◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Stochastic Concurrent Constraint Programming

Luca Bortolussi¹

¹Department of Mathematics and Computer Science University of Udine, Italy.

PRIN meeting, Padova, 10nd April 2006

Outline

Introduction

- Concurrent Constraint Programming
- Continuous Time Markov Chains
- Syntax and Operational Semantic 2
 - Syntax and Rates
 - Operational Semantic

Examples 3

- Random Walk
- Modeling Biochemical Reactions
- Modeling Gene Regulatory Networks

< ロ > < 同 > < 三 >

Outline

Introduction

- Concurrent Constraint Programming
- Continuous Time Markov Chains
- Syntax and Operational Semantic
 - Syntax and Rates
 - Operational Semantic

Examples

- Random Walk
- Modeling Biochemical Reactions
- Modeling Gene Regulatory Networks

< ロ > < 同 > < 三 >

Concurrent Constraint Programming

Concurrent Constraint Programming

Constraint Store

- In this process algebra, the main object are constraints, which are formulae over an interpreted first order language (i.e. X = 10, Y > X 3).
- Constraints can be added to a "pot", called the constraint store, but can never be removed.

Agents

Agents can perform two basic operations on this store:

- Add a constraint (tell ask)
- Ask if a certain relation is entailed by the current configuration (ask instruction)

Syntax of CCP

Program = Decl.A

$$D = \varepsilon \mid Decl.Decl \mid p(x) : -A$$

$$\mathbf{h} = \mathbf{0}$$

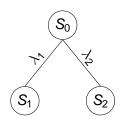
tell(c).A
ask(c_1).A_1 + ask(c_2).A_2
A_1 || A_2 | \exists_X A | p(x)

Examples

Continuous Time Markov Chains

Continuous Time Markov Chains

A **Continuous Time Markov Chain** (CTMC) is a direct graph with edges labeled by a real number, called the rate of the transition (representing the speed or the frequency at which the transition occurs).



- In each state, we select the next state according to a *probability distribution* obtained normalizing rates (from S_0 to S_1 with prob. $\frac{\lambda_1}{\lambda_1 + \lambda_2}$).
- The time spent in a state is given by an exponentially distributed random variable, with rate given by the sum of outgoing transitions from the actual node (λ₁ + λ₂).

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline

Introduction

- Concurrent Constraint Programming
- Continuous Time Markov Chains
- 2 Syntax and Operational Semantic
 - Syntax and Rates
 - Operational Semantic

Examples

- Random Walk
- Modeling Biochemical Reactions
- Modeling Gene Regulatory Networks

< ロ > < 同 > < 三 >

Syntax and Operational Semantic $_{\bullet \circ \circ}$

Examples

Syntax and Rates

Syntax of sCCP

Syntax of Stochastic CCP

Program = Decl.A

$$D = \varepsilon \mid Decl.Decl \mid p(\mathbf{x}) : -A$$

$$A = \mathbf{0} | \operatorname{tell}_{\lambda}(\boldsymbol{c}).A | \operatorname{ask}_{\lambda}(\boldsymbol{c}).A | [\boldsymbol{p}(\mathbf{x})]_{\lambda} \exists_{\mathbf{x}}A | (A_1 + A_2) | (A_1 || A_2)$$

Each basic instruction (tell, ask, procedure call) has a rate attached to it. Rates are functions from the constraint store C to positive reals: $\lambda : C \longrightarrow \mathbb{R}^+$.

Syntax and Operational Semantic $\circ \bullet \circ$

Operational Semantic

Operational Semantic

SOS

$$\langle \operatorname{tell}_{\lambda}(\boldsymbol{c}), \boldsymbol{A}, \boldsymbol{d}, \boldsymbol{V} \rangle \longrightarrow_{(1,\lambda(\boldsymbol{d}))} \langle \boldsymbol{A}, \boldsymbol{d} \sqcup \boldsymbol{c}, \boldsymbol{V} \rangle \\ \langle \operatorname{ask}_{\lambda}(\boldsymbol{c}), \boldsymbol{d}, \boldsymbol{V} \rangle \longrightarrow_{(1,\lambda(\boldsymbol{d}))} \langle \boldsymbol{A}, \boldsymbol{d}, \boldsymbol{V} \rangle \quad \text{if } \boldsymbol{d} \vdash \boldsymbol{c} \\ \langle [\boldsymbol{p}(\boldsymbol{y})]_{\lambda}, \boldsymbol{d}, \boldsymbol{V} \rangle \longrightarrow_{(1,\lambda(\boldsymbol{d}))} \langle \boldsymbol{A}[\boldsymbol{y}/\boldsymbol{x}], \boldsymbol{d}, \boldsymbol{V} \rangle \quad \text{if } \boldsymbol{p}(\boldsymbol{x}) : -\boldsymbol{A} \\ \frac{\langle \boldsymbol{A}_{1}, \boldsymbol{d}, \boldsymbol{V} \rangle \longrightarrow_{(p,\eta)} \langle \boldsymbol{A}_{1}', \boldsymbol{d}', \boldsymbol{V} \rangle}{\langle \boldsymbol{A}_{1} + \boldsymbol{A}_{2}, \boldsymbol{d}, \boldsymbol{V} \rangle \longrightarrow_{(p',\eta')} \langle \boldsymbol{A}_{1}', \boldsymbol{d}', \boldsymbol{V} \rangle} \\ \frac{\langle \boldsymbol{A}_{1}, \boldsymbol{d}, \boldsymbol{V} \rangle \longrightarrow_{(p,\eta)} \langle \boldsymbol{A}_{1}', \boldsymbol{d}', \boldsymbol{V} \rangle}{\langle \boldsymbol{A}_{1} \parallel \boldsymbol{A}_{2}, \boldsymbol{d}, \boldsymbol{V} \rangle \longrightarrow_{(p',\eta')} \langle \boldsymbol{A}_{1}' \parallel \boldsymbol{A}_{2}, \boldsymbol{d}', \boldsymbol{V} \rangle} \\ \text{with } \boldsymbol{p}' = \frac{p\eta}{\eta + \operatorname{rate}(\boldsymbol{A}_{2}, \boldsymbol{d})} \text{ and } \boldsymbol{\eta}' = \boldsymbol{\eta} + \operatorname{rate}(\boldsymbol{A}_{2}, \boldsymbol{d})$$

rate returns the sum of rates of all active agents, evaluated w.r.t. the current configuration of the store.

₹ 990

Examples

Example

$$\langle \operatorname{tell}_1(\boldsymbol{c}), \top, \emptyset \rangle \longrightarrow_{(1,1)} \langle \boldsymbol{0}, \boldsymbol{c}, \emptyset \rangle$$

$$\begin{array}{l} \langle \operatorname{ask}_{1}(\boldsymbol{c}).\operatorname{tell}_{100}(\boldsymbol{d}) \parallel \operatorname{tell}_{1}(\boldsymbol{c}), \top, \emptyset \rangle \\ \longrightarrow_{(1,1)} \langle \operatorname{ask}_{1}(\boldsymbol{c}).\operatorname{tell}_{100}(\boldsymbol{d}), \boldsymbol{c}, \emptyset \rangle \\ \xrightarrow{\longrightarrow_{(1,1)}} \langle \operatorname{tell}_{100}(\boldsymbol{d}), \boldsymbol{c}, \emptyset \rangle \\ \xrightarrow{\longrightarrow_{(1,100)}} \langle \boldsymbol{0}, \boldsymbol{c} \sqcup \boldsymbol{d}, \emptyset \rangle. \end{array}$$

Example

$$\begin{array}{l} \langle \textit{tell}_1(\textit{c}) + \textit{tell}_1(\textit{d}), \top, \emptyset \rangle \longrightarrow_{(0.5,2)} \langle 0, \textit{c}, \emptyset \rangle \\ \langle \textit{tell}_1(\textit{c}) + \textit{tell}_1(\textit{d}), \top, \emptyset \rangle \longrightarrow_{(0.5,2)} \langle 0, \textit{d}, \emptyset \rangle \end{array}$$

・ロト ・聞ト ・ヨト ・ヨト

Outline

Introduction

- Concurrent Constraint Programming
- Continuous Time Markov Chains
- 2 Syntax and Operational Semantic
 - Syntax and Rates
 - Operational Semantic

3 Examples

- Random Walk
- Modeling Biochemical Reactions
- Modeling Gene Regulatory Networks

< ロ > < 同 > < 三 >

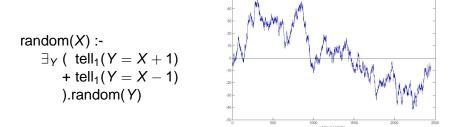
Random Walk

Random Walk

The language has been implemented by writing a meta-interpreter in SICStus Prolog.

We can model random walk as a stochastic process increasing or diminishing of one unit the value of a variable X.

Unbiased Random Walk (circa 5000 iterations at global rate 2)



Examples

Modeling Biochemical Reactions

CCP for System Biology

The stochastic extension of Concurrent Constraint Programming can be used to model biological systems, similarly to π -calculus.

π -calculus for system biology

Molecule	Process
Interaction capability	Channel
Interaction	Communication
Modification	State change
(of cellular components)	(state transition systems)

ヘロン 人間 とくほ とくほ とう

3

Examples

Modeling Biochemical Reactions

CCP for System Biology

The stochastic extension of Concurrent Constraint Programming can be used to model biological systems, similarly to π -calculus.

CCP for Biological Simulation

- Molecule (Type) / Reaction \leftrightarrow
 - Modification \leftrightarrow

(of cellular components)

- Environment \leftrightarrow
- Interaction with Environment
 - Direct Interaction capability
 - Interaction

- Process
- State change

(state transition systems and memory)

- → Constraint Store
- ↔ Asynchronous Communication
- \leftrightarrow Channel
- ↔ Synchronous Communication

We need to extend the concept of rate: a rate needs to be a function $\lambda:\mathcal{C}\longrightarrow\mathbb{R}^+.$

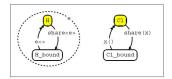
Modeling Biochemical Reactions

A simple reaction: $H + CI \Longrightarrow HCI$

π -calculus

We model atom H and atom Cl. Reaction happens by a synchronous communication of these two processes. We need several copy of these processes.

Covalent Bonding: $H + Cl \rightleftharpoons HCl$



- ➤ H has a private electron e.
- ▶ H can share its electron with Cl to form HCL, with $rate(share) = 100s^{-1}$
- $\blacktriangleright \ HCl$ can break its private bond, with $rate(e) = 10s^{-1}$

🔹 👝 🗼 👘 🗼 A. Phillips - Feb. 2005

Examples

Modeling Biochemical Reactions

A simple reaction: $H + CI \Longrightarrow HCI$

sCCP

We write a reaction agent, while the reagents and the product are modeled in the constraint store (put down in the environment). Independent on the number of agents.

```
\begin{array}{l} \operatorname{reaction}(H, CL, HCL) \coloneqq \\ ( \ \operatorname{tell}_{\operatorname{shareRate}(H, Cl)}(\operatorname{share}(H, CL, HCL)) + \\ \ \operatorname{tell}_{\operatorname{reIRate}(H, Cl)}(\operatorname{rel}(H, CL, HCL)) \\ ).\operatorname{reaction}(H, CL, HCL) \end{array}
```

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

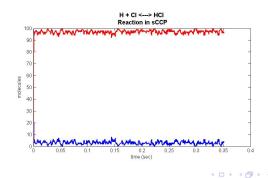
Examples

Modeling Biochemical Reactions

A simple reaction: $H + CI \Longrightarrow HCI$

sCCP

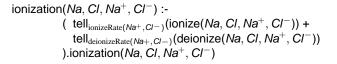
We write a reaction agent, while the reagents and the product are modeled in the constraint store (put down in the environment). Independent on the number of agents.

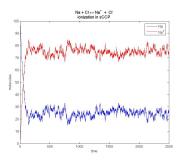


Examples

Modeling Biochemical Reactions

Another reaction: Na + CI \Leftrightarrow Na⁺ + CI⁻

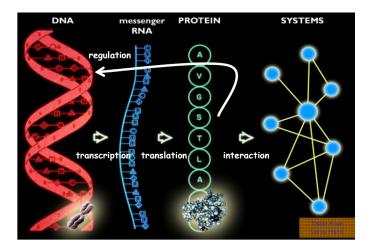




ъ

Modeling Gene Regulatory Networks

The gene machine

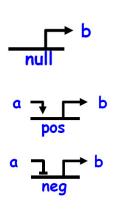


イロト 不得 とくほ とくほとう

ъ

Modeling Gene Regulatory Networks

The instruction set



 $\mathsf{degradator}(\mathsf{X}) \coloneqq \mathsf{tell}_{\mathsf{degRate}(\mathsf{X})}(\mathsf{degrade}(\mathsf{X})).\mathsf{degradator}(\mathsf{X})$

null(X) :- tell_{prodRate(X)}(produce(X)).null(X)

 $\begin{array}{l} \mathsf{pos}(X, \, \mathsf{Y}) \coloneqq (\ \mathsf{tell}_{\mathsf{prodRate}(X)}(\mathsf{produce}(X)) \\ & + \mathsf{ask}_{\mathsf{enhanceRate}(Y)}(\mathsf{Y} > 0).\mathsf{tell}_{\mathsf{enhProdRate}(X)}(\mathsf{produce}(X)) \\ &).\mathsf{pos}(X, \, \mathsf{Y}) \end{array}$

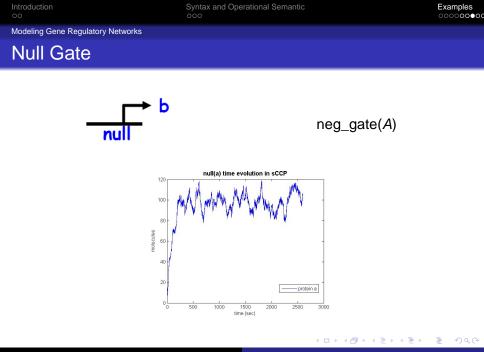
 $\begin{array}{l} \mathsf{neg}(X, \ \mathsf{Y}) \coloneqq (\ \mathsf{tell}_{\mathsf{prodRate}(X)}(\mathsf{produce}(X))) \\ & + \mathsf{ask}_{\mathsf{inibitRate}(Y)}(\mathsf{Y} > 0).\mathsf{ask}_{\mathsf{delayRate}(X)}(\mathsf{true}) \\ &).\mathsf{neg}(X, \ \mathsf{Y}) \end{array}$

 $null_gate(X) := null(X) \parallel degradator(X)$

 $pos_gate(X, Y) := pos(X, Y) \parallel degradator(X)$

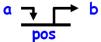
 $neg_gate(X, Y) := neg(X, Y) \parallel degradator(X)$

L. Cardelli, A. Phillips, 2005.



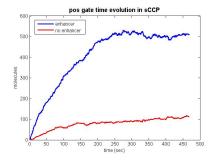
Luca Bortolussi Stochastic CCP

Introduction oo	Syntax and Operational Semantic	Examples ○○○○○○○
Modeling Gene Regulatory Networks		
Pos Gate		



pos_gate(A, B)

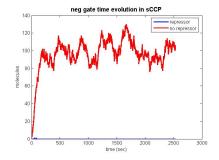
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●



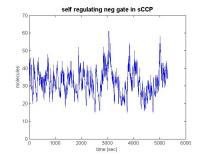
Introduction 00	Syntax and Operational Semantic	Examples 0000000
Modeling Gene Regulatory Networks		
Neg Gate		



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



Introduction 00	Syntax and Operational Semantic	Examples
Modeling Gene Regulatory Networks		
Self Repression		

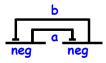


Introduo	ction

Examples

Modeling Gene Regulatory Networks

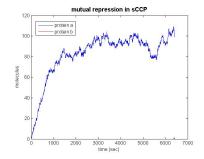
Mutual Repression



 $neg_gate(A, B) \parallel neg_gate(B, A)$

ヘロト 人間 とくほとくほとう

æ



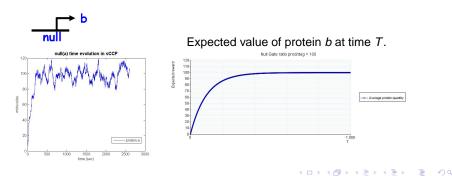
Examples

Modeling Gene Regulatory Networks

Towards verification of models

PRISM

We have defined a mapping from a sublanguage of sCCP (restriction on parallel operators) to the modeling language of PRIMS, a symbolic probabilistic model checker.



Modeling Gene Regulatory Networks

Conclusions

- We have introduced a stochastic version of CCP.
- We showed that sCCP may be used for modeling biological systems, via examples.
- We showed first examples of verifying properties of these systems, using PRISM

ヘロン 人間 とくほ とくほ とう

3

Introduction 00	Syntax and Operational Semantic	Examples
Modeling Gene Regulatory Networks		
The End		

THANKS FOR THE ATTENTION!

QUESTIONS?