
Incompleteness and Incomparability in

Preference Aggregation: Complexity Results

Maria Silvia Pini1, Francesca Rossi1, K. Brent Venable1 and Toby Walsh2

1 University of Padova, Italy
{mpini,frossi,kvenable}@math.unipd.it
2 NICTA and UNSW, Sydney, Australia.

tw@cse.unsw.edu.au

Abstract. We consider how to combine the preferences of multiple
agents despite the presence of incompleteness and incomparability in
their preference orderings. An agent’s preference ordering may be in-
complete because, for example, there is an ongoing preference elicitation
process. It may also contain incomparability, which can be useful, for ex-
ample, in multi-criteria scenarios. We focus on the problem of computing
the possible and necessary winners, that is, those outcomes which can be
or always are the most preferred for the agents. Possible and necessary
winners are useful in many scenarios, including preference elicitation.
First we show that computing the sets of possible and necessary winners
is in general a difficult problem as it is providing a good approximation
of such sets. Then we identify sufficient conditions, related to general
properties of the preference aggregation function, where such sets can
be computed in polynomial time. Finally, we show how possible and
necessary winners can be used to focus preference elicitation.

1 Introduction

We consider a multi-agent setting where each agent specifies their preferences
by means of an ordering over the possible outcomes. A pair of outcomes can
be ordered, incomparable, in a tie, or the relationship between them may not
yet be specified. Incomparability and incompleteness represent very different
concepts. Outcomes may be incomparable because the agent does not wish very
dissimilar outcomes to be compared. For example, we might not want to compare
a biography with a novel as the criteria along which we judge them are just too
different. Outcomes can also be incomparable because the agent has multiple
criteria to optimize. For example, we might not wish to compare a faster but
more expensive laptop with a slower and cheaper one. Incompleteness, on the
other hand, represents simply an absence of knowledge about the relationship
between certain pairs of outcomes. Incompleteness arises naturally when we have
not fully elicited an agent’s preferences or when agents have privacy concerns
which prevent them revealing their complete preference ordering.

As we wish to aggregate together the agents’ preferences into a single pref-
erence ordering, we must modify preference aggregation functions to deal with

incompleteness. One possibility is to consider all possible ways in which the
incomplete preference orders can be consistently completed. In each possible
completion, preference aggregation may give different optimal elements (or win-

ners). This leads to the idea of the possible winners (those outcomes which are
winners in at least one possible completion) and the necessary winners (those
outcomes which are winners in all possible completions) [9].

While voting theory has been mainly interested in possibility or impossibility
results about social choice or social welfare functions, recently there has been
some interest also in computational properties of preference aggregation [12, 10,
9, 7]. It has also been noted that the complexity of deciding whether there is
a manipulation in an election is closely related to the complexity of computing
possible winners [9, 6].

In this paper we start by considering the complexity of computing the nec-
essary and the possible winners. We show that both tasks are hard in general,
even to approximate.

Then we identify sufficient conditions that assure tractability. Such condi-
tions concern properties of the preference aggregation function, such as mono-
tonicity and independence to irrelevant alternatives (IIA) [1], which are natural
properties to require.

Possible and necessary winners are useful in many scenarios including pref-
erence elicitation [4]. For example, elicitation is over when the set of possible
winners coincides with that of the necessary winners [7]. However, recognizing
when such a condition is satisfied is hard in general. In the last part of the paper
we show that, if the preference aggregation function is IIA, preference elicita-
tion can focus just on the incompleteness concerning those outcomes which are
possible and necessary winners, allowing us to ignore all other outcomes and to
complete preference elicitation in polynomial time.

In this paper we extend the results presented in [11], by giving complexity
results concerning the computation of the exact and approximate sets of possible
and necessary winners and by giving sufficient conditions on the preference ag-
gregation function, that allow to compute in polynomial time not only the exact
set of the necessary winners, but also the exact set of the possible winners.

2 Basic notions

Preferences. We assume that each agent’s preferences are specified via a (possi-
bly incomplete) partial order with ties (IPO) over the set of possible outcomes,
that we will denote by Ω. An incomplete partial order is a partial order where
some relation between pairs of outcomes is unknown. Given two outcomes A and
B, an agent will specify exactly one of the following: A < B, A > B, A = B,
A ∼ B, or A?B, where A ∼ B means that A and B are incomparable, and A?B
that the relation between A and B is unknown, this means that it can be any
element of {=, >, <,∼}.

Example 1. Given outcomes A, B, and C, an agent may state preferences such
as A > B, B ∼ C, and A > C, or also just A > B and B ∼ C. However, an

agent cannot state preferences such as A > B, B > C, C > A, or also A > B,
B > C, A ∼ C since neither are POs.

Profiles. A profile is a sequence of n partial orders p1, . . . , pn over outcomes,
one for each agent i ∈ {1, . . . , n}, describing the preferences of the agents. An
incomplete profile is a sequence in which one or more of the partial orders is
incomplete.

Social welfare and preference aggregation. Social welfare functions [1] are func-
tions from profiles to partial orders with ties. Given a social welfare function f ,
we define a corresponding preference aggregation function, written paf , which
is a function from incomplete profiles to sets of partial orders with ties (POs).
Precisely, given an incomplete profile ip = (ip1, . . . , ipn), where the ipi’s are
IPOs, consider all the profiles, say p1, . . . , pk, obtained from ip by replacing any
occurrence of ? in the ipi’s with either <, >, =, or ∼ which is consistent with
a partial order. Let us then set paf (ip) = {f(p1), . . . , f(pk)}. This set will be
called the set of results of f on profile ip.

Example 2. Consider the Pareto social welfare function f defined as follows [1]:
given a profile p, for any two outcomes A and B, if all agents say A > B or
A = B and at least one says A > B in p, then A > B ∈ f(p); if all agents say
A = B in p, then A = B ∈ f(p); otherwise, A ∼ B ∈ f(p). In Figure 1 we show
an example with three agents and three outcomes A, B, and C.

A

B

C
> ∼

∼

>A

B

C
> ∼

:p2

>A

B

C
∼∼

f(p1):

A

B

C
f(p2): ∼ ∼

∼

>,
A

B

C
∼

∼∼

ip3

ip:

ip2 ip3

A >

>
B

A

B

CC>

> >

?

ip1

A

B

C
> ∼∼

ip3ip2

ip2

p1:
combined result

Fig. 1. An incomplete profile ip, its completions p1 and p2, the results f(p1) and f(p2),
and the combined result cr(f, ip).

Necessary and possible winners. We extend to the case of partial orders the
notions of possible and necessary winners presented in [9] in the case of total
orders. Given a social welfare function f and an incomplete profile ip, we define
necessary winners of f given ip as all those outcomes which are maximal elements
in all POs in paf (ip) . A necessary winner must be a winner, no matter how

incompleteness is resolved in the incomplete profile. Analogously, the possible

winners are all those outcomes which are maximal elements in at least one of the
POs in paf (ip). A possible winner is a winner in at least one possible completion
of the incomplete profile.

We will write NW (f, ip) and PW (f, ip) for the set of necessary and possible
winners of f on profile ip. We will sometimes omit f and/or ip, and just write
NW and PW when they will be obvious or irrelevant.

Example 3. In Example 2, A and B are the necessary winners, since they are
top elements in all POs f(pi), for all i = 1, 2. C is a possible winner since it wins
in f(p2).

Combined result. Unfortunately, the set of results can be exponentially large. We
will therefore also consider a compact representation that is polynomial in size.
This may throw away information by compacting together results into a single
combined result. Given a social welfare function f and an incomplete profile ip,
consider a graph, whose nodes are the outcomes, and whose arcs are labeled by
non-empty subsets of {<, >, =,∼}. Label l is on the arc between outcomes A
and B if there exists a PO in paf (ip) where A and B are related by l. This graph
will be called the combined result of f on ip, and will be denoted by cr(f, ip).
If an arc is labeled by set {<, >, =,∼}, we will say that it is fully incomplete.
Otherwise, we say that it is partially incomplete. The set of labels on the arc
between A and B will be called rel(A, B).

Example 4. The combined result for Example 2 is shown in Figure 1.

3 Possible and Necessary Winners

In this section we show that computing the set of necessary and possible winners
of a social welfare function is, in general, NP-hard even if we restrict ourselves to
incomplete but total orders. We will consider the following, well known, voting
rule.

Single Transferable Vote. In the STV rule each voter provides a total order on
candidates and, initially, an individual’s vote is allocated to their most preferred
candidate. The quota of the election is the minimum number of votes necessary to
get elected. If only one candidate is to be elected then the quota is |n/2|+1, where
n is the number of voters. If no candidate exceeds the quota, then, the candidate
with the fewest votes is eliminated, and his votes are equally distributed among
the second choices of the voters who had selected him as first choice. In what
follows we consider STV elections in which some total orders, provided by the
voters, are incomplete.

In general, given an incomplete profile and a candidate a, we say Possi-

bleWinner holds iff a is a possible winner of the election.

Theorem 1. PossibleWinner is NP-complete.

Proof. In fact, membership of NP follows by giving a completion of the profile
in which a wins. Completeness follows from the result that Effective Pref-

erence (determining if a particular candidate can win an election with one vote
unknown) for STV is NP-complete [2]

This result allows us to conclude that, in general, finding possible winners of
an election is difficult. However, it should be noticed that for many rules used in
practice including some positional scoring rules [9], answering PossibleWinner

is polynomial. The complexity of computing possible winners is related to the
complexity of deciding if there is a manipulation in an election [9]. For instance, it
is NP-complete to determine for the Borda, Copeland, Maximin and STV rules
if a coalition can cast weighted votes to ensure a given winner [6]. It follows
therefore that with weighted votes, PossibleWinner is NP-hard for these rules.

Given an incomplete profile and a candidate a, we say NecessaryWinner

holds iff a is a necessary winner of the election.

Theorem 2. NecessaryWinner is coNP-complete.

Proof. The complement problem is in NP since we can show membership by
giving a completion of the profile in which some b different to a wins. To show
completeness, we give a reduction from Effective Preference with STV in
which a appears at least once in first place in one vote. This restricted form of
Effective Preference is NP-complete [2]. Consider an incomplete profile Π
in which n votes have been cast, a has at least one first place vote, one vote
remains unknown, and we wish to decide if a can win. We construct a new
election from Π with n new additional votes, and one new candidate b. We put
b at the top of each of these new votes, and rank the other candidates in any
order within these n votes. We place b in last place in the original n votes, except
for one vote where a is in first place (by assumption, one such vote must exist)
where we place b in second place and shift all other candidates down. We observe
that b will survive till the last round as b has at least n − 1 votes and no other
candidate can have as many till the last round. We also observe that if a remains
in the election, then the score given to each candidate by STV remains the same
as in the original election so the candidates are eliminated in the same order up
till the point a is eliminated. If a is eliminated before the last round, the second
choice vote for b is transferred. Since b now has n + 1 votes, b is unbeatable and
must win the election. If a survives, on the other hand, to the last round, we can
assume b is ranked at the bottom of the unknown vote. All the other candidates
but a and b have been eliminated so a has n votes and is unbeatable. Hence, if
a is not a possible winner in the original election, b is the necessary winner of
this new election. Thus determining the necessary winner of this new election
decides if a is a possible winner of the original election.

Given these results, we might wonder if it is easy to compute a reasonable
approximation of the sets of possible and necessary winners. Unfortunately this
is not the case. The reduction described in the proof of previous theorem shows
that we cannot approximate the set of possible winners within a factor of two.
In fact, we can show that we cannot approximate efficiently the set of possible
winners within any constant factor.

Theorem 3. It is NP-hard to return a superset of the possible winners, PW ∗

in which we guarantee |PW ∗| < k|PW | for some given positive integer k.

Proof. We again give a reduction from Effective Preference for STV in
which a appears at least once in first place in one vote. Consider an incomplete
profile Π in which n votes have been cast, a has at least one first place vote,
one vote remains unknown, and we wish to decide if a can win. We construct a
new election from Π . We make k copies of Π . In the ith copy Πi, we subscript
each candidate with the integer i. We add n new additional votes, and one new
candidate b. We put b at the top of each of these new votes, and rank all the
other candidates except ai in any order within these n votes. The ranking of
the candidates ai is left unknown but beneath b. In each Πi, we place b in last
place except for one vote where ai is in first place (by assumption, one such
vote must exist) where we place b in second place and shift all other candidates
down. Finally, for each candidate in Πj not in Πi except for aj , we rank then
in any order at the bottom of the votes in Πi. The ranking of the candidates ai

is again left unknown but beneath b. We observe that b will survive till all but
one candidate has been eliminated from one of the Πi. We also observe that if ai

remains in the election, then the score given to each candidate by STV remains
the same as in the original election so the candidates in Πi are eliminated in
the same order up till the point ai is eliminated. Suppose a cannot win the
original election. Then ai will always be eliminated before the final round. The
second choice vote for b is transferred. Since b now has at least n + 1 votes,
b is unbeatable and must win the election. Suppose, on the other hand, that
a can win the original election. Then ai can survive to be the last remaining
candidate in Πi. We can assume b is ranked at the bottom of the unknown votes
of all the candidates with an index i and above all the candidates with an index
j different to i. Thus ai has n votes. If we have the corresponding ranking in
the other unknown votes, aj for j 6= i will also survive. As b has only n − 1
votes, b will be eliminated. It is now possible for any of the candidates, ai where
1 ≤ i ≤ k to win depending on how exactly the ai are ranked in the different
votes. Thus the set of possible winners is {ai | 1 ≤ i ≤ k} plus b if a is not a
necessary winner in the original election. Hence, if a is a possible winner in the
original election, the size of the set of possible winners is greater than or equal
to k, whilst if it is not, the set is of size 1. If we know that |PW ∗| < k|PW |,
then |PW ∗| < k guarantees that |PW | = 1, b is the necessary winner and hence
that a is not a possible winner in the original election.

Similarly, we cannot approximate efficiently the set of necessary winners
within some fixed ratio.

Theorem 4. It is NP-hard to return a subset of the necessary winners, NW ∗

in which we guarantee |NW ∗| > 1

k
|NW | whenever |NW | > 0 for some given

positive integer k.

Proof. In the reduction used in the last proof, |NW | = 1 if a is a possible winner
in the original election and 0 otherwise. But if |NW | = 1 and |NW ∗| > 1

k
|NW |

then |NW ∗| = 1. Hence |NW ∗| = 1 iff a is a possible winner. Thus, the size of
NW ∗ will determine if a is possible winner.

4 Combined result

We now consider the problem of computing the combined result. We show that,
while in general it is difficult, there are some restrictions which allow us to
compute an approximation of the combined result in polynomial time. In the
next section, we will show how it is possible to compute the set of possible and
necessary winners starting from this approximation to the combined result.

Theorem 5. Given an incomplete profile, determining if a label is in the com-

bined result for STV is NP-complete.

Proof. In fact, a polynomial witness is a completion of the incomplete profile.
To show completeness, we use a polynomial number of calls to this problem to
determine if a given candidate is a possible winner.

From this result we immediately get the following corollary.

Corollary 1. Given an incomplete profile and a social welfare function, com-

puting the combined result is NP-hard.

We now introduce some properties of preference aggregation functions which
allow us to compute an upper approximation to the combined result in polyno-
mial time. We recall that the set of labels of an arc between A and B in the
combined result is called rel(A, B).

The first property we consider is independence to irrelevant alternatives
(IIA). A social welfare function is said to be IIA when, for any pair of out-
comes A and B, the ordering between A and B in the result depends only on
the relation between A and B given by the agents [1]. Many preference aggre-
gation functions are IIA, and this is a desirable property which is related to the
notion of fairness in voting theory [1]. Given a function which is IIA, to compute
the set rel(A, B), we just need to ask each agent their preference over the pair
A and B, and then use f to compute all possible results between A and B.
However, if agents have incompleteness between A and B, f has to consider all
the possible completions, which is exponential in the number of such agents.

Assume now that f is also monotonic. We say that an outcome B improves

with respect to another outcome A if the relationship between A and B does not
move left along the following sequence: >,≥, (∼ or =), ≤, <. For example, B
improves with respect to A if we pass from A ≥ B to A ∼ B. A social welfare
function f is monotonic if for any two profiles p and p′ and any two outcomes
A and B passing from p to p′ B improves with respect to A in one agent i and
pj = p′j for all j 6= i, then passing from f(p) to f(p′) B improves with respect
to A.

Consider now any two outcomes A and B. To compute rel(A, B) under IIA
and monotonicity, again, since f is IIA, we just need to consider the agents’

preferences over the pair A and B. However, now we don’t need to consider all
possible completions for all agents with incompleteness between A and B, but
just two completions: A < B and A > B. Function f will return a result for
each of these two completions, say AxB and AyB, where x, y ∈ {<, >, =,∼}.
Since f is monotonic, the results of all the other completions will necessarily be
between x and y in the ordering >, ≥, (∼ or =), ≤, <. By taking all such
relations, we obtain a superset of rel(A, B), that we call rel∗(A, B). In fact,
monotonicity of f assures that, if we consider profile A < B and we get a certain
result, then considering profiles where A is in a better position w.r.t. B (that is,
A > B, A = B, or A ∼ B), will give an equal or better situation for A in the
result. Thus we have obtained an approximation of the combined result, that we
call cr∗(f, ip). We will now give a characterization of this approximation of the
combined result.

Theorem 6. Given two outcomes A and B, rel∗(A, B) ⊇ rel(A, B). Moreover,

if rel∗(A, B) = {<, >,∼, =}, then either rel∗(A, B) = rel(A, B) or rel∗(A, B)−
rel(A, B) = {∼, =}.

By following the procedure informally described above, this approximation
can be computed polynomially, since we only need to consider two completions.

Theorem 7. Given a preference aggregation function f which is IIA and mono-

tonic, and an incomplete profile ip, computing cr∗(f, ip) is polynomial in the

number of agents.

5 Computing possible and necessary winners

We will now show how to determine the possible and necessary winners, given
cr∗(f, ip). Consider the arc between an outcome A and an outcome C in cr∗(f, ip).
Then, if this arc has the label A < C, then A is not a necessary winner, since
there is an outcome C which is better than A in some result. If this arc only has
the label A < C, then A is not a possible winner since we must have A < C in
all results. Moreover, consider all the arcs between A and every other outcome
C. Then, if no such arc has label including A < C, then A is a necessary winner.
Notice, however, that in general, even if none of the arcs connecting A have just
a single label A < C, A could not be possible winner. A could be better than
some outcomes in every completion, but there might be no completion where it
is better than all of them. We will show that this is not the case if f is IIA and
monotonic.

We now define Algorithm 1, which, given cr∗(f, ip), computes NW and PW ,
in polynomial time.

Theorem 8. Given cr∗(f, ip), Algorithm 1 terminates in O(m2) time, where

m = |Ω|, returning N = NW and P = PW .

Proof. Algorithm 1 considers, in the worst case, each arc exactly once, thus we
have O(m2).

Algorithm 1: Computing NW and PW

Input: cr∗(f, ip), where f: IIA and monotonic preference aggregation function
and ip: incomplete profile;
Output: P, N: sets of outcomes;
P ← Ω;
N ← Ω;
foreach A ∈ Ω do

if ∃ C ∈ Ω such that {<} ⊆ rel∗(A, C) then
N ← N − {A};

if ∃ C ∈ Ω such that {<} = rel∗(A, C) then
P ← P − {A};

return P , N ;

N=NW. By construction of cr∗(f, ip), <6∈ rel∗(A, C) iff <6∈ rel(A, C). By
Algorithm 1, A ∈ N iff ∀C, <6∈ rel{A, C}, and this implies that there is no
result in which there exists an outcome C that beats A. Thus, A ∈ NW . On the
contrary, A ∈ NW iff A 6< C, ∀C ∈ Ω, for all results, from which, A ∈ N .

P = PW . By Algorithm 1, an outcome is in P iff there is no other outcome
which beats it in all results. Thus, PW ⊆ P . To show the other inclusion we
consider A ∈ P and we construct a completion of ip such that A wins in its
result. First, let us point out that for any outcome A, A ∈ P iff 6 ∃C ∈ Ω,
rel(A, C) = {<}. If ∀C ∈ Ω, <6∈ rel(A, C), then we already know that A is
NW , and thus a PW . Assume now that ∃C ∈ Ω such that {<} ⊂ rel(A, C).
Consider now any arc from A to another outcome C ′, labeled with more than
one relation. If ∀C ′ ∈ Ω−{C}, |rel∗(A, C ′)| = 1, then all the arcs from A, except
AC, are labeled with exactly one label from the set: {>,∼, =}. In such a case, we
can safely set AC to any of its labels other than <, since there is, for sure, a result
with that labeling. Moreover, in such a result A is a winner. Assume, instead,
that there is at least an outcome C ′ such that |rel∗(A, C ′)| > 1. This means
that there is at least an agent which has not declared his preference on AC ′

and that such preference cannot be induced by transitivity closure. We replace
A?C ′ with A > C ′ everywhere in the profile, we perform the transitive closure
of all the modified IPOs, and we apply f . We will prove that such a procedure
will never force to choose label < on AC. After the procedure, rel(A, C ′) will
contain exactly one label from the set: {>,∼, =}. Let us now consider rel(C ′, C).
We consider only the cases in which |rel(C ′, C)| = 1, since they are the most
restrictive and they imply all others in terms of transitivity. Let us assume that,
after the procedure, A = C ′. If rel∗(C ′, C) = {<}, then, C ′ < C in all results.
Due to monotonicity, we know that, rel∗(A, C ′) = {<, =} or rel∗(A, C ′) = {=}.
By transitivity, this would force rel(A, C) = {<}. However, this is not possible
since A ∈ P . This allows us to conclude that (rel∗(C ′, C) ∩ {>,∼, =}) 6= ∅ and
any of such additional labels together with A = C ′ can never force A < C.
Clearly, if A > C ′ or A ∼ C ′, there is no labeling of C ′C which can force A < C.
It should be noticed that any available choice on C ′C can always be made safely

due to the fact that the function is IIA and that the transitive closure of the
profiles has already ruled out inconsistent choices. By iterating the procedure
until every ? in the incomplete profile is replaced, we can construct a result of
the function in which A is a winner.

An example of a preference aggregation function which is both IIA and mono-
tonic is the Pareto rule, described in Example 2. Another example is the Lex
rule, in which agents are ordered and, given any two outcomes A and B, the
relation between A and B in the result is the relation given by the first agent in
the order that does not declare a tie between A and B. A third example is the
approval voting rule, for which the tractability result has been already proven
in [9] since it is a positional scoring rule.

6 Preference elicitation

One use of necessary and possible winners is in eliciting preferences [4]. Prefer-
ence elicitation is the process of asking queries to agents in order to determine
their preferences over outcomes.

At each stage in eliciting agents’ preferences, there is a set of possible and
necessary winners. When NW = PW , preference elicitation can be stopped
since we have enough information to declare the winners, no matter how the
remaining incompleteness is resolved [7]. At the beginning, NW is empty and
PW contains all outcomes. As preferences are declared, NW grows and PW
shrinks. At each step, an outcome in PW can either pass to NW or become a
loser.

Determining the winners. In those steps where PW is still larger than NW , we
can use these two sets to guide preference elicitation and avoid useless work. In
fact, to determine if an outcome A ∈ PW −NW is a loser or a necessary winner,
it is enough to ask agents to declare their preferences over all pairs involving A
and another outcome, say B, in PW . In fact, any outcome outside PW is a
loser, and thus is dominated by at least one possible winner.

If the preference aggregation function is IIA, then all those pairs (A, B) with
a defined preference for all agents can be avoided, since they will not help in
determining the status of outcome A. Moreover, IIA allows us to consider just
one profile when computing the relations between A and B in the result, and
assures that the result is a precise relation, that is, either <, or >, or =, or ∼. In
the worst case, we need to consider all such pairs. To determine all the winners,
we thus need to know the relations between A and B for all A ∈ PW −NW and
B ∈ PW . Again, there are examples where all such pairs must be considered.

We can thus use Algorithm 2, which in O(|PW |2) steps eliminates enough
incompleteness to determine the winners. At each step, the algorithm asks each
agent to express its preferences on a pair of outcomes (via procedure ask(A, B))
and aggregates such preferences via function f . If function f is polynomially
computable, the whole computation is polynomial in the number of agents and
outcomes.

Theorem 9. If f is IIA and polynomially computable, then determining the set

of winners via preference elicitation is polynomial in the number of agents and

outcomes.

Using the results of the previous sections, under certain conditions we know
how to compute efficiently the necessary winners and the possible winners. Thus
Algorithm 2 can be given in input the outputs of Algorithm 1.

Algorithm 2: Winner determination

Input: PW, NW: sets of outcomes; f : preference aggregation function;
Output: W: set of outcomes;
wins: bool;
P ← PW ; N ← NW ;
while P 6= N do

choose A ∈ P −N ;
wins← true; PA ← P − {A};
repeat

choose B ∈ PA;
if ∃ an agent such that A?B then

ask(A,B);
compute f(A,B);

if f(A, B) = (A > B) then
P ← P − {B};

if f(A, B) = (A < B) then
P ← P − {A}; wins← false;

PA ← PA − {B};
until f(A, B) 6= (A < B) or PA 6= ∅ ;
if wins = true then

N ← N ∪ {A};

W ← N ;
return W ;

It should be noticed that deciding when elicitation is over, that is checking
if P = N , is hard in general since, in [7] such a result has been proven for STV.

7 Related and future work

In [9] preference aggregation functions for combining incomplete total orders
are considered. Compared to our work, we permit both incompleteness and in-
comparability, while they allow only for incompleteness. Second, they consider
social choice functions which return the (non-empty) set of winners. Instead, we
consider social welfare functions which return a complete partial order. Social
welfare functions give a finer grained view of the result. Third, they consider
specific voting rules like the Borda procedure whilst we have focused on general
properties that ensure tractability.

The results presented in this paper can be useful not just for combining pref-
erences from multiple agents, but also for combining multiple conflicting prefer-
ences from a single agent. Recent work addressing the combination of multiple
complex preferences is presented in [5] and [8].

We plan to consider the addition of constraints to agents’ preferences. This
means that preference aggregation must take into account the feasibility of the
outcomes. Thus possible and necessary winners must now be feasible.

It is also important to consider compact knowledge representation formalisms
to express agents’ preferences, such as CP-nets [12] and soft constraints [3]. Pos-
sible and necessary winners should then be defined directly from such compact
representations, and preference elicitation should concern statements allowed in
the representation language.

Finally, a possibility distribution over the completions of an incomplete pref-
erence relation between two outcomes can be used to provide additional infor-
mation when computing possible and necessary winners.

References

1. K. J. Arrow, A. K. Sen, and K. Suzumara. Handbook of Social Choice and Welfare.
North-Holland, Elsevier, 2002.

2. J.J. Bartholdi and J.B. Orlin. Single transferable vote resists strategic voting.
Social Choice and Welfare, 8(4):341–354, 1991.

3. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and
optimization. Journal of the ACM, 44(2):201–236, mar 1997.

4. L. Chen and P. Pu. Survey of preference elicitation methods. Technical Report
IC/200467, Swiss Federal Institute of Technology in Lausanne (EPFL), 2004.

5. Jan Chomicki. Semantic optimization of preference queries. In CDB, pages 133–
148, 2004.

6. V. Conitzer and T. Sandholm. Complexity of manipulating elections with few
candidates. In AAAI/IAAI, pages 314–319, 2002.

7. V. Conitzer and T. Sandholm. Vote elicitation: Complexity and strategy-proofness.
In Proc. AAAI/IAAI 2002, pages 392–397, 2002.

8. W. Kießling. Preference queries with sv-semantics. In 11th International Confer-
ence on Management of Data (COMMAD 2005), pages 15–26. Computer Society
of India, 2005.

9. K. Konczak and J. Lang. Voting procedures with incomplete preferences. In Proc.
IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling, 2005.

10. J. Lang. Logical preference representation and combinatorial vote. Annals of
Mathematics and Artificial Intelligence, 42(1):37–71, 2004.

11. M. S. Pini, F. Rossi, K. Brent Venable, and T. Walsh. Computing possible and
necessary winners from incomplete partially-ordered preferences. In Poster paper
in ECAI-06, 2006.

12. F. Rossi, K. B. Venable, and T. Walsh. mCP nets: representing and reasoning with
preferences of multiple agents. In AAAI-2004, pages 322–327, 2004.

