
A Semantic Foundation for Trust Management
Languages with Weights: An Application to the

RT Family?,??

Stefano Bistarelli1,2, Fabio Martinelli2 and
Francesco Santini2,4

1 Dipartimento di Scienze, Università “G. D’Annunzio” di Chieti-Pescara, Italy
bista@sci.unich.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
[stefano.bistarelli,fabio.martinelli,francesco.santini@]iit.cnr.it

3 IMT - Institute for Advanced Studies, Lucca, Italy
f.santini@imtlucca.it

Abstract. In this paper, we present a variant of Datalog language (we
call it DatalogW ) able to deal with weights on ground facts and to conse-
quently compute a feedback result for the goal satisfaction. The weights
are chosen from a proper c-semiring. In our context, our goal is to use
this language as a semantic foundation for languages for expressing trust
relationships. As a matter of fact, many of them have a semantics given
in terms of crisp constraints: our approach is to extend them to cover also
the soft case. Thus, we apply DatalogW as the basis to give a uniform se-
mantics to declarative RT W (Trust Management) language family. The
approach is rather generic and could be applied to other trust manage-
ment languages based on Datalog, as a semantic sublayer to represent
trust management languages where the trust level is relevant.

1 Introduction and Motivations

Trust is a very interesting and relevant notion in modern pervasive computer
systems. It lies at the heart of human interactions and thus as soon as these in-
teractions happen through (and among) digital devices, such trust relationships
must be represented, specified, analyzed, negotiated and composed in those sys-
tems [11]. As a matter of fact, when one wants to mechanize the reasoning
in certain situations, a formalization is necessary. If one wants also to achieve a
common understand and comparison among different trust management system,
a semantic mechanism would be extremely useful.

To make a concrete example, a Trust Management (TM) language is required
to have the expressivity power to represent the trust-related facts of the con-
sidered dominion and a method to derive new assessments and decision starting
from these base facts. Current trust management languages based on credentials

? The first and third authors are supported by the MIUR PRIN 2005-015491.
?? The second author is supported by the EU projects GRIDtrust and SENSORIA.



(for both expressing facts and access policy rules) uses several foundational ap-
proaches. However, facts and access rules are not so crisp in the real complex
world. For example, each piece of information could have a confidence value as-
sociated with it and representing a reliability estimation, or a fuzzy preference
level or a cost to be taken in account. The feedback final value, obtained by
aggregating all the ground facts together, can be then used to improve the deci-
sion support system by basing on this preference level instead of a plain “yes or
no” result (e.g, see [15, 6, 5]). In this scenario, a credential could state that the
referred entity is a “student” or a “bright student” with a probability of 80%
because her/his identity of student is based on what an acquaintance asserts
(thus, it is not as certain as declared in IDs), or, in the second case, because
the received marks need to be globally evaluated. In literature there are many
examples where trust or reputation are computed by aggregating some values
together [11], for example in PGP systems, or for generic trust propagation in-
side social networks. We think that similar quantitative measurements are useful
also for trust languages, in order to have a more informative result.

For this reason, we describe a weighted version of Datalog (i.e. DatalogW )
where the rules are enhanced with values taken from a proper c-semiring struc-
ture [1, 3], in order to model the preference/cost system; then, we use it as the
basis to give declarative semantics to a Role-based Trust-management language
according to the principles of RT0 [14], and called here RTW

0 : the statements of
RTW

0 are “soft”, i.e. have a related c-semiring value. A similar improvement can
be accomplished also for RT1 [14], i.e. RT0 extended with parameterized roles.
Similar variations for RTML family languages were defined and implemented by
using different formal tools in [15]. There, an initial comparison (and integra-
tion) between rule-based trust management (RTML) and reputation-based trust
systems has been performed and a preliminary (ad-hoc) implementation RTML
weighted presented in [8] for GRID systems. However, having a uniform seman-
tics approach to model these languages (as DatalogW ) could be very useful to
provide a common understanding as well as a basis for systematic comparison
and uniform implementation.

Indeed, there are good reasons to prefer a language that is declarative and has
a formal foundation. In this sense, we are following a similar approach as done
in [13] for RTML trust management languages, where Datalog with constraints
have been proposed as a formal semantics for trust management languages. Since
trust is not necessarily crisp, DatalogW could be used to give formal semantics to
this kind of languages with “soft credentials”. In this paper we show an approach
for RTML that can be further extended to other Datalog-based languages. The
main contribution of this paper is thus to provide a formal semantics for such
languages that could also bring to a uniform implementation approach, as well as
to a comparison among these languages . Giving weights to facts and rules con-
tributes also towards bridging the gap between “rule-based” trust management
(i.e. hard security mechanisms) and “reputation based” trust management [11]
(i.e. soft security mechanisms).

It is also worth noticing that c-semirings are a valuable mechanism to model
and solve optimization problems in several contexts. With our proposal of mix-



ing credential based languages with soft-constraints based on c-semiring in a
systematic way, we pave the way for linguistic mechanisms for making optimiza-
tion decision related to the trust domain. Indeed, this domain could be also
coupled with other parameters and thus creating a much more complex (self)
optimization mechanisms. For instance, one could use a cost/preference parame-
ter associated with the trust level. The composition of the trust semiring and the
preference one is yet amenable of mechanization and this yet leads to a similar
treatment we describe here.

In this paper we extend the ideas presented in [2] by giving a weighted se-
mantics to all the RT languages presented in [14]. In Sec. 2 we describe the
background notions about trust languages and c-semirings. In Sec. 3 we present
a weighted version of Datalog, i.e. DatalogW , while Sec. 4 features the weighted
RT language family based on DatalogW , i.e. RTW

0 , RTW
1 , RTW

2 , RTWT and
RTWD. At last, in 5 we present the final conclusions.

2 Background

Datalog was originally developed as a query and rule language for deductive
databases and is syntactically equivalent to a subset of the Prolog language.
Several TM languages are based on Datalog, e.g., Delegation Logic [12], the
RT (Role-based Trust-management) framework [14], SD3 (Secure Dynamically
Distributed Datalog) [10] and Binder [9]. These are some of the languages that
can benefit from the semantic basis presented in this paper, even if we will focus
only in the RT language family.

The RT framework is a family of Role-based Trust-management languages [14],
whose most basic part is RT0 which has been then extended to RT1 with param-
eterized roles: University.professorOf(student) is a statement that can be used
to name the professor of a student. An entity (or principal, e.g. A or B) in RT
is a uniquely identified individual or process, which can issue credentials and
make requests. RT assumes that an entity that issued a particular credential
or a request can be determined through the use of public/private key pairs. A
role in RT takes the form of an entity followed by a role name (e.g. R with
subscripts), separated by a dot. A role defines a set of entities who are members
of this role: each entity A has the authority to define who are the members of
each role of the form A.R. Each statement defines one role to contain either an
entity, another role, or certain other expressions that evaluate to a set of entities.
More details will be given in Sec. 4.

An important extension that significantly enhances the expressivity of this
kind of languages is presented in [13]. In that work, the authors present Data-
log extended with constraints (denoted by DatalogC) in order to define access
permissions over structured resources as trees.

Several approaches advocated the usage of trust levels w.r.t. attributes, also
stated directly in digital credentials. In addition to the works on the extension of
RTML with weights and its relationships with other trust models as the Josang
one already mentioned [15, 8], there is also the work on policy and reputation
done in [5]. Here the PROTUNE policy language is extended to deal with trust



and reputation levels. Also role based access control has been extended with
trust levels in [6]. All these works use specific logics and approaches.

C-semirings A c-semiring S [1, 3] (or simply semiring in the following) is a tuple
〈S, +,×,0,1〉 where S is a set with two special elements (0,1 ∈ S) and with two
operations + and × that satisfy certain properties: + is defined over (possibly
infinite) sets of elements of S and thus is commutative, associative, idempotent,
it is closed and 0 is its unit element and 1 is its absorbing element; × is closed,
associative, commutative, distributes over +, 1 is its unit element, and 0 is its
absorbing element (for the exhaustive definition, please refer to [1, 3]). The +
operation defines a partial order ≤S over S such that a ≤S b iff a+ b = b; we say
that a ≤S b if b represents a value better than a. Notice that the partial order
can be defined since the + operator is commutative, associative and idempotent.
Other properties related to the two operations are that + and × are monotone
on ≤S , 0 is its minimum and 1 its maximum, 〈S,≤S〉 is a complete lattice and
+ is its lub. Finally, if × is idempotent, then + distributes over ×, 〈S,≤S〉 is a
complete distributive lattice and × its glb.

Varying the set S and the meaning of the + and × operations, we can repre-
sent many different kinds of problems, having features like fuzziness, probability,
and optimization. Moreover, in [3] the authors have shown that the cartesian
product of two c-semirings is another c-semiring, and this can be fruitfully used
to describe multi-criteria constraint satisfaction and optimization problems, e.g.
the path semiring presented in Sec. 3.

3 A Weighted Extension of Datalog

Datalog is a restricted form of logic programming with variables, predicates,
and constants, but without function symbols. Facts and rules are represented as
Horn clauses in the generic form R0 :- R1, . . . , Rn. A Datalog rule has the form
R0(t0,1, . . . , t0,k0) : -R1(t1,1, . . . , t1,k1), . . . , Rn(tn,1, . . . , tn,kn), where R0, . . . , Rn

are predicate (relation) symbols and each term ti,j is either a constant or a
variable (0 ≤ i ≤ n and 1 ≤ j ≤ ki). The formula R0(t0,1, . . . , t0,k0) is called the
head of the rule and the sequence R1(t1,1, . . . , t1,k1), . . . , Rn(tn,1, . . . , tn,kn) the
body. If n = 0, then the body is empty and the rule is called a fact. Moreover,
each program P in Datalog (i.e. a finite set of rules) must satisfy two safety
conditions: i) all variables occurring in the head of a rule also have to appear in
the body, and ii) every fact in P must be a ground fact.

We can now define our Weighted Datalog, or DatalogW based on classical Dat-
alog. While rules have the same form as in classical Datalog, a fact in DatalogW

has the form: Ri(xi,1, . . . , xi,ki) : - s. Therefore, the extension is obtained by
associating to ground facts a value s ∈ S taken from the semiring 〈S, +,×,0,1〉.
This value describes some properties of the fact, depending on the chosen semir-
ing: for example, we can add together all these values by using the Weighted
semiring 〈R+,min, +,∞, 0〉, trying to minimize the overall sum at the same
time. Otherwise, we can find the best global preference level by using the Fuzzy



semiring 〈[0, 1],max, min, 0, 1〉 or we can retrieve the highest resulting proba-
bility when we compose all the ground facts, by using the Probability semiring
〈[0, 1],max,×, 0, 1〉.

s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).

q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

Table 1. A simple DatalogW program.

Table 1 shows an example of DatalogW program, for which we suppose to
use the Weighted semiring. The intuitive meaning of a semiring value like 3
associated to the atom r(a) (in Tab. 1) is that r(a) costs 3 units. Thus the set
N contains all possible costs, and the choice of the two operations min and
+ implies that we intend to minimize the sum of the costs. This gives us the
possibility to select the atom instantiation which gives the minimum cost overall.
Given a goal like s(x) to this program, the operational semantics collects both a
substitution for x (in this case, x = a) and also a semiring value (in this case, 2)
which represents the minimum cost among the costs for all derivations for s(x).
To find one of these solutions, it starts from the goal and uses the clauses as
usual in logic programming, except that at each step two items are accumulated
and combined with the current state: a substitution and a semiring value (both
provided by the used clause). The combination of these two items with what is
contained in the current goal is done via the usual combination of substitutions
(for the substitution part) and via the multiplicative operation of the semiring
(for the semiring value part), which in this example is the arithmetic +. Thus, in
the example of goal s(X), we get two possible solutions, both with substitution
X = a but with two different semiring values: 2 and 3. Then, the combination
of such two solutions via the min operation give us the semiring value 2.

To compute trust, in Sec. 4.1 we will use the path semiring [16]: Strust =
〈〈[0, 1], [0, 1]〉, +p,×p, 〈0, 0〉, 〈1, 1〉〉, where

〈ti, ci〉+p 〈tj , cj〉 =





〈ti, ci〉 if ci > cj ,

〈tj , cj〉 if ci < cj ,

〈max(ti, tj), ci〉 if ci = cj .

〈ti, ci〉 ×p 〈tj , cj〉 = 〈titj , cicj〉
In this case, trust information is represented by a couple of values 〈t, c〉: the
second component represents a trust value in the range [0, 1], while the first
component represents the accuracy of the trust value assignment (i.e. a confi-
dence value), and it is still in the range [0, 1]. This parameter can be assumed
as a quality of the opinion represented instead by the trust value; for example,
a high confidence could mean that the trustor has interacted with the target for
a long time and then the correlated trust value is estimated with precision.



Finite Computation Time Being the DatalogW language a subset of the Soft
Constraint Logic Programming language [4] with no functions, we can can use
the results in [4] to prove that, considering a fixed DatalogW program, the time
for computing the value of any goal for this program is finite and bounded by
a constant. The reason is that we just have to consider a finite subclass of refu-
tations (i.e. simple refutations) with a bounded length. After having considered
all these refutations up to that bounded length, we have finished computing the
semiring value of the given goal. Given a refutation tree, a path from the root
to a leaf is called simple if all its nodes have different labels up to variable re-
naming. A refutation is a simple refutation if all paths from the root to a leaf in
its refutation tree are simple. The proof of Theo. 1 is given in [4].

Theorem 1 (Finite Set of Simple Refutations). Given a DatalogW pro-
gram P and a goal C, consider the set SR(C) of simple refutations starting
from C and building the empty substitution. Then SR(C) is finite.

4 Extending the RT Family with DatalogW

We describe four kinds of credentials for defining roles in a TM language family,
here called RTW , which is based on DatalogW (see Sec. 3). This family uni-
formly extends the classical RT family [14] by associating a weight, or better, a
semiring value to the basic role definition. Therefore, all the following credentials
must be parameterized with a chosen 〈S, +,×,0,1〉 semiring in order represent
preference/cost or fuzzy information associated to the statements. For every fol-
lowing RTW

0 credential, we describe how it can be translated in a corresponding
DatalogW rule. Then we will suggest how to extend RTW

0 with parameterized
roles, obtaining the RTW

1 language.

Rule 1 A.R ←− 〈B, s〉 where A and B are (possibly the same) entities, and R
is a role name. This means that A defines B to be a member of A’s R role.
This statement can be translated to DatalogW with the rule r(A,B) :- s,
where s is the semiring value associated with the related ground fact, i.e.
s ∈ S.

Rule 2 A.R ←− B.R1 This statement means that A defines its R role to include
(all members of) B’s R1 role. The corresponding DatalogW rule is r(A, x) :-
r1(B, x).

Rule 3 A.R ←− A.R1.R2, where A.R1.R2 is defined as linked role [14] and
it means that A defines its R role to include (the members of) every role
B.R2 in which B is a member of A.R1 role. The mapping to DatalogW is
r(A, x) :-r1(A, y), r2(y, x).

Rule 4 A.R ←− B1.R1 ∩B2.R2 ∩ · · · ∩Bn.Rn. In this way, A defines its R role
to include the intersection of the n roles. It can be translated to DatalogW

with r(A, x) :-r1(B1, x), r2(B2, x), . . . , rn(Bn, x).

The semantics of a program using these rules will find the best credential
chain according to the + operator of the chosen semiring, which defines a partial
order ≤S . Notice that only the basic role definition statement (i.e. Rule 1) is



enhanced with the semiring value s ∈ S, since the other three rules are used to
include one role into another or to obtain the intersection of different roles.

Notice that having a semiring value associated only with ground facts does
not prevent us from giving a weight also to rules. This can be accomplished by
slightly changing the syntax of the credentials used to compose the roles together
(i.e. Rules 1-2-3), by associating a semiring value also to them. Then, in the
Datalog translation, a new ground fact can be added in the body of the rule,
whose weight models the use of that specific rule. For example, Rule 2 becomes
A.R ←− 〈B.R1, s〉 (where s is a value taken from the same S semiring set), and
its Datalog translation is r(A, x) :-r1(B, x), rule weight, where rule weight :- s
is the ground fact that gives a weight to the rule. Clearly, nothing changes from
the computational point of view (see Sec 3).

It is easy to extend this language in order to enhance it with parameterized
roles, thus obtaining a RTW

1 language following the hierarchy presented in [14].
This parametrization can be used to represent relationships among entities, e.g.
University.professorOf(student) to name the professor of a student, but also to
represent attributes that have fields, e.g. the number of exams or the enrollment
academic year and so on. With respect to the previous four rules, in RTW

1 the
head of a credential has the form A.R(h1, . . . , hn), in which A is an entity, and
R(h1, . . . , hn) is a role name (R is a role identifier). For each i ∈ 1 . . . n, hi is a
data term having the type of the ith parameter of R. For example, Rule 1 can
be rewritten in RTW

1 as A.R(h1, . . . , hn) ←− 〈B, s〉, and mapped to DatalogW

as r(A,B, h1, . . . , hn) :- s. Our intention is to extend the RTW family according
to the guidelines explained in [14] (see Sec. 5).

Since Datalog is a subset of first-order logic, the semantics of a TM language
based on it is declarative and unambiguous. While The × operator of the semir-
ing is used to compose the preference/cost values associated to the statements,
the + is used to let the framework select the best derivation with more chances
to authorize the requester (among all the credentials revealed by her/him).

In the next theorem we claim that our weighted language family can be used
to represent also classical RT credentials [14]. In this sense, the RTW languages
can be considered as a foundation layer for all the classical RT languages (RTW

2

will be instead presented in Sec. 4.2).

Theorem 2 (Language Family Inclusion). For each S set of statements in
the RT0, RT1 or RT2 language, we can find a corresponding SW set of statements
respectively represented in RTW

0 , RTW
1 or RTW

2 , and whose semantics is the
same. This can be accomplished by using DatalogW together with the Boolean
semiring.

In Fig. 1 we show the result of Theo. 2, i.e. the vertical inclusions; the horizon-
tal ones are explained in [14] (for RT ) and in this paper (for RTW ). Theorem 2
can be proved by using the Boolean semiring 〈{0, 1},∨,∧, 0, 1〉 and by assigning
a weight of 1 (i.e. the true value) to all the ground facts. In this way we obtain
a set of crisp statements and the semantics returns all the possible derivations,
as the corresponding RT set of statements would do.



In Sec. 4.3 and Sec. 4.4 we respectively introduce other two RT -based lan-
guages: RTWT and RTWD can be used, together or separately, with each of
RTW

0 , RTW
1 , or RTW

2 . The resulting combinations are written as RTW
i , RTWT

i

and RTWD
i for i = 0, 1, 2.

RT
0

RT
1

RT
0

RT
1

w w

RT
2

RT
2

w

Fig. 1. A hierarchy of RT W languages, compared with the classical RT one.

4.1 Some Examples with Levels of Trust

We can start by adding levels to the classical RT0 example presented in many RT
related papers (e.g. [14]). To solve the example in Tab. 2, we use a Fuzzy semiring
〈[0, 1],max, min, 0, 1〉, where the elements in [0, 1] represents the truth degree
connected to a credential and evaluated by the entity which signs and issues it:
for example, StateU.highMarks ←− 〈 Alice, 0.8 〉 in Tab. 2 certifies that
Alice has obtained a good number of high marks (since the value is 0.8) for the
exams completed at the StateU university (the credential is issued by StateU).

EPub.disct ←− EPub.preferred ∩ EPub.brightStudent.

EPub.preferred ←− EOrg.highBudget ∩ EOrg.oldCustomer.

EPub.brightStudent ←− EPub.goodUniversity.highMarks.

EPub.goodUniversity ←− ABU.accredited.

ABU.accredited ←− 〈 StateU, 0.9 〉.
StateU.highMarks ←− 〈 Alice, 0.8 〉.
EOrg.highBudget ←− 〈 Alice, 0.6 〉.
EOrg.oldCustomer ←− 〈 Alice, 0.7 〉.

Table 2. An example in RT W
0 , with fuzzy values associated to the credentials.

The example in Tab. 2 describes a fictitious Web publishing service, EPub,
which offers a discount to anyone who is both a preferred customer and a bright
student. EPub delegates the authority over the identification of preferred cus-
tomers to its parent organization, EOrg. In order to be evaluated as a preferred
customer, EOrg must issues two different types of credentials stating that the
customer is not new (i.e. EOrg.oldCustomer) and has already spent some money
in the past (i.e. EOrg.highBudget). EOrg assigns a fuzzy value to both these



two credentials to quantify its evaluation. EPub delegates the authority over the
identification of bright students to the entities that are accredited universities.
To identify such universities, EPub accepts accrediting credentials issued by the
fictitious Accrediting Board for Universities (ABU ). ABU evaluates a university
with a fuzzy score and each university evaluates its enrolled students. A student
is bright if she/he is both enrolled in a good university and has high marks.
The final fuzzy score, obtained by composing together all the values of the used
credentials, can be compared with a threshold to authorize the discount: e.g.
only entities whose set of credentials produced a score greater than 0.7 are au-
thorized. Otherwise, the final fuzzy result can be used to derive a proportional
discount amount: for example a score of 0.8 could authorize a discount that is
twice the discount allowed with a score of 0.4. The following credentials prove
that Alice is eligible for the discount with a score of 0.6, determined by the fact
that she has not a very high budget spent at EOrg (i.e. her EOrg.highBudget
credential has a value of 0.6).

EPub.disct ←− EPub.preferred ∩ EPub.brightStudent.

EPub.disct ←− EOrg.famousProf.goodRecLetter.

EPub.preferred ←− EOrg.highBudget ∩ EOrg.oldCustomer.

EPub.brightStudent ←− EPub.goodUniversity.highMarks.

EPub.goodUniversity ←− ABU.accredited.

EOrg.famousProf ←− 〈 ProfX, 〈 0.9, 0.9 〉〉.
ProfX.goodRecLetter←−〈Alice, 〈 0.9, 0.8 〉〉.
ABU.accredited ←− 〈 StateU, 〈 0.9, 0.8 〉〉.
StateU.highMarks ←− 〈 Alice, 〈 0.8, 0.9 〉〉.
EOrg.highBudget ←− 〈 Alice, 〈 0.6, 0.5 〉〉.
EOrg.oldCustomer ←− 〈 Alice, 〈 0.7, 0.7〉〉.

Table 3. An extension of the example in Tab. 2, using the path semiring.

In Tab. 3 we extend the example of Tab. 2 in order to represent also a
case where the authorization can be accomplished by following different deriva-
tions. For example, a customer could be allowed to have a discount even if
she/he presents a good recommendation letter written by a famous professor
(i.e. EPub.famousProf.goodRecLetter). In Tab. 3 we use the path semiring pre-
sented in Sec. 3, thus a semiring value consists in a couple of trust/confidence
feedbacks. The best derivation corresponds to the criteria defined by the +p (i.e.
confidence is more important).

4.2 RT W
2 : Logical Rights

Trust languages can be used to grant some permissions, i.e. to represent access
modes over some specific objects. For this reason it useful to group logically
related objects (e.g. the files inside the same directory) and access modes, and
to give permissions about them in a correlated manner. As proposed in [14], we



introduce in our language the notion of o-sets, which are used to group together
this kind of objects: o-sets names are created by associating an o-set identifier
to a tuple of data terms. Moreover, an o-set identifier has a base type τ , and
o-set names/o-sets created by using an o-set identifier have the same base type
as the o-set identifier. Finally, the value of an o-set is a set of values in τ .

An o-set-definition credential is similar to the role definition credential that
we have defined in Sec. 4 for RTW

1 : the difference is that the members of o-sets
are objects that are not entities. Admin.Documents(read) ←− 〈FileA, 0.9〉, for
example, states that the administration office grants to FileA the permission to
be read only for the 90% of it; FileA and the Documents o-set id are associated
with the file type.

O-set-definition credentials can be translated in Datalog exactly as proposed
for RTW

1 in Sec. 4: the head of a credential has the form A.O(h1, . . . , hn),
where O(h1, . . . , hn) is an o-set name of type τ , while the body can be a value
of base type τ , another o-set B.O1(s1, . . . , sm) of base type τ , a linked o-
set A.R1(t1, . . . , tl).O1(s1, . . . , sm), in which R1(t1, ..., tl) is a role name and
O1(s1, . . . , sm) is an o-set name of base type τ , or an intersection of k o-sets
of the base type τ (see Sec. 4.3 for the intersection of roles and o-sets).

Therefore, a credential in RTW
2 is either a role-definition credential or an

o-set-definition credential. For more details on types and properties of RTW
2

credentials (w.r.t. RTW
1 ), please refer to [14].

Example 1. In this example, the AlphaCompany allows the members of a project
team to work on the documents of this project: each of the credentials repre-
senting the documents, e.g. a fileA file, are associated with a couple of val-
ues, e.g. 〈0.9, 0.5〉, which grant a member of the project the right to read 90%
of the file and to modify 50% of it. This restriction on files can be explained
by copyright or Concurrent Versioning System limitations, or due to the dif-
ferent position taken by employees. Even the credentials concerning the mem-
bers of the project (e.g. Bob) are weighted with the same percentages, in this
case related instead to the role of the entity (i.e. there are generic read/modify
rights associated to Bob): in this way, it possible to combine all these levels
of rights together, and to finally know how much a given entity can read and
modify a given object. As we presented in Sec. 2, the cartesian product of two c-
semirings is still a c-semiring and, therefore, it is not a problem to have multiple
weights (more details are given in [3]); for this reason we use the vectorization
of two Fuzzy semirings, i.e. 〈〈[0, 1], [0, 1]〉, 〈max,max〉, 〈min,min〉, 〈0, 0〉, 〈1, 1〉〉,
in order to maximize (i.e. with 〈max,max〉) the composition of the values
representing the rights, (i.e. with 〈min,min〉): in practice, we use the Fuzzy
semiring to find the maximum read/modify percentages, obtained by keep-
ing the worst value among all the composition percentages. The credentials
to represent this scenario are the following ones, from which we can obtain
AlphaCompany.fileAc(read, modify, fileA) ←− Bob with a value of 〈0.8, 0.5〉:

AlphaCompany.fileAc(read, modify, AlphaCompany.documents(x)) ←−
AlphaCompany.team(x).



AlphaCompany.documents(proj) ←− 〈fileA, 〈0.9, 0.5〉〉.
AlphaCompany.team(proj1) ←− 〈Bob, 〈0.8, 0.7〉〉.

4.3 RT W T : Threshold and Separation-of-Duty Policies

Threshold structures are satisfied by the agreement of k out of a set of entities
that satisfy a specified condition, while separation of duty instead requires that
two or more different people be responsible for the completion of a sensitive
task, such deciding the result of an exam. With Rule 4 (see Sec. 4) it is possible
to implement simple threshold structures by using the intersection of roles; for
example, the policy stating that a student is considered bright (bS) by her/his
university (Uni) only if two out of three professors (P1, P2 and P3) say so,
can be represented by the three rules Uni.bS ←− P1.bS ∩ P2.bS, Uni.bS ←−
P1.bS ∩ P3.bS and Uni.bS ←− P2.bS ∩ P3.bS.

However, with this kind of intersections we are not able express complex
policies: for example if we need to represent the fact that A says that an entity
has attribute R if two different entities having attribute R1 says so. For this
reason we need to introduce the RTWT language, in order to properly work
with sets of entities. More specifically, RTWT adds to the RTW languages the
notion of manifold roles, which generalizes the notion of roles [14]. A manifold
role has a value that is a set of entity collections. An entity collection is either
an entity, which can be viewed as a singleton set, or a set of two or more entities.
Notice that, as the RTWD language presented in Sec. 4.4, RTWT can be used
together with each of RTW

i languages (see Sec. 4). In RTWT we introduce two
more types of credentials w.r.t. Sec. 4:

Rule 5 A.R ←− B1.R1 ¯ · · · ¯ Bk.Rk. As we introduced before with words,
the meaning of this credential is members(A.R) ⊇ members(B1.R1 ¯ · · · ¯
Bk.Rk) = {s1 ∪ · · · ∪ sk|si ∈ members(Bi.Ri) for 1 ≤ i ≤ k}. Given
w1, . . . wk as the actual weights of the derivations respectively rooted in
B1.R1, . . . Bk.Rk, the global weight of this clause is then composed as w1 ×
w2 × · · · × wk, where × depends on the chosen 〈S, +,×,0,1〉 semiring.

Rule 6 A.R ←− B1.R1 ⊗ · · · ⊗ Bk.Rk. The formal meaning of this credential
is instead given by members(A.R) ⊇ members(B1.R1 ⊗ · · · ⊗ Bk.Rk) =
{s1 ∪ · · · ∪ sk|(si ∈ members(Bi.Ri) ∧ si ∩ sj = ∅) for 1 ≤ i 6= j ≤ k}.
Given w1, . . . wk as the actual weights of the derivations respectively rooted
in B1.R1, . . . Bk.Rk, the global weight of this clause is then composed as
w1 × w2 × · · · × wk, where × operator depends on the chosen 〈S, +,×,0,1〉
semiring.

As usual, the Datalog engine will select the best derivation according to the
+ operator of the semiring. Considering RTWT , the translation to Datalog rules
for Rule 1, Rule 2 and Rule 4 is the same as the one presented in Sec. 3. For
Rule 3, Rule 5 and Rule 6 rules, the translation is instead the following one:

Rule 3 A.R ←− A.R1.R2 can be translated to r(A, x) :-r1(A, y), r2(y, x) when
size(r1) = 1, or can be translated to r(A, y) :-r1(A, x), r2(y, x1), . . . r2(y, xk),



setk(x, x1, . . . , xk) when size(r1) = k > 1. Each role identifier has no a size:
the size of a role limits the maximum size of each of its member entity
set (see [14] for further details). The new setk predicate takes k + 1 entity
collections as arguments, and setk(s, s1, . . . , sk) is true if and only if s =
s1 ∪ · · · ∪ sk; if si is an entity, it is treated as a single-set element.

Rule 5 A.R ←− B1.R1 ¯ · · · ¯Bk.Rk can be translated to r(A, x) :-r1(B1, x1),
r2(B2, x2), . . . , rk(Bk, xk), setk(x, x1, . . . xk).

Rule 6 A.R ←− B1.R1 ⊗ · · · ⊗Bk.Rk can be translated to r(A, x) :-r1(B1, x1),
r2(B2, x2), . . . , rk(Bk, xk), nsetk(x, x1, . . . xk). The nsetk predicate takes k+
1 entity collections as arguments and it is true only when s = s1 ∪ · · · ∪ sk

and for any 1 ≤ i 6= j ≤ k, si ∩ sj = ∅
Example 2. Suppose that for a university office a student is “bright” (i.e. Uni.bS)
if one member of Uni.evalExtAdvisor (i.e. an external advisor) and two different
members of Uni.EvalProf (i.e. a professor who teaches in that university) all
say so. This can be represented using the following credentials (where A, B, C
and D can be external advisors and/or professors):

Uni.bS ←− Uni.evaluators.bS.

Uni.evaluators ←− Uni.evalProfs¯ Uni.evalExtAdvisor.
Uni.evalProfs ←− Uni.evalProf⊗ Uni.evalProf.

Uni.evalExtAdvisor ←− 〈A, 0.9〉. Uni.evalExtAdvisor ←− 〈B, 0.7〉.
Uni.evalProf ←− 〈A, 0.8〉. Uni.evalProf ←− 〈C, 0.8〉.

Uni.evalProf ←− 〈D, 0.6〉.
If we adopt the Fuzzy semiring 〈[0, 1],max, min, 0, 1〉, the best authorization

corresponds to the set {A, C} with a value of 0.8 (i.e. the min between 0.9 and
0.8): we remind that A is both a professor (i.e. A teaches at the university) and
an external advisor (i.e. A can be a visiting professor) and therefore only two
entities can satisfy the request. Therefore, with this program we retrieve the
best combination of evaluators for a student: the student is supposed to present
her/his signed credentials and to request how much she/he is considered bright:
the evaluations of different evaluators are composed by selecting the worst score
(with the min operation of the semiring), but at the end the best derivation is
selected (by using the max operator).

4.4 RT W D: Delegation of Role Activations

The RTWD language is finally added to our weighted family in order to handle
delegation of the capacity to exercise role memberships. The motivations are
that, in many scenarios, an entity prefers not to exercise all his rights. For
example, a professor could want to log as a simple university employee, thus not
having the rights to insert or change the student exam results, but only having
the rights to check the number of canteen tickets. With a weighted extension
(i.e. RTWD) we are now able to state “how much” the rights are delegated to
another entity (e.g. a session or a process). Therefore it is possible to quantify
the “amount” of delegated rights, e.g. to modify a document, but only for the



80% of it, which is for example less than the rights held by the delegating entity
(e.g. 100%). The delegation takes the following form: B1

D as A.R−−−−−−→ B2, which
means that B1 delegates to B2 the ability to act on behalf of D in D’s capacity
as a member of A.R.

For the definition of the RTWD rules we introduce the forRole predicate
as in [14]: forRole(B, D,A.R) can be read as B is acting for “D as A.R” and
it means that B is acting for the role activation in which D activates A.R.
The delegation rules can be translated in the following way: B1

D as A.R−−−−−−→ B2

forRole(B2, D, A.R) ←− forRole(B1, D, A.R). This rule means that B2 is act-
ing for “D as A.R” if B1 is doing so. Other kind of delegation rules that can be
formulated are presented in [14].

Clearly, even the other rules presented in Sec. 4 and Sec. 4.3 must be modified
according to the introduction of the forRole predicate. For example, A.R ←−
〈D, s〉 becomes forRole(D, D, A.R) :- s and s ∈ S is the associated weight taken
from the 〈S, +,×,0,1〉 semiring. Therefore we have presented only the Rule 1
translation and, for sake of brevity, we omit all the other rules translation with
the forRole predicate (from Rule 2 to Rule 6); however the translation is similar
to the one proposed in the RTD design in [14]. A request is translated in the
same way as a delegation credential; the request is replaced by the dummy entity
corresponding to it. For example, the B1

D as A.R−−−−−−→ req request is translated to
forRole(ReqID, D, A.R) ←− forRole(B1, D, A.R), where ReqID is the
dummy entity for req.

Example 3. In this simple example we show how different delegation acts can
lead to different costs. We use the Weighted semiring, i.e. 〈R+,min, +,∞, 0〉,
since we suppose the authorizer wants to minimize the cost associated with
the credentials used for the authorization (the + of the semiring is instantiated
to min in the Weighted semiring): the costs are elements of R+ (i.e. the set of
positive real numbers) and are composed with the arithmetic + (i.e. the × of the
Weighted semiring). The total cost value can be considered, for example, as the
cost charged to the authorizer in order to satisfy the requester. For example, the
authorizer is represented by a university budget office, and the cost associated
with the credentials represents the money cost to manage them (i.e. phone calls,
faxes, travel expenses, etc). In the example, we have a university (i.e. Uni),
where any conference organization event has to be proposed and approved before
it is allowed to be practically organized. Any professor can propose such an
event. A member of the “approval commission” can instead approve an event.
A member of this commission is also a professor (i.e. the commission is made
up of professors); however, a professor cannot approve his own proposed event.
Therefore, the aim of the university budget office is to minimize the cost for the
organization of the events. This can be represented as follows:

Uni.organizeEvent ←− Uni.propose⊗ Uni.approve.
Uni.propose ←− Uni.prof.

Uni.approve ←− Uni.appCommission.



Uni.prof ←− Uni.appCommission.

Suppose also that A and B professors are both in the approval commission
and the cost of these two credentials is the same (e.g. 1 euro is a basic cost to
manage a member of the approval commission): Uni.appCommission←− 〈A, 1〉
and Uni.appCommission←− 〈B, 1〉.

Both of them wish to propose and clearly accept the same event (named
bigConf ) and they present the following credentials. Moreover, we extend the
syntax of the delegation rules as already explained in Sec 4: now they can have
an associated semiring value (the cost) taken from R+.

A
A as Uni.appCommission−−−−−−−−−−−−−−−−−→ 〈event(bigConf), 6〉.
A

A as Uni.prof−−−−−−−−−→ 〈event(bigConf), 5〉.
B

B as Uni.appCommission−−−−−−−−−−−−−−−−−→ 〈event(bigConf), 8〉.
B

B as Uni.prof−−−−−−−−−→ 〈event(bigConf), 2〉.
Given the request forRole(reqID, {A,B}, Uni.organizeEvent) (and reqID

is the dummy entity), the system will choose B as the proposer (with a cost of
2) and A as the entity who approves the event (with a cost of 6), since it is
the cheapest solution to the problem. The total cost of all the credentials is 10
euro, obtained by summing also 1 euro for each credential related to a professor.
Notice that the other possible solution, with A proposer and B approver of the
event, costs 15 euro, i.e. 5 euro more.

5 Conclusions and Future Work

We have proposed a weighted extension of Datalog (i.e. DatalogW ) and a trust
language family based on it. These languages can be used to deal with vague
and imprecise security policies or credentials, and preference or costs associated
to each rule or fact. In practice, we can manage and combine together differ-
ent levels of truth, preference or costs associated to the statements and finally
have a single feedback value on which to authorize a trust request. We have
extended the RT family [14] and we we have shown that the classical RT0 and
RT1 languages are respectively included in our RTW

0 and RTW
1 languages. It

is worthy to notice that our extension is completely orthogonal w.r.t. the RT
extension proposed in [13], i.e. RTC , where the supporting DatalogC language
allows first-order formulas in tractable constraint domains. The constraints are
introduced to represent the access permissions over structured resources, e.g.,
tree domains and range domains. Our aim is instead the representation of trust
levels modelling cost/preference or fuzziness of credentials. Our systematic ap-
proach to give weights to facts and rules, contributes also towards bridging the
gap between “rule-based” trust management (i.e. hard security mechanisms) and
“reputation based” trust management [11] (i.e. soft security mechanisms).

On future improvement could be to leave to the programmer the opportu-
nity to take more decisions inside the rules, for example based on the current
aggregated semiring value (the process is called reification of the values, i.e.



make them visible to the programmer); from its evaluation, some rules could be
enabled and others could be ignored, influencing the derivation process and the
final result. Therefore we want to extend the language in this sense.

We plan to investigate the complexity of tractable soft constraints classes [7]
in order to cast them in a Datalog-based language. Therefore, we want to extend
also the RTC language [13] (based on Datalog enhanced with crisp constraints)
in its soft version.

References

1. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume 2962
of Lecture Notes in Computer Science. Springer, 2004.

2. S. Bistarelli, F. Martinelli, and F. Santini. Weighted datalog and levels of trust.
In To appear in Advances in Policy Enforcement. IEEE, 2008.

3. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and
optimization. Journal of the ACM, 44(2):201–236, 1997.

4. S. Bistarelli and F. Rossi. Semiring-based constraint logic programming: syntax
and semantics. ACM Trans. Program. Lang. Syst., 23(1):1–29, 2001.

5. P. Bonatti, C. Duma, D. Olmedilla, and N. Shahmehri. An integration of
reputation-based and policy-based trust management. In Semantic Web Policy
Workshop, 2005.

6. S. Chakraborty and I. Ray. Trustbac: integrating trust relationships into the rbac
model for access control in open systems. In SACMAT ’06: Proc. of Access control
models and technologies, pages 49–58. ACM, 2006.

7. D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin. The complexity
of soft constraint satisfaction. Artif. Intell., 170(11):983–1016, 2006.

8. M. Colombo, F. Martinelli, P. Mori, M. Petrocchi, and A. Vaccarelli. Fine grained
access control with trust and reputation management for globus. In OTM Confer-
ences (2), pages 1505–1515, 2007.

9. J. DeTreville. Binder, a logic-based security language. In SP ’02: Proceedings of
the 2002 IEEE Symposium on Security and Privacy, page 105, Washington, DC,
USA, 2002. IEEE Computer Society.

10. T. Jim. SD3: A trust management system with certified evaluation. In SP ’01:
Proceedings of the 2001 IEEE Symposium on Security and Privacy, page 106, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

11. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for
online service provision. Decis. Support Syst., 43(2):618–644, 2007.

12. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach
to distributed authorization. ACM Trans. Inf. Syst. Secur., 6(1):128–171, 2003.

13. N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust manage-
ment languages. In PADL ’03: Proc. of Practical Aspects of Declarative Languages,
pages 58–73. Springer-Verlag, 2003.

14. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-
management framework. In SP ’02: Proc. of Security and Privacy, page 114. IEEE
Computer Society, 2002.

15. F. Martinelli and M. Petrocchi. A uniform approach for the modeling of secu-
rity and trust on protocols and services. In ICS ’06: International Workshop on
Computer Security, 2006.

16. G. Theodorakopoulos and J. S. Baras. Trust evaluation in ad-hoc networks. In
WiSe ’04: Workshop of Wireless security, pages 1–10. ACM, 2004.


