
Boosting the performance of Iterative
Flattening Search

Angelo Oddi1, Nicola Policella1, Amedeo Cesta1,
Stephen F. Smith2

1 ISTC-CNR, Italian National Research Council
Via San Martino della Battaglia 44, 00185 Rome, Italy

{angelo.oddi, nicola.policella, amedeo.cesta}@istc.cnr.it
2 Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

sfs@cs.cmu.edu

Context
• Iterative Flattening - iFlat

– An iterative improvement search procedure for solving multi-
capacitated scheduling problems with makespan minimization as
the objective

– The concept of iterative flattening search is quite general and
provides a framework for designing effective procedures for
scheduling optimization

• Reference works
– Different scheduling algorithms [authors, AIPS-98, IJCAI-99,

Journal of Heuristics 2001]
– First version of Iterative Flattening (iFlat) [authors, AAAI-2000]
– Improved version of iFlat [Michel&Van Hentenryck, (ICAPS-2004)]
– Variation of the improved version [Godard, Laborie &Nuijten.

Randomized Large Neighborhood Search for Cumulative
Scheduling (ICAPS-2005)]

Outline of the talk

• A reference scheduling problem
• Basic algorithms

– Profile-based algorithms
– Iterative Flattening

• Improving Iterative Flattening search
– Using Partial Order Schedules (POSs)
– iFlat with tabu-list
– Tabu-Search for a fine-grained exploration
– Loop integration

• Experimental evaluation
• Conclusions and future work

The MCJSSP scheduling problem

H0

job1

job2

job3

job4

mk

r1

r2

resource constraints

Scheduling problem with four jobs, each job has two activities; “red
activities” require resource r1 and “blue activities” require resource r2

c1 =2

c2 =2

The profile-based approach

Activity 2

Activity 1
Activity 2

Activity 2

Demand profile
for a resource

Conflict
detection

Removing conflicts
Introducing levelling
constraints

cj

Dj(t)

Activity 1

Activity 1

ESTA: a greedy profile-based algorithm

ESTA (problem, horizon)
post(horizon)
loop

- propagate
- compute-minimal-conflicts
on resources

- if no-conflict
then return(solution)
else if unsolvable-conflicts

then return(fail)
else

- select-conflict
- select-precedence
- post(precedence)

end-loop

• Starts with a time-feasible
solution

• Posts constraints to “stretch”
it into a resource-feasible
solution.

Minimal Critical Set (MCS) analysis

Resource capacity = 2

A4
A5

A6

A3
A2

A1
MCS1

MCS2

(Approximate computation of MCS [authors, IJCAI-99])

A Minimal Critical Set (MCS) is a resource conflict such
that each proper subset is not a resource conflict

MCS elimination

• Variable ordering: which MCS to resolve
first
– Use estimator K [Laborie&Ghallab ‘95] to order

MCSs
– “Select the MCS that is temporally closest to an

unsolvable state”

• Value ordering: how to choose the
precedence (leveling) constraint
– Use slack-based heuristics

[Smith&Cheng ‘93]

A3
A2

A1

MCS

A3
A2

A1

MCS

Greedy strategy: example (1)

peak

peak

Greedy strategy: example (2)

peak

peak

leveling constraint

Greedy strategy: example (3)

peak

leveling constraint

Greedy strategy: example (4)

peak

leveling constraint

Greedy strategy: example (5)

leveling constraint

Finding better solutions

critical path

A greedy solution

A better solution

• A Greedy solution is not necessarily optimal
• A better solution will necessarily have a shorter critical path
• Implies change to one or more constraints along critical path

Iterative Flattening
random perturbation on
the solution critical path

resource leveling (greedy algorithm)

resource
constraint

solution critical path

random removal of
a leveling constraint

IFlat (Solution, Prem, MaxFail) {

while (the makespan is improved within MaxFail iterations) {
Randomly retract a percentage Prem of
leveling constraints on the solution critical
path /*removal step*/

Re-apply the ESTA to level (flatten) the new
introduced resource conflicts /*flattening step*/

}
return(Solution);

}

The iFlat algorithm

iFlat cycle: critical path analysis

levelling
constraint
retracted

critical path

makespan

iFlat cycle: shrinking step

peak

iFlat cycle: Flattening step

critical path

makespan

IFlatIRelax (Solution, Prem, MaxFail, MaxRelaxations) {
while (the makespan is improved within MaxFail iterations) {

for (i = 1 to MaxRelaxations) {
Randomly retract a percentage Prem of

leveling constraints on the solution critical
path /*removal step*/

}
Re-apply the ESTA to level (flatten) the new
introduced resource conflicts /*flattening step*/

}
return(Solution);

}

The improved iFlat: IFlatRelax (iFlatx)

MCJSSP: experimental setting

• The benchmark set is partitioned in four subsets of 20
problems:
– Set A: (LA1-10) 100 - 225 activities
– Set B: (LA11-20) 200 - 300 activities
– Set C: (LA21-30) 300 - 600 activities
– Set D: (LA31-40) 450 - 900 activities

• IFlatIRelax is implemented in COMET on a Pentium 4
2.4 Ghz [Michel&Van Hentenryck, ICAPS-2004]
– Prem = 20%, MaxFail = 5000
– Set A and B: NumRestarts=100
– Set C and D: NumRestarts=20 (10 in some cases)

Makespan: ∆UB% from the best UBs

0

5

10

15

20

25

30

set A set B set C set D All

ESTA
IFlat
N-Relax=2
N-Relax=4
N-Relax=6

Extending iterative flattening

• The concept of iterative flattening search is quite general and
provides an interesting new basis for designing more effective
procedures for scheduling optimization

• In the following we describes three possible extensions based on
three drawbacks identified in the iterative flattening search:
– POS schedules -- A first potential shortcoming is the lack of temporal

flexibility in the initial solution provided to seed iFlat
– Tabu-list -- A second possible drawback stems from the simple

manner in which precedence constraints are selected for retraction,
which can lead to repeated selection of the same constraints

– Tabu Search -- A third possible drawback is the lack of an ability to
conduct a fine-grained search when a near-optimal solution is
generated by iFlat

A more flexible input solution

• The basic intuition: the greater the time flexibility, the higher the
probability that new start times for relaxed activities can be found
on a given relax-and-flatten cycle that reduce the overall
makespan

• We pursue the idea of constructing Partially Ordered Schedules
(POSs), such that, each activity retains a set of feasible start times
and each time feasible schedule is a feasible solution
– Activities which require the same resource units are linked via

precedence constraints into precedence chains
– Each posted constraint represents a producer-consumer relation.

Each time an activity terminates its execution (producer), it passes its
resource unit(s) on to its successors (consumer) and execution
continues to move forward

– In this way, the resulting network of chains can be interpreted as a
flow of resource units through the schedule

A POS-form solution

C=4

C=4

Fixed-time solution

POS-form solution

source sink

Iterative flattening with tabu-list

• A new strategies for selecting candidate decisions
within the iFlat removal phase

• We propose the use of a tabu-list mechanism for
avoiding to turn-back to previously explored solutions.
– At each flattening cycle, a subset of the posted precedence

constraints are inserted in the tabu-list
– Precedence constraints contained in the tabu-list cannot be

retracted during the removal phase
– Two additional search parameters: the number of precedence

constraints ∆L inserted in the tabu list at each flattening cycle
and the maximal length of the list L.

IFlatx with tabu-list
Random removal of precedence
constraints (pc) on the critical path

Flattening

resource constraint

The last ∆L posted
pcs are inserted in
the tabu-list

Tabu-list (fifo) with max length L

Pcs contained in
the tabu-list cannot
be removed

Tabu Search

• Tabu search is a meta-heuristic approach to find a near-optimal
solution of combinatorial optimization problems

• It needs a fundamental notion called the move. The move is a
function which transforms a solution into another

• For any solution S, a subset of moves m applied to S is given.
This subset of moves induces a subset of solution called the
neighborhood of S

• Tabu search starts from an initial solution S0, and at each step i
the neighborhood of a given solution is searched in order to find
a neighbor Si that has the best value of a fixed objective function

• In order to prevent cycling, it is not allowed to turn back to
chosen solutions visited in the previous MaxSt steps. Where
MaxSt is the max length of the so-called tabu list which is a
queue with limited length.

Two types of move

0 H

ri+1

Critical Path

chainj

chaini

ri

0 H

Critical Path

ri

ri+1Horizontal move

Vertical move

iFlat extensions

SPOS
iFlatx iFlatxTABU

iFlatx Tabu S

Tabu SiFlatxTABU

S* SPOS S*

SPOS

SPOS

S*: (1-p)
Slast: p

S*: (1-p)
Slast: p

POS POS-TABU

LOOP

POS-TABU-SEARCH

S*

p is a noise parameters
in [0,1]

S* is the best solution
found by the component
strategy, Slast is the last
one

Comparing iFlatx extensions

• Benchmaks: set A, B, C, D

• iFlatx extensions:
– POS: Iflatx with a POS-form input solution
– POS-TABU: pos with the tabu-list
– POS-TABU-SEARCH: the best solution found by pos is

serialized with the tabu-search algorithm
– LOOP: interleaves pos-tabu with tabu-search

• A two-step evaluation: preliminary and intensive

Preliminary evaluation
• ∆UB% is the percentage

deviation from the Lawrence
upper bounds

• Only Set C, Tout = 1000 sec
• Prem = 0.2, MaxFail=400 and

MaxRelaxations = 6
• When a tabu-list is used its

length l = 16 and ∆l = 16
• The Tabu Search parameters:

tabu-list’s length = 9;
init-move= ’vertical’;
maxintrlv = 1; maxiter = 50

• The noise value for the Loop
integration was set to p = 0.2

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

iFlatx POS

POS-TABU

POS-TABU-SEARCH
LOOP

∆UB%

Intensive evaluation
• ∆UB% for Set A, B, C and D

(80 instances)
• Tout = 8000 sec
• Prem = 0.2, MaxFail = 1000,

MaxRelaxations = 6
• The same parameters for the

tabu list, tabu-search and the
loop integration

• An additional comparison
with the results shown in
[Godard, Laborie, and
Nuijten. Randomized Large
Neighborhood Search for
Cumulative Scheduling
(ICAPS-2005)]: STRand

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

POS
LOOP

STRand

Set A Set B Set C Set D All

Conclusions

• Iterative Flattening (iFlat) is a iterative improvement search
procedure for solving multi-capacitated scheduling problems with
makespan minimization as the objective

• The approach is quite general and is applicable to a range of
cumulative scheduling problems

• Previous work have extended or proposed variations of the
original iFlat procedure. In both cases these new procedures were
able to find new optimal solutions or to improve known upper-
bounds for problem instances in the MCJSSP

Conclusions

• We recently started some further investigation on variants of iFlat.
These extensions were motivated by three potential limitations:
– the lack of flexibility in the initial seed solution
– the potential for repeatedly searching the same solution subspace
– The inability of iFlat to explore the close neighborhood of a near-

optimal solution
• The proposed extensions were found to significantly improve the

performance of the reference strategies (IFlatRelax)
• Further study will be necessary to clearly understand the

effectiveness of the algorithms proposed, especially with regard to
the best results available (STRand)

• However, we believe that the proposed extensions are quite
general and can be also usefully used within the STRand
algorithm

Future work

• One particular interest is investigation of a more sophisticated
tabu-list mechanism, which biases the tenure value according to
the estimated quality of a given constraint

• Another general focus will be exploration of alternative
approaches to integrating iterative flattening and tabu search. In
this regard, we believe a Back Jumping Tracking schema (Nowicki
& Smutnicki 1996), where search is restarted from promising
solutions accumulated during the search, holds particular promise

• A third direction of research is the resolution of more complex
scheduling problems, like the Resource Constraint Scheduling
Problem (RCPSP)

