Defense trees for economic evaluation of security investments

Stefano Bistarelli Fabio Fioravanti Pamela Peretti

Dipartimento di Scienze
Università degli Studi "G. d'Annunzio"
Pescara, Italy

Inelacia ent ei tienW

How to protect an organization's asset?

notistich

 Create a process to identify, describe and analyze the possible vulnerabilities of a system

 Provide an economic balance between the economic impact of risk and the cost of risk mitigation

rslone (2/4)

Background

- Qualitative approach
 - + Attack trees
- Quantitative approach
 - + Economic indexes
- + Defense trees = Attack tree + countermeasures
- + Defense trees + quantitatives labels

Economic evaluationof countermeasures

noisongqis evitistilisiu(2)

A relative evaluation of:

- + assets
- + threats and vulnerabilities
- + countermeasures

Scenario analysis — Attack trees

An attack tree [Schneier00] is a tree-based structure where:

- + the root is an asset of an IT system
- + the paths from the root to the leaf are the way to achieve this goal
- + the non-leaf nodes can be:
 - and-nodes
 - or-nodes

An attack tree can be transformed to its *Disjunctive Normal Form* [Mauw05]

((A or B) and C)=(A and C) or (B and C)

noisonquis evitistitinisus

Assigns absolute numeric attribute values to:

- assets (asset value)
- threats and vulnerabilities (exposure factor, annualized rate of occurrence)
- countermeasures (cost, risk mitigated)

1

Economic Indexes

Economic Indexes

Return on Investment (ROI)

a performance measure used to evaluate the efficiency of an investment

$$ROI = \frac{Gain\ from\ Investment\ -\ Cost\ of\ Investment\ }{Cost\ of\ Investment}$$

rslone (2/4)

Background

- Qualitative approach
 - + Attack trees
- + Quantitative approach
 - + Economic indexes
- + Defense trees = Attack tree + countermeasures
- + Defense trees + quantitatives labels

eeri ezneiel eni unibliua

1. Create an attack tree,

eeri ezneiel eni unibliua

2. *Defense tree* = attack tree + countermeasures

eeri ezneiel eni pnibliu E

3. Label the defense tree using quantitative indexes and computing the Return on Investment

4. Label the defense tree using quantitative indexes and computing the Return on Attack [Cremonini05]

Asset Value (AV)

AV Asset Value

Exposure Factor (EF)

Single Loss Exposure (SLE=AV × EF)

AV Asset Value

EF Exposure Fac

Annualized Rate of Occurrence (ARO)

AV Asset Value

EF Exposure Fac

SLE Single Loss Exposure

Annualized Loss Expectancy (ALE=SLE × ARO)

AV Asset Value

EF Exposure Fac

SLE Single Loss Exposure

ARO Annualized Ra of Occurrence

Risk Mitigated by a countermeasure (RM)

AV Asset Value

EF Exposure Fac

SLE Single Loss Exposure

ARO Annualized Ra of Occurrence

ALE Annualized Lo Expectancy

Cost of a Security Investment (CSI)

AV Asset Value

EF Exposure Fac

SLE Single Loss Exposure

ARO Annualized Ra of Occurrence

ALE Annualized Lo Expectancy

RM Risk Mitigated

$$ROI = \frac{(ALE \times RM) - CSI}{CSI}$$

AV Asset Value

EF Exposure Fac

SLE Single Loss Exposure

ARO Annualized Ra of Occurrence

ALE Annualized Lo Expectancy

RM Risk Mitigated

CSI Cost Security Investment

Reitith On Aitsick

Gain that an attacker expects from an attack

Reitith On Aitsick

Cost of an attack

GI expected gain

Reitin On Attack

Additional cost (loss) caused by a countermeasure S

expected gain Cost cost before S

GI

Reitith on Aitsick

$$ROA = \frac{GI}{cost\ before\ S\ +\ loss\ caused\ by\ S}$$

GI expected gain

Cost cost before S

Loss loss caused by

encitables enthentelect unitied

- + Maximize ROI
- + minimize ROA
- + max ROI min ROA
- + a Pareto-optimal solution
- maximize a user-defined function of ROI and ROA

Encitisulisve ent nentelect entitle

Maximize ROI

Encitisulisve ent nentelect entitle

+ Minimize ROA

Putting together the evaluations

+ max ROI min ROA

encitisulisve ent nentelect lenitius

The Pareto-optimal countermeasure for the first attack

encitisulisve ent hentieleet lenittus

The Pareto-optimal countermeasure for the second attack

F.W. CP-Nets

- Relations between possibilistic logic and cp-nets
- Uncertainties of attacks modelled as probability/possibility distribution

(See: CP-Net, Possibility Theory (Prade, Dubois), Uncertainty and CP-Net (?Brent Phd Thesis?))

Conclusion and Future Work

- From Attack to Defense trees
- Defense trees + quantitative labels
 - + ROI
 - + ROA
- + Evaluation of multiple attacks and countermeasure
- + Heuristics to find the best configuration
 - + Minimum (cost) set cover
- Game Theory analysis
- + Defense Graphs
- Constraint intervals to represent uncertain indexes (RM, ARO, EF)