupported operation": it
is necessary a SoftStore. The impose will simply attach the instance to a local variable weight class
(necessary step to regain the weight through the function getWeight) to get back the instance of the crisp
constraint generated by setWeight function, add it to store and recall the impose method of the super class
(by calling the function impose by passing only the SoftStore will ensure that the class will automatically
generate the weight through WeightUnaryProportional with constant 1).

public void impose(SoftStore store) {
 this.impose(store, new WeightUnaryProportional(1));
}

public void impose(SoftStore store, PrimitiveUnaryWeight w) {
 this.w = w;
 Constraint cost = w.setWeight(store, x);
 store.addToUnary(x, new CoupleConstraint(this, cost));
 super.impose(store);
}

2.1.2 SoftXneqY

This Constraint allows you to constraint the assignment to the x variable must be different from the value
assigned to y. Even in this case the inheritance comes directly from the class XneqY, present into the
JaCoP library, and the implementation of the interface SoftContraint.

2.2 SoftExtensonalSupport

Also with regard to the ExtensionalSupport of Jacop, has been implemented a version that adds the ability
to associate some weights to the constraints imposed call SoftExtensionalSupport. The management is
carried out using the original ExtensionalSupport and rebuilding it as a new instance for each call of
the method impose. The SoftExtensionalSupport associate, to the list containing the tuples passed as a
parameter to the constructor, a weight function of type PrimitiveBinaryWeight when the impose method is
called.

public interface SoftExtensionalSupport {
 public void impose(SoftStore store);
 public boolean testTuplesFromConstructor();
 public int getTuplesFromConstructor(int x, int y);
 public int sizeTuplesFromConstructor();
 public int sizeTuplesFromConstructor(int x);
 public IntVar[] getList();
}

3

The JaCoP library implements three basic types of ExtensionalSupport which are different according to
the types of algorithms used in their implementation:

● ExtensionalSupportVA that attempts to balance the occupied memory and efficiency in the
execution;

● ExtensionalSupportSTR that implements the technique presented by Christopher Lecoutre;
● ExtensionalSupportMDD that implements the technique presented by professor Roland Yap.

We decided to implement the two most important and most used of the three presented:
softExtensionalSupportVA and softExtensionalSupportSTR. Both inherit from their crisp reference
class and implement the interfaces SoftConstraints and SoftExtensionalSupport.

4

	
 5	

3 Constraint storing

To compute the soft arc consistency on a fuzzy semiring constraint problem (FCSP), it’s necessary to
know the weight for both binary and unary constraints for each variables and have access to the
constraints information.
In the previous version of the SoftLib all the constrains were directly imposed and stored in the SoftStore
after their creation, making impossible to retrieve them in the future.
To make the constraints available, it was necessary to introduce additional data structures in the SoftStore
class to contain constraints information before the impose method call.
In the latest version of the library have been introduced two kind of data structures: one containing the
weight constraints added to the SoftStore (representing both binary and unary variables constraints) and
another one containing the same constraints but expressed in a more convenient numeric form
(WeightStore object). This second data structures is filled after all the constraint are set and just before the
softArcConsistency computation. If the user will not call the softArcConsistency method, the WeightStore
object will not be used.

public class SoftStore extends Store {

 [...]
 public ArrayList<ExBinaryReference> binary;
 public HashMap<IntVar,ArrayList<CoupleConstraint>> unary;

 protected WeightStore wStore;
 [...]

}

First of all the first data structure is going to be described.
As one can see in the previous piece of code, the structure is composed by:

● An arraylist of ExBinaryReference objects which keep information about binary constrains;
● An hashmap containing an IntVar (see JaCoP documentation) variable as key and an arraylist of

CoupleContraint objects which keep informations about unary constraints.

Where:

CoupleContraint is a class created to match a SoftConstraint and the corresponding weight classical
constraint by storing them as attributes;

	
 6	

public class CoupleConstraint {

 private SoftConstraint constraint;
 private Constraint cost;
 [...]

}

ExBinaryReference is a class which contains a couple of IntVar variables and the list of all the constraints
they are involved in.

public class ExBinaryReference {

 private IntVar nodex, nodey;
 public ArrayList<CoupleConstraint> constraints;
 [...]

}

3.1 addToBinary and addToUnary methods

The unary and binary constrains data structures are filled when a new constraint is imposed to the
SoftStore by using two separate methods of the SoftStore class:

● public void addToBinary (IntVar x, IntVar y, CoupleConstraint c):
This method is used to store constraints in which two variables are involved. It iterates
between the variables that already exist in the ExBinaryReference list to check if the couple
passed as parameter is already involved in some constraints. If so the CoupleConstraint parameter
is added to the corresponding list of constraints, else a new ExBinaryReference object will be
created and added to the list of ExBinaryReference objects.

● public void addToUnary (IntVar x, CoupleConstraint c):

This method is used to store single variable constraints. If the variable passed as parameter is
already in the hashmap, the new constraint is added to it’s constraint list, otherwise a new
hashmap entry will be created.

3.2 WeightStore

As mentioned in the first part of the chapter, another data structure has been introduced to manipulate
constrains.
To compute the softArcConsistency on the constraints graph is necessary to update the weights according
to the values of the variables domain. To allow this operation the WeightStore class has been created.

	
 7	

public class WeightStore {

 public ArrayList<WeightBinaryDomains> wBinary;
 public HashMap<IntVar,WeightUnaryDomain> wUnary;
 [...]

}

The class is composed by an array of WeightBinaryDomains which stores binary constraints informations,
and an hashmap of IntVar and WeightUnaryDomain used to store unary constraints.
This class does not need any method: it is simply used as data container and it is filled by some method of
the SoftStore class which will be described in the next chapter.

Where:

WeightBinaryDomains is a class which contains the couples of IntVar variables, a list of hashmap used to
match all the variables domain values with the corresponding weight as integer value (the intCouple class
object matches variables domain values) and an ExtensionalSupportSTR constraint which will stores
current filtered constraints’ informations after the execution of the softArcConsistency. This constraints
will be used in the final impose.

public class WeightBinaryDomains {

 public IntVar x, y;
 public ArrayList<HashMap<IntCouple, Integer>> w;
 public ExtensionalSupportSTR weightCon;
 [...]

}

WeightUnaryDomain is a class which contains a list of integer which stores the variable domain values, a
list of hashmap used to match each domain value with the corresponding weight and an
ExtensionalSupportSTR constraint which will stores current constraints filtered informations after the
softArcConsistency will be executed. This constraints will be used in the final impose.

public class WeightUnaryDomain {

 public ArrayList<Integer> xDom;
 public ArrayList<HashMap<Integer, Integer>> w;
 public ExtensionalSupportSTR weightCon;
 [...]

}

4 Soft Arc Consistency

In this chapter we will illustrate the Soft Arc Consistency method and discuss about its imple-
mentation and the auxiliary data structured used.
In the framework of classical (crisp) CSPs, local consistency is a property of the CSP which per-
mit to make assignments to the variables one by one without incur in inconsistent assignments.
Usually this property has not to be true for a generic CSP, so what we can do is to adjust the
variables domain to ensure local consistency. This process can be done as a preprocessing step
or as a propagation step after every new assignment during the search algorithm.

4.1 Soft arc consistency algorithm

To extend the idea of local consistency to the framework of soft CSPs can be done by decreasing
the preference value (of a variable assignment) instead of reducing variables domain. In the soft
CSP framework we represent the cost/preference value associated to a soft constraint with an
element from a semiring (A, +, ·) where · is used to combine constraints and + is used for the
induced pseudo order. An additional condition to ensure the soft arc consistency is that the ·
operation has to be idempotent. The semring ([0,1], MAX, MIN) on which the Fuzzy CSPs are
based is an example of a valid semiring on which the soft local consistency can be ensured. From
now on we will assume to work on Fuzzy CSPs. Let’s see an example to better understand the
operations that compose the soft arc consistency algorithm: in figure 4.1 we can see a constraint
graph of a soft CSP, the graph is composed by two nodes that represent the variables X and
Y, each one with its own constraint (CX and CY), and an arc connecting the two nodes which
represent the CXY constraint. To ensure soft arc consistency to the CSP in figure 4.1 we have

Figura 4.1: graph constraint example for a soft CSP example

to:

• choose a variable (let’s say X)

8

• choose a value in the X domain (let’s say a)

• for every domain value of the other variable:

– get the assignment preference value by combining the preference values of the con-
straints with · operation

– choose the maximum of them as the new preference value for the choosen domain
value of the choosen variable (using the relation induced by the + operation)

These operations have to be repeated until the soft arc consistency is reached. In our CSP
(Fuzzy CSP) we combine the preference values of the constraints using MIN and choose the
maximum using the relation induced by MAX. In figure 4.2 we can see the operations of the
Soft Arc Consistency algorithm for X = a.
Using soft CSP it is possible to express undesired value for a variable even if that value is in

Figura 4.2: A step of the Soft Arc Consistency with X = a fixed

the variable domain. Using the absorbing element 0* fo the · operation (in Fuzzy CSPs it’s
the 0 for the MIN operation) as preference value for the undesired domain value will bring to a
solution with a preference value of 0* that will be discarded from the set of valid solutions. An
example of propagation of the 0* during the soft arc consistency algorithm is show in figure 4.3.

Once the Soft Arc Consistency algorithm finishes all its operations, in order to speed up the
search process, it is possible to remove from the variables domains the values with a preference
value of 0*.

4.2 WeightStore filling

In order to operate in a more efficent way on the constraints regarding the preference value, we
store them in the auxiliary data structure (wUnary and wBinary fields of the class WeightStore)

9

Figura 4.3: Propation of 0 during Soft Arc Consistency

explained in the previous chapter. The methods used to fill this two fields are private void forma-
tUnaryWeight(WeightStore wstore) and private void formatBinaryWeight(WeightStore wstore).
The method private void formatUnaryWeight(WeightStore wstore) is used to fill the wUnary
field and it works iterating first on all the IntVar involved in at least one unary constraint and,
for each of these variables, creating a new WeightUnaryDomain which represent the list of cou-
ple <domain value, preference value>. Fixed the variable, formatUnaryWeight iterates on all
domain values to fill the list of <domain value, preference value>. To get the preference value
associated to any domain value, the method uses a function common to all the PrimitiveUnary-
Weight subclasses that is public int evaluateWeight(int x) that takes a value from the domain
and returns the related preference value.
For the binary constraint the method used to get their tabular form is private void formatBi-
naryWeight(WeightStore wstore) that operates in a similar way to the previous one. It takes
all the binary constraints from the field binary of the SoftStore and for each of them it creates
a new WeightBinaryDomains. Fixed the two variables, it iterates on every combination of a
value from a variable domain with a value from the domain of the other variable and, using eva-
luateWeight(int x, int y) declared in all subclasses of PrimitiveBinaryWeight, fill the HashMap
that represent the list of triple <X domain value, Y domain Value, preference value>.

4.3 the softArcConsistency() method

Our implementation of soft arc consistency follows the scheme provided by AC-1 so what we
do is to iterate soft arc consistency algorithm until no preference value changes. The condition
previously explained is the condition of the main loop in the method, for each iteration we take
a WeightBinaryDomains from the list wBinary in the and iterate as many times as the number
of elements of the longest list among the list of binary constraints related to X and Y, the list
of unary constraints related to X and the list of unary constraints related to Y. At this point

10

we have fixed a binary constraint and two unary constraints (one for each variable involved in
the binary constraint) and we can check if the subproblem is consistent: a first couple of nested
for loops iterates on the domain of the first variable combining each value with all the domain
values of the second variable and checking if the arc consistency is satisfied (assigning the new
preference value if it is not). The second couple of nested for loops does the same operations
inverting the role of the first and the second variable.In the last lines of the method we can
find the call of two methods used to produce the new preference value constraints from the
tabular value just processed (weightUnaryFilter(wStore) and weightBinaryFilter(wStore)) and
the “dispose” operation for binary and unary, no more needed.

4.4 Constraint unification

Once the soft arc consistency algorithm has succesfully completed his preprocessing, we have to
create new precerence value constraints based on the new data produced. This task is performed
by weightUnaryFilter(wStore) and weightBinaryFilter(wStore).

4.4.1 Unary Constraints

For the unary constraints weightUnaryFilter(wStore) iterates on wUnary (containing one WeightU-
naryDomain per variable) and it scans the list of constraints represented by a list of Hash-
Map<domain value, preference value>. Fixed the HashMap representing a constraint on the
preference value, it stores the supported tuples with a preference value different from 0. During
the first iteration of the just explained loop, we compute the real dimension for the supported
tuples array (initially estimated equal to the variable domain size) and, before starting the se-
cond iteration, we compact the array. During this phase, when we find more than one preference
value for a same domain value (tipically when there are two constraint for the preference value of
a variable), we “combine” the value using the MIN operation getting the same result that would
be generated during the search procedure from the getCost() function. In the last part of the
function the domain for the new preference value variable is computed and the new constraint
is created.

4.4.2 Binary Constraints

For the binary constraint, the method weightBinaryFilter (wStore) has the task to create the
new preference value constraints. It has the same structure of the just explained method: the
outer loop iterate on the WeightBinaryDomains list wBinary and for each of them it scans all
the preference value constraints (represented as HashMap<(X domain value, Y domain value),
preference value>) stored in a list. For each couple of variable represent by a WeightBinaryDo-
mains, the method produces an array of supported tuples, combining with the MIN operation
the preference values regarding the same domain value. As for weightUnaryFilter(), in the la-
st lines the domain of the new preference value variable is computed and the new constraint
created.

4.5 Preference value constraint imposition

Due to the need to perform operations on the constraint before their imposition, the impose
operation for the constraints regarding the preference values has to be delayed after the call of

11

softArcConsistency(). In order to standardize the operations to do, either the user want or want
not to call the soft arc consistency method, the impose of the preference value constraints was
separated and can be applied by calling the imposeWeights() method. To check if softArcCon-
sitency() was called or not, imposeWeight() check the unary and binary fields and, if they are
equal to null, the method jumps to the branch of the new constraint imposition, while if both
the fields contains data it impose the constraint contained in the structures. At the end of the
“after softArcConsistency()” branch the weightStore is “disposed”.

12

	
 13	

5 Example of SoftLib v5 usage

Now we are going to show an example of the current library version usage, with some explanations of the
difference with the previous version.

A simple example of the library usage is the following:

 SoftStore softStore = new SoftStore(SoftStore.Semiring.FUZZY);

 int varNum = 5000;
 int localDomainMax = 4;
 int localDomainMin = 0;

 IntVar[] list = new IntVar[varNum];
 SoftXltC ucon;
 for(int i=0; i< list.length; i++){
 list[i] = new IntVar(softStore, "X"+i, localDomainMin, localDomainMax);
 if(i%2==0){
 ucon = new SoftXltC(list[i], localDomainMax);
 ucon.impose(softStore, new WeightUnaryProportional(150));
 }else{
 ucon = new SoftXltC(list[i], localDomainMax);
 ucon.impose(softStore, new WeightUnaryProportional(1));
 }
 }

 softStore.softArcConsistency();

 softStore.imposeWeights();

 Search<IntVar> label = new DepthFirstSearch<IntVar>();
 SelectChoicePoint<IntVar> select = new SimpleSelect<IntVar>(list,
 new SmallestDomain<IntVar>(),
 new IndomainMin<IntVar>());

 label.getSolutionListener().searchAll(true);
 label.getSolutionListener().recordSolutions(true);

 label.labeling(softStore, select, softStore.getCost());

 for (int i = 1; i <= label.getSolutionListener().solutionsNo(); i++) {
 System.out.print("Soluzione " + i + ": ");
 for (int j = 0; j < label.getSolution(i).length; j++) {
 System.out.print(label.getSolution(i)[j]);
 }
 System.out.println();
 }

	
 14	

In this example we build the variables contraints graph as a chain, the number of the nodes is specified by
the “varNum” variable and their domain’s bounds are specified by the “localDomainMin” and
“localDomainMax” variables. The constraint used to link together the nodes is the SoftXltC and the
weight contraint used is WeightUnaryProportional.
In this sample we want to perform the soft arc consistency operation so, as explained in the previous
chapters, the semiring type parameter in the SoftStore object creation must be “FUZZY”.

As the reader can see the only difference of the library usage with the previous version of the library is the
imposeWeight() method call. It is needed either if the softArcConsistency is called or not, because the
weight constraints would not be imposed until this method call.

