Integrazione di tecniche di ricerca operativa e constraint programming per ottimizzazione multiobiettivo

Marco Gavanelli
University of Ferrara
Italy

Constraint Optimization Problem

■ A COP a CSP (X,D,C) with a cost function *f* to minimize

$$f:D_1 \times ... \times D_N \to S_t$$

where $(S_p \leq)$ is a total order

- An assignment A is an optimal solution to a COP iff it is a solution of the CSP and $\neg \exists A$'s.t. f(A') < f(A)
- Total order among solutions:
 - Only the *best* assignment satisfying constraints is considered solution of the COP

Multi-criteria Optimization Problems

- A MOP is a CSP (X,D,C) with functions $f \equiv f_1, f_2, ..., f_n$, that "should be optimized at the same time"
- The user *is not able* to synthesize the functions into only one
 - usually, *tradeoff* solutions are considered more interesting, *extreme* solutions are seldom accepted
- In most cases there is not only one optimal point

Non-Dominated Frontier

■ In a MOP, the concept of *better solution* turns into the concept of *Domination*:

$$\underline{X} \leq_d \underline{Y} \Leftrightarrow \forall k=1..n, X_k \leq Y_k$$

A Solution of the CSP is
 Pareto-Optimal or Non- f₁ \\
 Dominated iff

$$\neg \exists A' \text{ s.t. } \underline{f(A')} <_d \underline{f(A)}$$

 Only points in the nondominated frontier are interesting to the user

PCOP-B&B

Search Tree

Propagation of unbacktrackable constraints

Integration with OR

- Linear relaxation of the problem
 - provides a better bound on the objective function value (e.g., function f_1)
 - provides reduced costs
 - \blacksquare for variable X_i , the reduced cost R_i gives

how much the objective function will worsen, if we add 1 unit of variable X_i in solution

Classic Propagation of bounds & reduced costs

Reduced costs wrt f_2

- We can obtain the reduced costs wrt other objective functions
- They can be positive or negative
- If they are all positive
 - the solution is optimal also wrt *f*2
 - otherwise, they show how the solution changes wrt f2
- The criterion space of the linear relaxation is convex

Reduced costs wrt both functions

Reduced costs wrt both functions

Heuristics based on Reduced costs

- If one variable has reduced costs of the same sign → the two objective functions agree on the value that variable should take
- Heuristics: assign this value in early nodes of the search tree

Preliminary results

- Multi-knapsack
- timing results
- ECLiPSe +
 XpressMP

Preliminary results

Backtracks

Future work

- Experiment with problems better suited for the integration CP+LP
- Other uses of reduced costs (heuristics with LDS)
- Use of the dual solution for detecting optimality
- Sensitivity analysis
- Integrate CP with local search, genetic algorithms
- Implement in other systems (ILOG+CPLEX)?