
Constrained Multiset Rewriting

Parosh Abdulla1 and Giorgio Delzanno2

1 Uppsala University 2 University of Genova

Padova, Aprile 2006

Background

• Practical examples of multithreaded programs and protocols for

distributed systems often have

– unbounded data: generation of fresh names, . . .

– unbounded control: spawning of new processes, . . .

– unbounded data and control: multithreaded software

– process mobility: dynamic reconfiguration of the network

programs,. . .

• Can we still apply automated verification techniques when their

state-space becomes infinite in one or more dimensions?

Bounded control, unbounded data

Constraints to symbolically represent data

• Henzinger-Ho-Wong-Toi. HyTech: a Model Checker for Hybrid Systems,

CAV’97 Based on the Polyhedra library

• Bultan-Gerber-Pugh. Symbolic Model Checking of Infinite State Systems

Using Presburger Arithmetics, CAV’97 Based on the Omega Library

• . . .

Unbounded control, bounded data

Constraints to symbolically represent sets of processes

• Bouajjani-Jonsson-Nilsson-Touili. Regular Model Checking, CAV 00

Based on regular languages

• German-Sistla. Reasoning about Systems with Many Processes, JACM 92

Based on Petri Nets

• Esparza-Finkel-Mayr. Verification of Broadcast Protocols, LICS 99

Symbolic analysis for Petri Nets

Unbounded data and parameterized control

• Abdulla-Jonsson. Verifying Networks of Timed Processes, TACAS’98

• Abdulla-Nylén. Better is Better than Well: On Efficient Verification of

Infinite-State Systems, LICS’00

Based on symbolic model checking

• Arons-Pnueli-Ruah-Xu-Zuck. Parameterized Verification with

Automatically Computed Inductive Assertions, CAV’01

Based on abstractions+deductive verification

• Lazic-Newcomb-Roscoe Polymorphic Systems with Arrays, 2-Counter

Machines and Multiset Rewriting, Infinity’04

Based on Partial Functions

Current Research Line

Overall goal

To develop sound and fully-automatic methods based on constraint

programming technology for the verification of concurrent systems

with

• unbounded control

• unbounded data

• process mobility

Practical applications

Consistency protocols for distributed systems with shared memory

Cache coherence protocols for multi-processors and multi-line caches

Security protocols

Abstractions of multithreaded programs

Mobile systems

Several Problems to Solve

• We need a specification language for parameterized systems

with unbounded local data

• We need an assertional language to specify safety properties

• We need sound and fully automatic procedures to validate the

specification against the desired property

Low Level Specification Language

CMRS: Constrained Multiset Rewriting

• Multiset rewriting over first order atomic formulas (MSR) can

be used as a flexible specification language for concurrent

systems

• MSR has been introduced to specify security protocols

– Locality of process definitions and communication via

rendez-vous

– First order terms as color for processes

• The combination of MSR with a constraint system C can be

used to symbolically represent systems with heterogeneous data

structures

An example: A Mutual Exclusion Protocol

Initialization and halting phase

[init] → [v0(X), initP (Id)] : true

[initP (Id)] → [idle(Id), initP (Next)] : Next > Id

[idle(X)] → [] : true

Core Protocol

1. [idle(X), v0(Y)] → [waiting(X), v0(X)] : true

2. [v0(X)] → [v1(X)] : true

3. [waiting(X), v1(Y)] → [idle(X), v1(Y)] : X 6= Y

4. [waiting(X), v1(X)] → [cs(X), v1(X)] : true

5. [cs(X), v1(Y)] → [idle(X), v0(Y)] : true

Configuration and Run

A Configuration is a multiset M of ground atomic formulas

One Step Rewriting

[idle(2), idle(1), waiting(0), v0(1)] ⇒

[waiting(2), idle(1), waiting(0), v0(2)]

using the instance of the first rule

[idle(2), v0(1)] → [waiting(2), v0(2)]

Reachability M is reachable if init
∗

⇒ M

Mutual Exclusion There cannot be two processes with local

state cs

Properties and Assertional Language

Parameterized Verification of Safety

• Let S be the set of good configurations. The corresponding

safety property holds if for any M

if init
∗

⇒ M then M ∈ S

• Dually, let U be the set of bad configurations, then the property

holds if

init 6∈ Pre∗(U)

where Pre∗(U) = { M | M
∗

⇒ M′, M′ ∈ U }

• We have to explore a potentially infinite number of

configurations

Symbolic Representation of Configurations

• In our example the set of unsafe states can be represented as

the constrained configuration:

[cs(i1), cs(i2)] : i1 ≥ 0, i2 ≥ 0

• if we consider its upward-closed denotations

[[U]] = { [cs(i), cs(j)] ⊕M, for any i, j ∈ Nat, for any conf. M }

• defined in general as follows

[[M : ϕ]] = { N | σ(M) 4 N , σ solution of ϕ }

• E.g. [cs(1), cs(2)], [cs(1), cs(3), cs(4)] belong to [[U]].

Verification Procedures

Backward Reachability

Pre(U)

Pre
∗(U)

I =Initial States

U =Unsafe States

minimal violations

Pre-image Computation

From

[p(u), p(v)] : true

using the rule

[w(x), t(y)] → [p(x′), t(y′)] : x = y, x′ = x, y′ = y

we get

[p(u), w(x), t(y)] : x = y

but also

[p(u), p(v), w(x), t(y)] : x = y

Entailment

• We define an ordering based on AC unification and on the

entailment relation of the underlying constraints:

• For instance

[p(x, y), q(z), r(u)] : x > y, y = z

entails

[q(z′), p(x′, y′)] : x′ > y′

• Infact,

[p(x, y), q(z)] and [q(z′), p(x′, y′)] unify via x = x′, y = y′, z = z′

x′ > y′, x′ = z′ entails x′ > y′.

Sufficient Conditions for Termination

• Symbolic backward reachability terminates when

– Predicates are monadic (p(x) ok, p(x, y) not ok)

– Constraints are gap-order (Revesz ’93), i.e., they are

conjunctions of atomic constraints of the form

x + c < y

x = y

x@c

where @ ∈ {≤,≥, <, >}, c is a natural number, and x, y are

interpreted over natural numbers

• A example of rule in the fragment

[p(x), m(y)] → [q(v), n(w)] : x + 1 < y, v > 2, w = x

• A example of symbolic configuration in the fragment

[p(x), p(v), q(y), r(y), s(z)] : x = v, x + 1 < y

Termination

• Termination can be proved using a non trivial application of

the theory of well-quasi orderings

• Intuition: a configuration like

[p(x), p(v), q(y), r(y), s(z)] : x = v, x + 1 < y

can be represented a finite set of strings built on multisets of

predicate symbols and integers (gaps)

[p, p]1[q, r]0[s] [s]0[p, p]1[q, r] [p, p, s]1[q, r] . . .

• We order sets of strings combining pointwise ordering for sets,

embedding of strings and embedding of multisets

• The resulting order

– can be used to check the containment of the denotations of two

symbolic configurations (termination test for backward

reachability)

– is a well-quasi ordering (there cannot be infinite sequences of

incomparable sets of strings)

• These properties guarantee termination of symbolic backward

reachability

Conclusions

• Push-button verification method for infinite-state concurrent systems

based on the paradigm of symbolic model checking and constraints

• Application to nominal process calculi with unbounded control, fresh

name generation, and name mobility [TPLP 2006]

• Application to verification of security protocols [TACAS 2004]

• Possible application to pointer analysis?

• Specialized data structures are needed to scale up

• Abstractions/accelerations are needed for terminations (class of

widening operators for security protocols?)

