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Context
• Iterative Flattening - iFlat

– An iterative improvement search procedure for solving multi-
capacitated scheduling problems with makespan minimization as 
the objective

– The concept of iterative flattening search is quite general and 
provides a framework for designing effective procedures for 
scheduling optimization

• Reference works
– Different scheduling algorithms [authors, AIPS-98, IJCAI-99, 

Journal of Heuristics 2001]
– First version of Iterative Flattening (iFlat) [authors, AAAI-2000]
– Improved version of iFlat [Michel&Van Hentenryck, (ICAPS-2004)]
– Variation of the improved version [Godard, Laborie &Nuijten. 

Randomized Large Neighborhood Search for Cumulative 
Scheduling (ICAPS-2005)]



Outline of the talk

• A reference scheduling problem
• Basic algorithms

– Profile-based algorithms
– Iterative Flattening

• Improving Iterative Flattening search
– Using Partial Order Schedules (POSs)
– iFlat with tabu-list
– Tabu-Search for a fine-grained exploration
– Loop integration

• Experimental evaluation
• Conclusions and future work



The MCJSSP scheduling problem
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Scheduling problem with four jobs, each job has two activities; “red 
activities” require resource r1 and  “blue activities” require resource r2 
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The profile-based approach
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ESTA: a greedy profile-based algorithm

ESTA (problem, horizon)
post(horizon)
loop

- propagate
- compute-minimal-conflicts 
on resources

- if no-conflict 
then return(solution)
else if unsolvable-conflicts 

then return(fail)
else

- select-conflict
- select-precedence
- post(precedence)

end-loop

• Starts with a time-feasible
solution

• Posts constraints to “stretch”
it into a resource-feasible
solution.



Minimal Critical Set (MCS) analysis

Resource capacity = 2
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(Approximate computation of MCS [authors, IJCAI-99] ) 

A Minimal Critical Set (MCS) is a resource conflict such 
that each proper subset is not a resource conflict



MCS elimination

• Variable ordering: which MCS to resolve 
first
– Use estimator K  [Laborie&Ghallab ‘95] to order 

MCSs 
– “Select the MCS that is temporally closest to an 

unsolvable state”

• Value ordering: how to choose the 
precedence (leveling) constraint 
– Use slack-based heuristics 

[Smith&Cheng ‘93]
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Greedy strategy: example (1)
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Greedy strategy: example (2)
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Greedy strategy: example (3)
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Greedy strategy: example (4)
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Greedy strategy: example (5)

leveling constraint



Finding better solutions

critical path

A greedy solution

A better solution

• A Greedy solution is not necessarily optimal
• A better solution will necessarily have a shorter critical path
• Implies change to one or more constraints along critical path



Iterative Flattening
random perturbation on 
the solution critical path

resource leveling (greedy algorithm)

resource 
constraint

solution critical path

random removal of
a leveling constraint



IFlat (Solution, Prem, MaxFail) {

while (the makespan is improved within MaxFail iterations) {
Randomly retract a percentage Prem of
leveling constraints on the solution critical
path /*removal step*/

Re-apply the ESTA to level (flatten) the new 
introduced resource conflicts /*flattening step*/

}
return(Solution);

}

The iFlat algorithm



iFlat cycle: critical path analysis
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iFlat cycle: shrinking step

peak



iFlat cycle: Flattening step

critical path

makespan



IFlatIRelax (Solution, Prem, MaxFail, MaxRelaxations) {
while (the makespan is improved within MaxFail iterations) {

for (i = 1 to MaxRelaxations) {
Randomly retract a percentage Prem of

leveling constraints on the solution critical
path /*removal step*/

}
Re-apply the ESTA to level (flatten) the new 
introduced resource conflicts /*flattening step*/

}
return(Solution);

}

The improved iFlat: IFlatRelax (iFlatx)



MCJSSP: experimental setting

• The benchmark set is partitioned in four subsets of 20 
problems:
– Set A: (LA1-10) 100 - 225 activities
– Set B: (LA11-20)  200 - 300 activities
– Set C: (LA21-30) 300 - 600 activities
– Set D: (LA31-40) 450 - 900 activities

• IFlatIRelax is implemented in COMET on a Pentium 4 
2.4 Ghz [Michel&Van Hentenryck, ICAPS-2004]
– Prem = 20%, MaxFail = 5000 
– Set A and B: NumRestarts=100
– Set C and D: NumRestarts=20 (10 in some cases)



Makespan: ∆UB% from the best UBs
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Extending iterative flattening

• The concept of iterative flattening search is quite general and 
provides an interesting new basis for designing more effective 
procedures for scheduling optimization

• In the following we describes three possible extensions based on
three drawbacks identified in the iterative flattening search:
– POS schedules -- A first potential shortcoming is the lack of temporal 

flexibility in the initial solution provided to seed iFlat
– Tabu-list -- A second possible drawback stems from the simple 

manner in which precedence constraints are selected for retraction, 
which can lead to repeated selection of the same constraints

– Tabu Search -- A third possible drawback is the lack of an ability to 
conduct a fine-grained search when a near-optimal solution is 
generated by iFlat



A more flexible input solution

• The basic intuition: the greater the time flexibility, the higher the 
probability that new start times for relaxed activities can be found 
on a given relax-and-flatten cycle that reduce the overall 
makespan

• We pursue the idea of constructing Partially Ordered Schedules
(POSs), such that, each activity retains a set of feasible start times 
and each time feasible schedule is a feasible solution
– Activities which require the same resource units are linked via 

precedence constraints into precedence chains
– Each posted constraint represents a producer-consumer relation.

Each time an activity terminates its execution (producer), it passes its 
resource unit(s) on to its successors (consumer) and execution 
continues to move forward

– In this way, the resulting network of chains can be interpreted as a 
flow of resource units through the schedule



A POS-form solution
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Iterative flattening with tabu-list

• A new strategies for selecting candidate decisions 
within the iFlat removal phase

• We propose the use of a tabu-list mechanism for 
avoiding to turn-back to previously explored solutions.
– At each flattening cycle, a subset of the posted precedence 

constraints are inserted in the tabu-list
– Precedence constraints contained in the tabu-list cannot be 

retracted during the removal phase
– Two additional search parameters: the number of precedence 

constraints ∆L inserted in the tabu list at each flattening cycle 
and the maximal length of the list L.



IFlatx with tabu-list
Random removal of precedence 
constraints (pc) on the critical path

Flattening

resource constraint

The last ∆L posted 
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Tabu-list (fifo) with max length L 

Pcs contained in 
the tabu-list cannot 
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Tabu Search

• Tabu search is a meta-heuristic approach to find a near-optimal 
solution of combinatorial optimization problems

• It needs a fundamental notion called the move.  The move is a 
function which transforms a solution into another 

• For any solution S, a subset of moves m applied to S is given. 
This subset of moves induces a subset of solution called the  
neighborhood of S

• Tabu search starts from an initial solution S0, and at each step i 
the neighborhood of a given solution is searched in order to find 
a neighbor Si that has the best value of a fixed objective function

• In order to prevent cycling, it is not allowed to turn back to 
chosen solutions visited in the previous MaxSt steps. Where 
MaxSt is the max length of the so-called tabu list which is a 
queue with limited length. 



Two types of move
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iFlat extensions
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Comparing iFlatx extensions

• Benchmaks: set A, B, C, D

• iFlatx extensions:
– POS: Iflatx with a POS-form input solution
– POS-TABU: pos with the tabu-list
– POS-TABU-SEARCH: the best solution found by pos is 

serialized with the tabu-search algorithm
– LOOP: interleaves pos-tabu with tabu-search

• A two-step evaluation: preliminary and intensive



Preliminary evaluation
• ∆UB% is the percentage 

deviation from the Lawrence 
upper bounds 

• Only Set C, Tout = 1000 sec
• Prem = 0.2,  MaxFail=400 and

MaxRelaxations = 6
• When a tabu-list is used its  

length l = 16 and ∆l = 16
• The Tabu Search parameters: 

tabu-list’s length = 9;
init-move= ’vertical’; 
maxintrlv = 1; maxiter = 50

• The noise value for the Loop
integration was set to p = 0.2
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Intensive evaluation
• ∆UB% for Set A, B, C and D 

(80 instances)
• Tout = 8000 sec
• Prem = 0.2, MaxFail = 1000, 

MaxRelaxations = 6
• The same parameters for the 

tabu list, tabu-search and the 
loop integration

• An additional comparison 
with the results shown in 
[Godard, Laborie, and
Nuijten. Randomized Large 
Neighborhood Search for 
Cumulative Scheduling 
(ICAPS-2005)]: STRand
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Conclusions

• Iterative Flattening (iFlat) is a iterative improvement search 
procedure for solving multi-capacitated scheduling problems with
makespan minimization as the objective

• The approach is quite general and is applicable to a range of 
cumulative scheduling problems

• Previous work have extended or proposed variations of the 
original iFlat procedure. In both cases these new procedures were 
able to find new optimal solutions or to improve known upper-
bounds for problem instances in the MCJSSP



Conclusions

• We recently started some further investigation on variants of iFlat. 
These extensions were motivated by three potential limitations:
– the lack of flexibility in the initial seed solution
– the potential for repeatedly searching the same solution subspace 
– The inability of iFlat to explore the close neighborhood of a near-

optimal solution 
• The proposed extensions were found to significantly improve the 

performance of the reference strategies (IFlatRelax)
• Further study will be necessary to clearly understand the 

effectiveness of the algorithms proposed, especially with regard to 
the best results available (STRand) 

• However, we believe that the proposed extensions are quite 
general and can be also usefully used within the STRand 
algorithm



Future work

• One particular interest is investigation of a more sophisticated
tabu-list mechanism, which biases the tenure value according to 
the estimated quality of a given constraint 

• Another general focus will be exploration of alternative 
approaches to integrating iterative flattening and tabu search. In 
this regard, we believe a Back Jumping Tracking schema (Nowicki 
& Smutnicki 1996), where search is restarted from promising 
solutions accumulated during the search, holds particular promise

• A third direction of research is the resolution of more complex 
scheduling problems, like the Resource Constraint Scheduling 
Problem (RCPSP) 


