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Abstract. In constraint or preference reasoning, a typical task is
to compute a solution, or an optimal solution. However, when one
has already a solution, it may be important to produce the next solu-
tion following the given one in a linearization of the solution order-
ing, where more preferred solutions are ordered first. In this paper,
we study the computational complexity of finding the next solution
in some common preference-based representation formalisms. We
show that this problem is hard in general CSPs, but it can be easy in
tree-shaped CSPs and tree-shaped fuzzy CSPs. However, it is diffi-
cult in weighted CSPs, even if we restrict the shape of the constraint
graph. We also consider CP-nets, showing that the problem is easy in
acyclic CP-nets, as well as in constrained acyclic CP-nets where the
(soft) constraints are tree-shaped and topologically compatible with
the CP-net.

1 Introduction and motivation
In combinatorial satisfaction and optimization problems, the main
task is finding a satisfying or optimal solution. There have been many
efforts to develop efficient algorithms to perform such tasks, to study
the computational complexity of this problem in general, and to find
islands of tractability [7]. Another important task is to be able to com-
pare two solutions and to say if one dominates another [2]. In this pa-
per, we address another task that is crucial in many scenarios. When
one has already a solution, it can be useful to be able to produce the
next solution following the given one in the solution ordering where
more preferred solutions are ordered first. If the solution ordering has
ties or incomparability, the next solution could be any solution which
is tied or incomparable to the given one. In general, however, the next
solution is the solution following the given one in a linearization of
the solution ordering. The problem of finding the next solution is re-
lated to the problem of enumerating all the solutions of a model [5]
and to the ranking problem [8], although it is quite different form the
latter because we assume only a reference solution in input, and not
all previous ones.

In this paper we study the computational complexity of the prob-
lem of returning the next solution in some constraint and preference-
based formalisms. We show that this is a hard problem in con-
straint satisfaction problems (CSPs), but it can be easy in tree-shaped
CSPs [6] and tree-shaped fuzzy CSPs [10]. However, it is difficult in
weighted CSPs, even if we restrict the shape of the constraint graph.
Nevertheless, this hardness is only weak, since we give a pseudo-
polynomial algorithm to find the next solution in weighted CSPs.
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Moreover, we also show that this problem is easy in acyclic CP-nets
[2], as well as in constrained acyclic CP-nets [3] where the (soft) con-
straints are tree-shaped and topologically compatible with the CP-net
graph.

We intend to look for other tractable cases, and to investigate sce-
narios where the sufficient conditions for tractability, considered in
this paper, naturally hold. We also plan to test experimentally how
difficult it is in practice to find the next solution.

Parts of this paper appeared already in [4]. Due to lack of space,
some formal proofs are omitted and others are only sketched.

2 Background

Hard and soft constraints. A soft constraint [10, 1] is a constraint
[7] where each instantiation of its variables has an associated value
from a (totally or partially ordered) set coming from a c-semiring. A
c-semiring is defined by 〈A,+,×, 0, 1〉whereA is this set of values,
+ is a commutative, associative, and idempotent operator, × is used
to combine preference values and is associative, commutative, and
distributes over +, 0 is the worst element, and 1 is the best element.
The c-semiring induces a partial or total order ≤ over preference
values where a ≤ b iff a+ b = b.

A classical CSP [7] is just a soft CSP where the chosen c-semiring
is SCSP = 〈{false, true}, ∨,∧, false, true〉. Fuzzy CSPs [10]
are instead modeled with SFCSP = 〈[0, 1], max,min, 0, 1〉. That
is, we maximize the minimum preference. For weighted CSPs, the
c-semiring is SWCSP = 〈R+, min,+, +∞, 0〉: preferences are
interpreted as costs from 0 to +∞, and we minimize the sum of
costs.

Given an assignment s to all the variables of an SCSP P , its prefer-
ence, written pref(P, s), is obtained by combining the preferences
associated by each constraint to the subtuples of s referring to the
variables of the constraint. For example, in fuzzy CSPs, the prefer-
ence of a complete assignment is the minimum preference given by
the constraints. In weighted constraints, it is instead the sum of the
costs given by the constraints. An optimal solution of an SCSP P is
then a complete assignment s such that there is no other complete
assignment s′ with pref(P, s) <S pref(P, s′).

Constraint propagation in classical CSPs reduces variable do-
mains, and thus improves search performance. For some classes of
constraints, constraint propagation is enough to solve the problem
[6]. This is the case for tree-shaped CSPs, where directional arc-
consistency, applied bottom-up on the tree shape of the problem, is
enough to make the search for a solution backtrack-free. Given a vari-
able ordering o, a CSP is directional arc-consistent (DAC) if, for any
two variables x and y linked by a constraint cxy , such that x precedes
y in the ordering o, we have that, for every value a in the domain of



x there is a value b in the domain of y such that (a, b) satisfies cxy .
Constraint propagation can be applied also to soft CSPs, and it

maintains the usual properties, as in classical CSPs, if the soft con-
straint class is based on an idempotent semiring (that is, one where
the combination operator is idempotent). This is the case for fuzzy
CSPs, for example. As for classical CSPs, DAC is enough to find the
optimal solution to a fuzzy CSP when the problem has a tree shape
[10].

Fuzzy CSPs can also be solved via a cut-based approach. Given a
fuzzy CSP P , an α-cut of P , where α is between 0 and 1, is a clas-
sical CSP with the same variables, domains, and constraint topology
as the given fuzzy CSP, and where each constraint allows only the
tuples that have preference above α in the fuzzy CSP. We will denote
such a problem by cut(P, α). The set of solutions of P with prefer-
ence greater than or equal to α coincides with the set of solutions of
cut(P, α).

CP-nets. CP-nets [2] are a graphical model for compactly repre-
senting conditional and qualitative preference relations. CP-nets are
sets of ceteris paribus (cp) preference statements. For instance, the
statement I prefer red wine to white wine if meat is served.” asserts
that, given two meals that differ only in the kind of wine served and
both containing meat, the meal with red wine is preferable to the meal
with white wine. A CP-net has a set of features F = {x1, . . . , xn}
with finite domains D(x1), . . . ,D(xn). For each feature xi, we are
given a set of parent features Pa(xi) that can affect the preferences
over the values of xi. This defines a dependency graph in which
each node xi has Pa(xi) as its immediate predecessors. Given this
structural information, the agent explicitly specifies her preference
over the values of xi for each complete assignment on Pa(xi). This
preference is assumed to take the form of total or partial order over
D(xi). An acyclic CP-net is one in which the dependency graph is
acyclic.

Consider a CP-net whose features areA,B,C, andD, with binary
domains containing f and f if F is the name of the feature, and with
the preference statements as follows: a � a, b � b, (a∧b)∨(a∧b) :
c � c, (a∧b)∨ (a∧b) : c � c, c : d � d, c : d � d. Here, statement
a � a represents the unconditional preference for A=a over A=a,
while statement c : d � d states that D=d is preferred to D=d, given
that C=c.

The semantics of CP-nets depends on the notion of a worsening
flip. A worsening flip is a change in the value of a variable to a less
preferred value according to the cp statement for that variable. For
example, in the CP-net above, passing from abcd to abcd is a wors-
ening flip since c is better than c given a and b. One outcome α is
better than another outcome β (written α � β) iff there is a chain of
worsening flips from α to β. This definition induces a preorder over
the outcomes, which is a partial order if the CP-net is acyclic.

In general, finding the optimal outcome of a CP-net is NP-hard.
However, in acyclic CP-nets, there is only one optimal outcome and
this can be found in linear time by sweeping through the CP-net,
assigning the most preferred values in the preference tables. For in-
stance, in the CP-net above, we would choose A=a and B=b, then
C=c, and then D=d.

3 Solution orderings and linearizations
Each of the constraint or preference-based formalisms recalled in the
previous section generate a solution ordering over the variable as-
signments, where solutions dominate non-solutions, and more pre-
ferred solutions dominate less preferred ones. This solution ordering

can be a total order, a total order with ties, or even a partial order
with ties. However, the problem of finding the next solution needs a
strict linear order over the variable assignments, thus we will need to
consider a linearization of the solution ordering.

CSPs generate a solution ordering which is total order with ties:
all the solutions are in a tie (that is, they are equally preferred), and
dominate in the ordering all the non-solutions, which again are in a
tie. In soft constraints, the solution ordering is in general a partial
order with ties: some assignments are equally preferred, others are
incomparable, and others dominate each other. If we consider fuzzy
or weighted CSPs, there can be no incomparability (since the set of
preference values is totally ordered), so again we have a total order
with ties, and a solution dominates another one if its preference value
is higher. In this context, linearizing the solution ordering just means
giving an order over the elements in each tie.

In acyclic CP-nets, the solution ordering is a partial order. In this
scenario, any linearization of the solution ordering has to order every
pair of incomparable assignments.

In the following, given a problem P and a linearization l of its solu-
tion ordering, we will denote with Next(P,s,l) the problem of finding
the solution just after s in the linearization l. Note that, while there
is only one solution ordering for a problem P, there may be several
linearizations of such a solution ordering.

It is not tractable to compute l explicitly, since it has an exponential
length and it would mean knowing all the solutions and their relative
order. For these reasons, we will assume the linearization is implic-
itly given to the Next procedure. For example, a lexicographic order
on the variable assignments induces a linearization of the solution
ordering of a problem, yet it is polynomially describable.

4 Finding the next solution in CSPs
Let P be a CSP with n variables, and let us consider any variable or-
dering o = (x1, . . . , xn) and any value orderings o1, . . . , on, where
oi is an ordering over the values in the domain of variable xi. We will
denote with O the set of orderings {o, o1, . . . , on}. These orderings
naturally induce a lexicographical linearization of the solution order-
ing, that we call lex(O), where, given two variable assignments, say
s and s′, we write s ≺lex(O) s

′ (that is, s precedes s′) if either s is a
solution and s′ is not, or s precedes s′ in the lexicographic order in-
duced by O (that is, s = (s1, . . . , sn), s′ = (s′1, . . . , s

′
n), and there

exists i ∈ [1, n] such that si ≺oi s
′
i and sj = s′j for all j < i). We

will now show that, if the take the linearization given by lex(O), the
problem of finding the next solution is NP-hard.

Theorem 1 Computing Next(P,s,lex(O)), where P is a CSP, s is one
of its solutions and O is a set of orderings, is NP-hard.

The proof is based on a reduction from SAT.
This result can be extended to a wider class of orderings, as the

following theorem states.

Theorem 2 For each polynomially describable total order ω over
complete variable assignments such that its top element does not de-
pend on the constraints of the CSP and is polynomially computable,
let us consider the linearization of the solution ordering induced
by ω, say l(ω). Then there exists a solution s such that computing
Next(p,s,l(ω)), where p is a CSP, is NP-hard.

5 Next on tree-shaped CSPs
We know that finding an optimal solution becomes easy if we restrict
the constraint graph of the problem to have the shape of a tree. It is



therefore natural to consider this class to see whether also the Next
problem becomes easy under this condition. We will see that this is
indeed so: if the CSP is tree-shaped, it can be easy to find the next
solution.

In this section we focus on tree-shaped CSPs. However, the same
results hold for bounded tree-width. For a tree-shaped CSP with
variable set X = {x1, · · · , xn}, let us consider the linearization
tlex(O), which is the same as lex(O) defined in the previous sec-
tion, with the restriction that the variable ordering o respects the tree
shape: each nodes comes before its children. For example, let us
consider the tree-shaped CSP shown in Figure 1, and assume that
o = (x1, x2, x3, x4, x5) and that in all domains a ≺oi b ≺oi c.
The solutions of the CSP are then ordered by tlex(O) as follows:
(a, b, a, b, b) ≺ (a, b, a, c, b) ≺ (b, a, b, a, a) ≺ (b, a, b, a, b) ≺
(b, a, b, c, a) ≺ (b, a, b, c, b) ≺ (b, b, b, b, b) ≺ (b, b, b, c, b).

x1

{a b}

x2

{a b}

x3 {a b c}

x4{a b c} x5 {a b c}

x1 x2

a b

b a

b b

x1 x3

a a

b b
x2 x4

a a
a c

b b

b c

x2 x5

a a

a b

b b

Figure 1. A tree-shaped CSP.

We will now describe an algorithm that, given as input a direction-
ally arc consistent tree-shaped CSP P and a solution s for P , it either
returns the consistent assignment following s according to tlex(O),
or it detects that s is the last consistent assignment in such an or-
dering. The algorithm works bottom-up in the tree, looking for new

Algorithm 1: CSP-Next
Input: tree-shaped and DAC CSP P , orderings o, o1, . . . , on,
assignment s
Output: an assignment s′, or “no more solutions”
for i=n to 1 do

Search D(xi) for the next value w.r.t. oi which is consistent
with sf(i), say v′;
if v′ exists then

si ← v′

Reset-succ(s,i)
return s

return “no more solutions”

variable values that are consistent with the value assigned to their
father (denoted by f(i) in Algorithm 1) and successive to the ones
assigned in s in the domain orderings. As soon as it finds a variable
for which such a value exists, it resets all the following variables (ac-
cording to the variable ordering o) to their smallest compatible values
w.r.t. the domain orderings (via procedure Reset-succ).

For example, if we run CSP-Next giving in input the CSP of Figure
1 and solution s=(b,a,b,a,b), the algorithm first tries to find a value for
x5 consistent with x2 = a and following b in the domain ordering of
x5. Since no such value exists, it moves to x4 and performs a similar
search, that yields x4 = c. Procedure Reset-succ then sets x5 = a,
the first value in the ordering for x5 consistent with x2 = a.

Theorem 3 Consider a tree-shaped and DAC CSP P and the order-
ing tlex(O) defined above. If s is not the last solution in ordering
tlex(O), the output of CSP-next(P,s) is the successor of s accord-
ing to tlex(O); otherwise, the output of CSP-next(P,s) is “no more
solutions”.

If |D| is the cardinality of the largest domain, it is easy to see that
the worst case complexity of CSP-next is O(n|D|), since both look-
ing for consistent assignments and resetting to the earliest consistent
assignment takes O(|D|), and such operations are done O(n) times.

From Theorem 3 we can thus conclude that Next(P,s,tlex(O)) is
polynomial, since it can be computed by applying DAC to P and then
CSP-Next to P and s, both of which are polynomial-time algorithms.

Note also that the choice of the linearization is crucial for the com-
plexity of the algorithm. Indeed, a different choice for l may turn
Next(P,s,l) into an NP-hard problem, even on tree-shaped CSP, as
proved in the following theorem.

Theorem 4 Computing Next(P,s,l), where P is a tree-shaped CSP, s
is one of its solutions, and l is an arbitrary linearization, is NP-hard.

The proof is based on a reduction from the subset sum problem.

6 Next on weighted CSPs
Theorem 5 Computing Next(P,s,l), where P is a weighted CSP and
s is one of its solutions, is NP-hard, for any linearization l.

The proof of Theorem 4 can be easily adapted for the purpose of
this statement.

Note that theorems 4 and 5, while very similar in proof, have quite
a different implication. Indeed, while for tree-shaped CSPs comput-
ing Next is NP-hard only for some choices of the linearization l, for
weighted CSPs computing Next is always NP-hard, irrespective of
the linearization.

However, we will now show that, if we consider the lexicograph-
ical ordering, then this NP-hardness is weak, since we can provide
a pseudo-polynomial algorithm to find the next solution in weighted
CSPs. Thus, it is only the possibility to use large utilities that makes
the problem intractable in general.

In the context of a weighted CSP, finding the next solution means
that, given a solution, we want to return the next assignment in lex-
icographical order with the same utility or, if there is no such as-
signment, the first assignment in lexicographical order with the next
smaller utility.

Theorem 6 It is weakly NP-hard to compute the next solution in a
weighted CSP.

To show that finding the next solution is only weakly NP-hard,
we give a pseudo-polynomial algorithm which is a simple general-
ization of the dynamic programming algorithm for deciding subset
sum [9, 11]. Given a weighted CSP with no constraints, and an as-
signment a = (a1, . . . , an) to its variables xi with 1 ≤ i ≤ n,
with utility U(a) = s, we define Qa(j, t) as the lexicographically
smaller assignment b = (b1, . . . , bj) with utility t, that involves
only the first j variables, and such that b �lex a. If no such as-
signment exists, then Qa(j, t) = nil. A simple recursion can be used
to compute Qa(j, t), for any j from 1 to n, and any utility level t
from 0 to s. In particular, we can initialize Qa(1, t) as Qa(1, t) =
lexminb1∈D1{(b1) : u1(b1) = t ∧ b1 �lex a1} and then compute

recursively Qa(j, t) = lexminbj∈Dj

{
{(Qa(j − 1, t − vj), bj) :



(b1, . . . , bj) �lex (a1, . . . , aj)}∪{(a1, . . . , aj−1, bj) : uj(bj) =

uj(aj) ∧ bj �lex aj}
}

where vj = uj(bj). To compute the next
solution given an assignment a with utility s, we just need to check
whether Qa(n, s) is not nil. If it is, Qa(n, s) contains the lexico-
graphically next assignment with utility s. Otherwise, we use a very
similar dynamic program to compute the lexicographically smallest
assignment with the next smallest utility. The running time of both
dynamic programs isO(n·s·|D|), where |D| is the size of largest do-
main. Thus we can compute the next solution in pseudo-polynomial
time.

This algorithm works also when the weighted CSP problem has
some constraints, provided that there is a polynomial number of such
constraints and each has a bounded scope. In such weighted CSPs,
we compute Qa(j, t) from Qa(j − 1, t − ui) where ui is the ad-
ditional utility added by assigning xj = bj . This is polynomial to
compute given our assumption that there is a polynomial number of
constraints, each involving a polynomial number of variables. Hence,
there is a pseudo-polynomial time algorithm to compute the next so-
lution also for any such weighted CSP.

Example: To make it simple, we consider a weighted CSP with
no constraints and five Boolean variables x1 to x5 where ui(0) = 0
and ui(1) = i. Suppose we are given the solution a = (0, 1, 1, 0, 0)
of utility s = 5 and we want to compute the lexicographically next
solution. The dynamic programming algorithm will build from the
bottom-left corner the following table:

t x1 x2 x3 x4 x5
5 nil nil nil (1,0,0,1) (1,0,0,1,0)
4 nil nil (1,0,1) (1,0,1,0) (1,0,1,0,0)
3 nil (1,1) (1,1,0) (1,1,0,0) (1,1,0,0,0)
2 nil nil nil nil nil
1 (1) (1,0) (1,0,0) (1,0,0,0) (1,0,0,0,0)
0 nil nil nil nil nil

For example,Qa(j = 3, t = 4) = (1, 0, 1). This means that (1, 0, 1)
is the lexicographically smaller assignment with utility 4, that in-
volves only the first 3 variables, and such that it follows (0, 1, 1)
(that is, the restriction of a to the first 3 variables) lexicographically.
Since Qa(j = 5, t = 5) is not nil, then the lexicographically next
assignment with utility 5 is (1, 0, 0, 1, 0).

7 Next on tree-shaped fuzzy CSPs
Turning our attention to fuzzy CSPs, we will show that Next on tree-
like fuzzy CSPs can be easy. Let P be a fuzzy tree-shaped CSP with
variable set X = {x1, . . . , xn} and set of constraints C, and let us
consider a variable ordering o = {x1, . . . , xn} which respects the
tree shape. Moreover, let oi be a total order over the values in the
domain of xi, for i = 1, . . . , n.

We will consider set T = {t = (xi = vi, xj = vj)|i < j,∃c ∈
C, t ∈ c, prefc(t) > 0}, where prefc(t) denotes the preference
assigned to t by constraint c that is, the set of all pairs of vari-
ables assignments appearing in P with preference greater than 0.
The preferences assigned to tuples by the constraints in C and the
orderings o, oi, · · · , on induce the following ordering oT over T :
(xi = v, xj = w) ≺oT (xh = z, xk = u) if

• the preference associated to tuple (xi = v, xj = w) by its con-
straint is higher than the preference associated to tuple (xh =
z, xk = u) by its constraint, or

• they have the same preference, and the variable pair (xi, xj) lex-
icographically precedes the variable pair (xh, xk) according to o,
or

• they have the same preference, i = h, j = k and the value pair
(v, w) lexicographically precedes the value pair (z, u) according
to domain orderings oi and oj .

We will now use this strict total order over the set of tuples of P
to define a strict total order over the set of solutions of P . Given two
complete assignments to X , say s and s′, let ts = minoT {t tuple
of s with preference pref(s)} and t′s = minoT {t tuple of s′ with
preference pref(s′)}. Let opt(P ) denote the optimal preference of
a fuzzy CSP P . We write s ≺f s

′ (that is, s precedes s′ in ordering
≺f ), if

• pref(s) > pref(s′), or
• pref(s) = pref(s′) = opt(P ) and s precedes s′ in the lexico-

graphic order induced by o and the domain orderings o1, . . . , on,
or

• pref(s) = pref(s′) < opt(P ) and ts ≺oT t′s,
• pref(s) = pref(s′) < opt, ts = t′s and s precedes s′ in

the lexicographic order induced by o and the domain orderings
o1, . . . , on.

It is possible to show that ≺f is a linearization of the solution
ordering.

x1

x2

x3 x4

a → 1

b → 0.5

a → 1

b → 0.5

a → 1

b → 1

a → 1

b → 1

x1 x2

a a → 1

a b → 0.8

b a → 0.5

b b → 0.2

x2 x3

a a → 0.5

a b → 1

b a → 0.2

b b → 0.5

x2 x4

a a → 0.2

a b → 1

b a → 1

b b → 0.8

Figure 2. A tree-shaped DAC fuzzy CSP.

For example, let us consider the tree-shaped DAC Fuzzy CSP
shown in Figure 2. Assume that o = (x1, x2, x3, x4) and that a ≺oi

b for i = 1, . . . , 4. Then, if we consider solutions s = (b, a, a, b)
and s′ = (a, b, b, b), we have that s ≺f s′ since pref(s) =
pref(s′) = 0.5 < 1 = opt(P ), ts = (x1 = b, x2 = a),
ts′ = (x2 = b, x3 = b), and thus ts ≺oT ts′ ; If instead we con-
sider solutions s = (b, b, a, a) and s′ = (b, b, a, b), we have again
that s ≺f s′, since pref(s) = pref(s′) = 0.2 < 1 = opt(P ),
ts = (x1 = b, x2 = b) = t′s, and s precedes s′ lexicographically.

As with CSPs, we provide a polynomial time algorithm that solves
the Next problem for tree-shaped fuzzy CSPs. The main idea that we
exploit is that, in a fuzzy CSP, a solution can have preference p only
if it includes a tuple that has preference p. In Algorithm 2:

• procedure fix(P,t) takes in input a fuzzy CSP P and one of its tu-
ples, t = (xi = v, xj = w) and returns the fuzzy CSP obtained
from P by removing from the domains of variables xi and xj all
values except v and w;

• procedure cut(P,p) takes in input a fuzzy CSP P and a preference
p and returns the CSP corresponding to the p−cut of P as defined
in Section 2;

• procedure Solve(P) takes in input a CSP P and returns the first
solution in a lexicographic order given the variable and the domain
orderings.



Algorithm 2: FuzzyCSP-Next
Input: tree-shaped and DAC Fuzzy CSP P , orderings
o, o1, . . . , on, oT , assignment s with preference p
Output: an assignment s′, or “no more solutions”
if p = opt(P ) then

P ′ ← cut(P, p)
if CSP-next(P’,s) 6= “no more solutions” then

return CSP-next(P’,s)
if p 6= opt(P ) then

compute tuple ts
t∗ = ts

else
let t∗ be the first tuple s.t. pref(t∗) = next(p)

p∗ = pref(t∗)
P ′ ← cut((fix(P, t∗)), p∗)
if CSP-next(P’,s) 6= “no more solutions” then

return CSP-next(P’,s)
pref(t)← 0, ∀t ∈ T such that pref(t) = p∗ and t ≤oT t∗

cpref ← p∗

for each tuple t >oT t∗ following order oT until pref(t) > 0
do

if pref(t) < cpref then
reset all preferences, previously set to 0, to their original
values

if pref( Solve ( cut(fix(P,t),pref(t)))) = pref(t) then
return Solve( cut(fix(P,t),pref(t)))

cpref ← pref(t)
pref(t)← 0

return “no more solutions”

Intuitively, when solution s with preference p is given in input,
if s is optimal, we look for the next solution in the CSP obtained
from P by performing a cut at level p and running CSP-next. If no
solution is returned, then s must have been the last solution with
optimal preference in the ordering and its successor must be sought
for at lower preference levels.

If s is not optimal, we consider its tuples and we identify the small-
est tuple of s, say ts, according to ordering oT , that has preference p
in the corresponding constraint. We fix such a tuple, via fix(P, ts),
and we cut the obtained fuzzy CSP at level p. We then look for the
solution lexicographically following s in such a CSP by calling CSP-
next. If no such solution exists, s must be the last solution with pref-
erence p among those that get their preference from ts.

The next solution may have preference p or lower. However, if it
does have preference p, such a preference must come from a tuple
with preference p which follows ts in the ordering oT . In order to
avoid finding solutions with preference equal to p that come from
tuples with preference p preceding ts according to oT , we set the
preference of all such tuples to 0. If none of the tuples with preference
p following ts generate solutions with preference p, we move down
one preference level, restoring all modified preference values to their
original values. This search continues until a solution is found or all
tuples with preference greater than 0 have been considered.

Theorem 7 Given a tree-shaped DAC fuzzy CSP P and a solution
s, algorithm FuzzyCSP-Next computes the successor of s according
to ≺f if s is not the last solution with preference greater than 0, and
outputs “no more solutions” otherwise. The worst case time com-
plexity of algorithm FuzzyCSP-Next is O(|T ||D|n), where |T | is the
number of tuples of P and |D| the cardinality of the largest domain.

The correctness of FuzzyCSP-Next follows directly from the de-
scription of the algorithm. For the complexity, we notice that the

complexity of FuzzyCSP-Next is bounded by that of running |T |
times the CSP-next algorithm. 2

Given a tree-shaped fuzzy CSP P , one of its solutions s, and the
solution ordering≺f , Next(P, s,≺f ) can be therefore computed in
polynomial time: we just need to achieve DAC (which is polynomial)
and then run algorithm FuzzyCSP-Next. Again, it is not difficult to
prove that the choice of the order is crucial for the complexity of the
algorithm, and that Next(P,s,l) is in general NP-hard even on tree-
shaped fuzzy CSPs. Indeed, since tree-shaped fuzzy CSPs admit tree-
shaped CSPs as a special case, the result is a direct consequence of
Theorem 4.

8 Next on acyclic CP-nets
We now consider the complexity of the Next operation in acyclic CP-
nets. It turns out that Next is easy on such CP-nets, if we consider
a certain linearization of the solution ordering. We first define the
concept of contextual lexicographical linearization of the solution
ordering. Let us consider any ordering of the variables where, for
any variable, its parents are preceding it in the ordering. Let us also
consider an arbitrary total ordering of the elements in the variable
domains. For sake of simplicity, let us consider Boolean domains.
Given an acyclic CP-net with n variables, we can associate a Boolean
vector of length n to each complete assignment, where element in
position i corresponds to variable i (in the variable ordering), and it
is a 0 if this variable has its most preferred value, given the values
of the parents, and 1 otherwise. Therefore, for example, the optimal
solution will correspond to a vector of n zeros.

To compute such a vector from a complete assignment, we just
need to read the variable values in the variable ordering, and for each
variable we need to check if its value is the most preferred or not,
considering the assignment of its parents. This is polynomial if the
number of parents of all variables is bounded. Given a vector, it is
also easy to compute the corresponding assignment.

Let us now consider a linearization of the ordering of the solu-
tions where incomparability is linearized by a lexicographical order-
ing over the vectors associated to the assignments. We will call such
a linearization a contextual lexicographical linearization. Note that
there is at least one of such linearizations for every acyclic CP-net.

Theorem 8 Computing Next(N,s,l), where N is an acyclic CP-net,
s is one of its solutions, and l is any contextual lexicographical lin-
earization of its solution ordering, is in P.

Given any solution s and its associated vector, as defined above,
the vector of the next solution in l can be easily obtained by a stan-
dard Boolean vector increment operation. Therefore, given any so-
lution s, it is possible to obtain the next solution by 1) computing
the vector associated to s, 2) incrementing it, and 3) computing the
solution associated to the new vector. Since each of these steps is
polynomial, the overall process is polynomial. The same proof can
be easily extended to non-Boolean domains. 2

Figure 3 shows an acyclic CP-net, with features A, B, and C, and
its solution ordering. It is assumed that the variables have each two
values: for A we have a and ā, and similarly for B and C. Also,
the variable ordering is A ≺ B ≺ C. Given solution abc (that is,
A=a, B=b, C=c), the associated Boolean vector (as described above)
is 000, since a is the most preferred value for A, b is the most pre-
ferred value for B given A=a, and c is the most preferred value for C.
Instead, the vector associated to solution āb̄c is 100, and the vector
associated to ābc̄ is 111. Given vector 101, the associated solution is
āb̄c̄. In Figure 3 it is possible to see the CP-net, the solution order-
ing, and the vector for each solution. Also, if we order the solutions



according to a standard lexicographical order over their vectors, we
get a linearization of the partial solution ordering.
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Figure 3. An acyclic CP-net and its solution ordering.

9 Next on constrained CP-nets
Some statements are better expressed via constraints, other via pref-
erences. Moreover, some preferences are better modeled via soft
CSPs, other via CP-nets. However, usually in a real-life problem
we may have statements of all these kinds, thus requiring to use all
the above considered formalisms in the same problem. It is therefore
useful to consider problems where CP-nets and CSPs, or soft CSPs,
coexist [3].

We thus consider here the notion of a constrained CP-net, which is
just a CP-net plus some (soft) constraints [3]. Given a CP-net N and
a constraint problem P , we will write (N,P) to denote the constrained
CP-net given by N and P. For sake of simplicity, in the following we
will assume that the CP-net and the CSP involve the same variables.
Nevertheless, our results hold also for the more general setting.

Given a constrained CP-net (N,P), its solution ordering, written
≺np, is that given by the (soft) constraints, where ties can be bro-
ken by the CP-net preferences. More precisely, solution s dominates
solution s′ (that is, s ≺np s′) if s dominates s′ according to the
constraints in P, or s and s′ are equally preferred according to the
constraints in P, but s dominates s′ according to the CP-net N.

We now ask consider the complexity of computing the next so-
lution in a linearization of this ordering. The first results says that
the problem is difficult if we take the lexicographical linearization
(given o, which is an ordering over the variables) of ≺np, denoted
with lex(o,≺np).
Theorem 9 Computing Next((N,P ), s, lex(o,≺np)), where
(N,P ) is a constrained CP-net and s is one of its solutions, is
NP-hard.

The statement can be proven by reducing Next on a CSP to Next
on a constrained CP-net. The same proof applies also to constrained
CP-nets where the CP-net is acyclic.

Next becomes easy if we consider acyclic CP-nets, tree-shaped
CSPs, and we add a compatibility condition between the acyclic CP-
net and the constraints. This compatibility condition is related to the
topology of the CP-net dependency graph and of the constraint graph.

Consider two variables in an acyclic CP-net, say x and y. We say
that x depends on y if there is a dependency path from y to x in the
acyclic DAG of the CP-net. Given an acyclic CP-net N and a tree-
shaped CSP P , we say that N and P are compatible if there exists
a variable of the CSP, say r, such that: for any two variables x and
y such that x is the father of y in the r-rooted tree, we have that x
does not depend on y in the CP-net. Informally, this means that it is
possible to take a tree of the constraints where the top-down father-
child links, together with the CP-net dependency structure, do not
create cycles. If the compatibility holds for any root taken from a set
S, then we will write that N and P are S-compatible.

Figure 4 shows an example of a CP-net DAG and two trees, of
which the one in Fig. 4 (b) is compatible with the CP-net: if we
choose A as the root, the father-child relationship is not contradicted
by the CP-net dependencies. Instead, the tree in Fig. 4 (c) is incom-
patible with the CP-net: whatever root is chosen, some tree links are
contradicted by the CP-net dependencies.

A

B C

D

CP-net
(a)

A

B

C

D

P1
(b)

A B

C

D

P2
(c)

Figure 4. A CP-net dependency graph and two trees.

Theorem 10 Consider an acyclic CP-net N and a tree-shaped CSP
P , and assume that N and P are S-compatible, where S is a subset
of the variables of P. Taken a solution s for (N,P ), and a variable
ordering o which respects the tree shape of P with root an element
of S, we have that Next((N,P ), s, lex(o,≺np)) is in P.

To compute Next((N,P ), s, lex(o,≺np)), we use algorithm
CSP-Next, except that we dynamically order each variable domains
according the CP-net: for any variable, we order its domain accord-
ing to the row of its CP table associated to the fixed assignment to
the parent variables.

Under these same conditions, Next remains easy even if we con-
sider CP-nets constrained by fuzzy CSPs rather than hard CSPs. We
just need to adapt in a similar way algorithm FuzzyCSP-Next.
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