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Abstract

We extend the Datalog language (we call it DatalogW )
in order to deal with weights on ground facts and to conse-
quently compute a feedback result for the goal satisfaction.
The weights are chosen from a proper c-semiring. As a sec-
ond step, in order to show the usefulness of the language,
we use DatalogW as the basis to give a uniform semantics
to declarative RTW (Trust Management) language family,
in order to represent trust levels based on c-semirings. In
this way it is possible to manage a score corresponding to
a preference or cost associated to the revealed credentials,
instead of a plain “yes or no” authorization result. Clearly,
such a solution is more informative and allows us to treat
uncertainty of facts and rules application, or different pref-
erences for the entity roles. Trust can be then derived by
choosing the best chain. The approach is rather generic
and could be applied to other trust management languages.

1 Introduction and Motivations

Trust is a very slippery property that is gaining the at-
tention of several researchers due to its crucial role for the
developments of true open and pervasive systems. In par-
ticular, trust based on reputation [13] is a well established
means to provide soft security mechanisms [18]. This kind
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of social control can be integrated with traditional hard se-
curity mechanisms, as passwords, authentication and access
control, in order to improve the global security: soft secu-
rity can be used to predict a bad behaviour (including also
selfishness, and not only malice) and is more appropriate for
open systems, while hard methods “deny” the presence of
malicious and, once bypassed, they reveal everything [18].
Using soft mechanisms, a generic entity is instead accepted
as long as its actions are not harming anyone else.

A Trust Management (TM) language is required to have
the expressivity power to represent the trust-related facts of
the considered dominion and a method to derive new as-
sessments and decision starting from these base facts. For
example, considering the approach to distributed authoriza-
tion scenario in [6], an authorizer needs to decide wether
to authorize a request coming from a requester or not. The
requester presents some credentials signed by other parties
to ensure the authenticity and integrity: these attributes usu-
ally represent a group membership (e.g. “I am a student”),
a membership in a role within an organization or being del-
egates of a permission or role. In few words, the digitally
signed credentials are used as an authenticated certification
of the attributes of the entities that perform such a request.
The access rules are instead used by the authorizer in or-
der to process the requests, since they specify what condi-
tions and what attributes are requested be authorized. For
all these features, as the use of cryptography and certifi-
cates, rule-based systems can be seen instead as hard secu-
rity mechanisms.

In this paper we second the view that facts of both policy



statements and access rules are not so crisp in the real com-
plex world. For example, each piece of information could
have a confidence value associated with it and represent-
ing a reliability estimation, or a fuzzy preference level or a
cost to be taken in account. The feedback final value, ob-
tained by aggregating all the ground facts together, can be
then used to improve the decision support system by basing
on this preference level instead of a plain “yes or no” re-
sult (e.g, see [17, 9, 7]). In this scenario, a credential could
state that the referred entity is a “student” or a “bright stu-
dent” with a probability of 80% because her/his identity of
student is based on what an acquaintance asserts (thus, it is
not as certain as declared in IDs), or, in the second case, be-
cause the received marks need to be globally evaluated. In
literature there are many examples where trust or reputation
are computed by aggregating some values together [13], for
example in PGP systems, or for generic trust propagation
inside social networks. We think that similar quantitative
measurements are useful also for trust languages, in order
to have a more informative result. For this reason, we de-
scribe a weighted version of Datalog where the rules are
enhanced with values taken from a proper c-semiring struc-
ture [1, 2], in order to model the preference/cost system;
then, we use it as the basis to give declarative semantics to
a Role-based Trust-management language according to the
principles of RT0 [16], and called here RTW

0 : the state-
ments of RTW

0 are “soft”, i.e. have a related c-semiring
value. A similar improvement can be accomplished also for
RT1 [16], i.e. RT0 extended with parameterized roles. Sim-
ilar variations for RTML family languages where defined
and implemented in by using different formal tools in [17].
There an initial comparison (and integration) between rule-
based trust management (RTML) and reputation-based trust
systems has been performed and a preliminary (ad-hoc) im-
plementation presented in [12] for GRID systems. How-
ever, having a uniform semantics approach, as the weighted
datalog we are advocating here, to model these languages
could be very useful to provide a common understanding
as well as a basis for systematic comparison and uniform
implementation.

Indeed, there are good reasons to prefer a language that
is declarative and has a formal foundation. In this sense,
we are following a similar approach as done in [15] for
RTML trust management languages, where Datalog with
constraints have been proposed as a formal semantics for
trust management languages. As it has been shown since
trust is not necessarily crisp, soft Datalog could be used to
give formal semantics to this languages for soft credentials.
We have shown here an approach for RTML. However, it
can be further extended to other credential based languages,
whose semantics could be given in terms of soft Datalog.
The contribution of this paper is thus to provide a formal
semantics for such languages that could also bring to a uni-

form implementation approach, as well as to a comparison
among these languages w.r.t. to others by using existing
results on Datalog and soft constraints. Our systematic ap-
proach to give weights to facts and rules, contributes also
towards bridging the gap between “rule-based” trust man-
agement (i.e. hard security mechanisms) and “reputation
based” trust management [13] (i.e. soft security mecha-
nisms).

In Sec. 2 we describe the background notions about trust
languages and c-semirings. In Sec. 3 we present a weighted
version of Datalog, i.e. DatalogW , while Sec. 4 features the
new trust languages based on DatalogW , i.e. RTW

0 , and
RTW

1 . At last, in 5 we present the final conclusions.

2 Background and Related Works

Some TM systems, such as KeyNote [5] and
SPKI/SDI [10], use credentials to delegate permissions, but
their delegation structure is too limited. Each credential del-
egates certain permissions from its issuer to its subject, act-
ing like a capability, and therefore they do not address the
distributed nature of authority in distributed systems. For
instance, it is not possible to express the statement that any-
one who is a student is entitled to a discount.

Datalog was originally developed as a query and rule lan-
guage for deductive databases and is syntactically equiva-
lent to a subset of the Prolog language. Several TM lan-
guages are based on Datalog, e.g., Delegation Logic [14],
the RT (Role-based Trust-management) framework [16],
KeyNote [5] and RBAC [19].

The RT framework is a family of Role-based Trust-
management languages [16], whose most basic part is RT0

which has been then extended to RT1 with parameterized
roles: University.professorOf(student) is a statement that
can be used to name the professor of a student. An entity
(or principal, e.g. A or B) in RT is a uniquely identified
individual or process, which can issue credentials and make
requests. RT assumes that an entity that issued a particular
credential or a request can be determined through the use
of public/private key pairs. A role in RT takes the form of
an entity followed by a role name (e.g. R with subscripts),
separated by a dot. A role defines a set of entities who are
members of this role: each entity A has the authority to de-
fine who are the members of each role of the form A.R.
Each statement defines one role to contain either an entity,
another role, or certain other expressions that evaluate to a
set of entities. More details will be given in Sec. 4.

An important extension that significantly enhances the
expressivity of this kind of languages is presented in [15]. In
that work, the authors present Datalog extended with con-
straints (denoted by DatalogC) in order to define access per-
missions over structured resources as trees.

Several approaches advocated the usage of trust levels



w.r.t. attributes, also stated directly in digital credentials.
In addition to the works on the extension of RTML with
weights and its relationships with other trust models as the
Josang one already mentioned [17, 12], there is also the
work on policy and reputation done in [7]. Here the PRO-
TUNE policy language is extended to deal with trust and
reputation levels. Also role based access control has been
extended with trust levels in [9].

All these works use specific logics and approaches.

2.1 C-semirings

A c-semiring S [1, 2] (or simply semiring in the follow-
ing) is a tuple 〈S, +,×,0,1〉 where S is a set with two spe-
cial elements (0,1 ∈ S) and with two operations + and
× that satisfy certain properties: + is defined over (possi-
bly infinite) sets of elements of S and thus is commutative,
associative, idempotent, it is closed and 0 is its unit ele-
ment and 1 is its absorbing element; × is closed, associa-
tive, commutative, distributes over +, 1 is its unit element,
and 0 is its absorbing element (for the exhaustive definition,
please refer to [1, 2]). The + operation defines a partial or-
der ≤S over S such that a ≤S b iff a + b = b; we say that
a ≤S b if b represents a value better than a. Other properties
related to the two operations are that + and× are monotone
on ≤S , 0 is its minimum and 1 its maximum, 〈S,≤S〉 is a
complete lattice and + is its lub. Finally, if× is idempotent,
then + distributes over×, 〈S,≤S〉 is a complete distributive
lattice and × its glb.

Varying the set S and the meaning of the + and × op-
erations, we can represent many different kinds of prob-
lems, having features like fuzziness, probability, and opti-
mization. Moreover, in [2] the authors have shown that the
cartesian product of two c-semirings is another c-semiring,
and this can be fruitfully used to describe multi-criteria con-
straint satisfaction and optimization problems, e.g. the path
semiring presented in Sec. 3.

3 A Weighted Extension of Datalog

Datalog is a restricted form of logic programming with
variables, predicates, and constants, but without function
symbols. Facts and rules are represented as Horn clauses in
the generic form R0 :- R1, . . . , Rn. A Datalog rule has the
form:

R0(t0,1, . . . , t0,k0) : -
R1(t1,1, . . . , t1,k1), . . . , Rn(tn,1, . . . , tn,kn)

where R0, . . . , Rn are predicate (relation) symbols
and each term ti,j is either a constant or a variable
(0 ≤ i ≤ n and 1 ≤ j ≤ ki). The formula
R0(t0,1, . . . , t0,k0) is called the head of the rule and the

s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).
q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

Table 1. A simple DatalogW program.

sequence R1(t1,1, . . . , t1,k1), . . . , Rn(tn,1, . . . , tn,kn
) the

body. If n = 0, then the body is empty and the rule is
called a fact. Moreover, each program P in Datalog (i.e. a
finite set of rules) must satisfy two safety conditions: i) all
variables occurring in the head of a rule also have to appear
in the body, and ii) every fact in P must be a ground fact.

We can now define our Weighted Datalog, or DatalogW

based on classical Datalog. While rules have the same form
as in classical Datalog, a fact in DatalogW has the form:

Ri(xi,1, . . . , xi,ki
) : - a

Therefore, the extension is obtained by associating to
ground facts a value s ∈ S taken from the semiring
〈S,+,×,0,1〉. This value describes some properties of
the fact, depending on the chosen semiring: for example,
we can add together all these values by using the Weighted
semiring 〈R+,min, +,∞, 0〉, trying to minimize the over-
all sum at the same time. Otherwise, we can find the
best global preference level by using the Fuzzy semiring
〈[0, 1],max, min, 0, 1〉 or we can retrieve the highest re-
sulting probability when we compose all the ground facts,
by using the Probability semiring 〈[0, 1],max,×, 0, 1〉.

Table 1 shows an example of DatalogW program, for
which we suppose to use the Weighted semiring. The in-
tuitive meaning of a semiring value like 3 associated to the
atom r(a) (in Tab. 1) is that r(a) costs 3 units. Thus the
set R+ contains all possible costs, and the choice of the two
operations min and + implies that we intend to minimize
the sum of the costs. This gives us the possibility to select
the atom instantiation which gives the minimum cost over-
all. Given a goal like s(x) to this program, the operational
semantics collects both a substitution for x (in this case,
x = a) and also a semiring value (in this case, 2) which
represents the minimum cost among the costs for all deriva-
tions for s(x). To find one of these solutions, it starts from
the goal and uses the clauses as usual in logic programming,
except that at each step two items are accumulated and com-
bined with the current state: a substitution and a semiring
value (both provided by the used clause). The combination
of these two items with what is contained in the current goal
is done via the usual combination of substitutions (for the
substitution part) and via the multiplicative operation of the
semiring (for the semiring value part), which in this exam-



ple is the arithmetic +. Thus, in the example of goal s(X),
we get two possible solutions, both with substitution X = a
but with two different semiring values: 2 and 3. Then, the
combination of such two solutions via the min operation
give us the semiring value 2.

To compute trust, in Sec. 4.1 we will use the path semi-
ring [21]: Strust = 〈〈[0, 1], [0, 1]〉,+p,×p, 〈0, 0〉, 〈1, 1〉〉,
where

〈ti, ci〉+p 〈tj , cj〉 =





〈ti, ci〉 if ci > cj ,

〈tj , cj〉 if ci < cj ,

〈max(ti, tj), ci〉 if ci = cj .

〈ti, ci〉 ×p 〈tj , cj〉 = 〈titj , cicj〉
In this case, trust information is represented by a couple
of values 〈t, c〉: the second component represents a trust
value in the range [0, 1], while the first component repre-
sents the accuracy of the trust value assignment (i.e. a con-
fidence value), and it is still in the range [0, 1]. This param-
eter can be assumed as a quality of the opinion represented
instead by the trust value; for example, a high confidence
could mean that the trustor has interacted with the target for
a long time and then the correlated trust value is estimated
with precision.

3.1 Finite Computation Time

Being the DatalogW language a subset of the Soft Con-
straint Logic Programming language [4] with no functions,
we can can use the results in [4] to prove that, consider-
ing a fixed DatalogW program, the time for computing the
value of any goal for this program is finite and bounded by
a constant. The reason is that we just have to consider a
finite subclass of refutations (i.e. simple refutations) with
a bounded length. After having considered all these refuta-
tions up to that bounded length, we have finished computing
the semiring value of the given goal. Given a refutation tree,
a path from the root to a leaf is called simple if all its nodes
have different labels up to variable renaming. A refutation
is a simple refutation if all paths from the root to a leaf in
its refutation tree are simple.

Theorem 1 (Finite Set of Simple Refutations) . Given a
DatalogW program P and a goal C, consider the set
SR(C) of simple refutations starting from C and build-
ing the empty substitution. Then SR(C) is finite. More-
over, each refutation in SR(C) has length at most N , where
N =

∑c
i=1 bi, c is the number of all clauses with head in-

stantiated in all possible ways, and b is the greatest number
of atoms in the body of a clause in program P .

This proof of the theorem is identical to the one given in [4].
Therefore, solving a goal C takes O(SR(C) · ∑c

i=1 bi)
steps. Moreover, other finite complexity results for a
weighted Datalog language are shown in [20].

4 Extending the RT Family with DatalogW

We describe four kinds of credentials for defining roles
in a TM language family, here called RTW , which is based
on DatalogW (see Sec. 3). This family uniformly extends
the classical RT family [16] by associating a weight, or bet-
ter, a semiring value to the basic role definition. Therefore,
all the following credentials must be parameterized with a
chosen 〈S, +,×,0,1〉 semiring in order represent prefer-
ence/cost or fuzzy information associated to the statements.
For every following RTW

0 credential, we describe how it
can be translated in a corresponding DatalogW rule. Then
we will suggest how to extend RTW

0 with parameterized
roles, obtaining the RTW

1 language.

Rule 1 A.R ←− 〈B, s〉 where A and B are (possibly the
same) entities, and R is a role name. This means that A
defines B to be a member of A’s R role. This statement
can be translated to DatalogW with the rule r(A,B) :-
s, where s is the semiring value associated with the
related ground fact, i.e. s ∈ S.

Rule 2 A.R ←− B.R1 This statement means that A de-
fines its R role to include (all members of) B’s R1

role. The corresponding DatalogW rule is r(A, x) :-
r1(B, x).

Rule 3 A.R ←− A.R1.R2, where A.R1.R2 is defined as
linked role [16] and it means that A defines its R role to
include (the members of) every role B.R2 in which B
is a member of A.R1 role. The mapping to DatalogW

is r(A, x) :-r1(A, y), r2(y, x).

Rule 4 A.R ←− B1.R1 ∩ B2.R2 ∩ · · · ∩ Bn.Rn. In this
way, A defines its R role to include the intersection
of the n roles. It can be translated to DatalogW with
r(A, x) :-r1(B1, x), r2(B2, x), . . . , rn(Bn, x).

The semantics of a program using these rules will find
the best credential chain according to the + operator of the
chosen semiring, which defines a partial order ≤S . Notice
that only the basic role definition statement (i.e. Rule 1)
is enhanced with the semiring value s ∈ S, since the other
three rules are used to include one role into another or to
obtain the intersection of different roles.

Notice that having a semiring value associated only with
ground facts does not prevent us from giving a weight also
to rules. This can be accomplished by slightly changing
the syntax of the credentials used to compose the roles to-
gether (i.e. rules 2-3-4), by associating a semiring value also
to them. Then, in the Datalog translation, a new ground
fact can be added in the body of the rule, whose weight
models the use of that specific rule. For example, Rule
2 becomes A.R ←− B.R1, s (where s is a value taken
from the same S semiring set), and its Datalog translation
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Figure 1. A hierarchy of RTW languages,
compared with the classical RT one.

is r(A, x) :-r(B, x), rule weight, where rule weight :- s
is the ground fact that gives a weight to the rule. Clearly,
nothing changes from the computational point of view (see
Sec 3.1).

It is easy to extend this language in order to enhance it
with parameterized roles, thus obtaining a RTW

1 language
following the hierarchy presented in [16]. This parametriza-
tion can be used to represent relationships among entities,
e.g. University.professorOf(student) to name the professor
of a student, but also to represent attributes that have fields,
e.g. the number of exams or the enrollment academic year
and so on. With respect to the previous four rules, in RTW

1

the head of a credential has the form A.R(h1, . . . , hn), in
which A is an entity, and R(h1, . . . , hn) is a role name (R is
a role identifier). For each i ∈ 1 . . . n, hi is a data term hav-
ing the type of the ith parameter of R. For example, Rule 1
can be rewritten in RTW

1 as A.R(h1, . . . , hn) ←− 〈B, s〉,
and mapped to DatalogW as r(A,B, h1, . . . , hn) :- s. Our
intention is to extend the RTW family according to the
guidelines explained in [16] (see Sec. 5).

Since Datalog is a subset of first-order logic, the se-
mantics of a TM language based on it is declarative and
unambiguous. While The × operator of the semiring is
used to compose the preference/cost values associated to
the statements, the + is used to let the framework select
the best derivation chain with more chances to authorize the
requester (among all the credentials revealed by her/him).

Theorem 2 (Language Family Inclusion) For each S set
of statements in the RT0 or RT1 language, we can find
a corresponding SW set of statements respectively repre-
sented in RTW

0 or RTW
1 , and whose semantics is the same.

In Fig. 1 we show the theorem result, i.e. the horizon-
tal inclusions; the vertical ones are explained in [16] (for
RT ) and in this paper (for RTW ). As a suggestion, it can
be proved by using the Boolean semiring 〈{0, 1},∨,∧, 0, 1〉
and by assigning a weight of 1 (i.e. the true value) to all the
ground facts. In this way we obtain a set of crisp statements
and the semantics returns all the possible derivation paths,
as the corresponding RT set of statements would do.

4.1 Some Examples with Levels of Trust

We can start by adding levels to the classical RT0 ex-
ample presented in many RT related papers (e.g. [16]).
To solve the example in Tab. 2, we use a Fuzzy semiring
〈[0, 1],max, min, 0, 1〉, where the elements in [0, 1] repre-
sents the truth degree connected to a credential and eval-
uated by the entity which signs and issues it: for exam-
ple, StateU.highMarks ←− 〈 Alice, 0.8 〉 in
Tab. 2 certifies that Alice has obtained a good number of
high marks (since the value is 0.8) for the exams completed
at the StateU university (the credential is issued by StateU).

EPub.disct ←− EPub.preferred ∩
EPub.brightStudent.

EPub.preferred ←− EOrg.highBudget ∩
EOrg.oldCustomer.

EPub.brightStudent ←−
EPub.goodUniversity.highMarks.

EPub.goodUniversity ←− ABU.accredited.
ABU.accredited ←− 〈 StateU, 0.9 〉.
StateU.highMarks ←− 〈 Alice, 0.8 〉.
EOrg.highBudget ←− 〈 Alice, 0.6 〉.
EOrg.oldCustomer ←− 〈 Alice, 0.7 〉.

Table 2. An example in RTW
0 , with fuzzy val-

ues associated to the credentials.

EPub.disct ←− EPub.preferred ∩
EPub.brightStudent.

EPub.disct ←−
EOrg.famousProf.goodRecLetter.

EPub.preferred ←− EOrg.highBudget ∩
EOrg.oldCustomer.

EPub.brightStudent ←−
EPub.goodUniversity.highMarks.

EPub.goodUniversity ←− ABU.accredited.
EOrg.famousProf ←− 〈 ProfX, 〈 0.9, 0.9 〉〉.

ProfX.goodRecLetter←− 〈 Alice, 〈 0.9, 0.8 〉〉.
ABU.accredited ←− 〈 StateU, 〈 0.9, 0.8 〉〉.
StateU.highMarks ←− 〈 Alice, 〈 0.8, 0.9 〉〉.
EOrg.highBudget ←− 〈 Alice, 〈 0.6, 0.5 〉〉.
EOrg.oldCustomer ←− 〈 Alice, 〈 0.7, 0.7〉〉.

Table 3. An extension of the example in
Tab. 2, using the path semiring.

The example in Tab. 2 describes a fictitious Web publish-
ing service, EPub, which offers a discount to anyone who
is both a preferred customer and a bright student. EPub
delegates the authority over the identification of preferred
customers to its parent organization, EOrg. In order to be



evaluated as a preferred customer, EOrg must issues two
different types of credentials stating that the customer is not
new (i.e. EOrg.oldCustomer) and has already spent some
money in the past (i.e. EOrg.highBudget). EOrg assigns
a fuzzy value to both these two credentials to quantify its
evaluation. EPub delegates the authority over the identifi-
cation of bright students to the entities that are accredited
universities. To identify such universities, EPub accepts
accrediting credentials issued by the fictitious Accrediting
Board for Universities (ABU). ABU evaluates a university
with a fuzzy score and each university evaluates its enrolled
students. A student is bright if she/he is both enrolled in a
good university and has high marks. The final fuzzy score,
obtained by composing together all the values of the used
credentials, can be compared with a threshold to authorize
the discount: e.g. only entities whose set of credentials pro-
duced a score greater than 0.7 are authorized. Otherwise,
the final fuzzy result can be used to derive a proportional
discount amount: for example a score of 0.8 could authorize
a discount that is twice the discount allowed with a score of
0.4. The following credentials prove that Alice is eligible
for the discount with a score of 0.6, determined by the fact
that she has not a very high budget spent at EOrg (i.e. her
EOrg.highBudget credential has a value of 0.6).

In Tab. 3 we extend the example of Tab. 2 in order to
represent also a case where the authorization can be accom-
plished by following different derivation chains. For exam-
ple, a customer could be allowed to have a discount even
if she/he presents a good recommendation letter written by
a famous professor (i.e. EPub.famousProf.goodRecLetter).
In Tab. 3 we use the path semiring presented in Sec. 3, thus a
semiring value consists in a couple of trust/confidence feed-
backs. The best derivation chain corresponds to the criteria
defined by the +p (i.e. confidence is more important).

4.2 An implementation in CIAO Prolog

In this Section we implement and solve the authoriza-
tion problem described in Tab. 3. Since Datalog is a subset
of Prolog, we represent the credentials and the access rules
with a program in CIAO Prolog [8], a system that offers a
complete Prolog system supporting ISO-Prolog , but, at the
same time its modular design allows both restricting and
extending the basic language (with predicate abstractions,
constraints, objects, concurrency, etc).

In Fig. 2 we can see the statements in Tab. 3 trans-
lated into CIAO Prolog clauses. The times and plus
clauses are used to model the ×p and +p operators
of the path semiring presented in Sec. 3. Querying
the interpreter with trust(alice, [T,C]), we obtain the
best refutation tree (according to +p) among the two
possible ones, with [T, C] respectively instantiated to
〈0.81, 0.72〉 and 〈0.3, 0.25〉. The best choice is by using

:- module(rtprogram,_,_). 
:-use_module(library(aggregates)). 
:-use_module(library(sort)).

times([T1,C1], [T2,C2], [T,C]) :-
T is (T1 * T2),       
C is (C1 * C2).

plus([], MaxSoFar, MaxSoFar).

plus([[T,C]|Rest], [MT,MC], Max):- 
C > MC, 
plus(Rest, [T,C], Max).

plus([[T,C]|Rest], [MT,MC], Max):- 
C = MC, T > MT, 
plus(Rest, [T,C], Max).

trust(X, Max):-  findall([T,C] ,disct(ePub, X, [T,C]), L1), plus(L1,[0,0],Max).

disct(ePub, X, [T,C]):- preferred(ePub, X, [T1,C1]), 
brightStudent(ePub, X, [T2,C2]), 
times([T1,C1], [T2,C2], [T,C]).

disct(ePub, X, [T,C]):- famousProf(eOrg, Y, [T1,C1]), 
goodRecLetter(Y, X, [T2,C2]), 
times([T1,C1], [T2,C2], [T,C]).

preferred(ePub, X, [T,C]):- highBudget(eOrg, X, [T1,C1]), 
oldCustomer(eOrg, X, [T2,C2]), 
times([T1,C1], [T2,C2], [T,C]).

brightStudent(ePub, X, [T,C]):- goodUniversity(ePub, Y, [T1,C1]), 
highMarks(Y, X, [T2,C2]), times([T1,C1], [T2,C2], [T,C]).

goodUniversity(ePub, X, [T,C]):- accredited(aBU, X, [T,C]).

famousProf(eOrg, profX, [0.9,0.9]). 
goodRecLetter(profX, alice, [0.9,0.8]). 
accredited(aBU, stateU, [0.9,0.8]). 
highMarks(stateU, alice, [0.8,0.9]). 
highBudget(eOrg, alice, [0.6,0.5]). 
oldCustomer(eOrg, alice, [0.7,0.7]) . 

plus([[T,C]|Rest], [MT,MC], Max):- 
C < MC, 
plus(Rest, [MT,MC], Max).

plus([[T,C]|Rest], [MT,MC], Max):- 
C = MC, T < MT, 
plus(Rest, [MT,MC], Max).

Figure 2. The CIAO Prolog program repre-
senting the statements in Tab. 3

the EOrg.famousProf.goodRecLetter, i.e. 〈0.81, 0.72〉.

5 Conclusions and Future Work

We have proposed a weighted extension of Datalog and
a trust language family based on it. These languages can be
used to deal with vague and imprecise security policies or
credentials, and preference or costs associated to each cre-
dential. In practice, we can manage and combine together
different levels of truth, preference or costs associated to
the statements and finally have a single feedback value on
which to authorize a trust request. We have used weighted
datalog to give semantics to an extension of the RT fam-
ily of languages [16] and we we have shown that classical
RT0 and RT1 are respectively included in our RTW

0 and
RTW

1 . It is worthy to notice that our extension is com-
pletely orthogonal w.r.t. the RT extension proposed in [15],
i.e. RTC , where the supporting DatalogC language allows



first-order formulas in tractable constraint domains. The
constraints are introduced to represent the access permis-
sions over structured resources, e.g., tree domains and range
domains. Our aim is instead the representation of trust lev-
els modelling cost/preference or fuzziness of credentials.

As a first future work, we will extend the RTW family
by considering the other languages proposed in [16], as RT2

that provides the notion of o-sets (grouping logically related
objects together), RTT that is improved with manifold roles
and role-product operators, or RTD, that provides delega-
tion of role activations. On more future improvement could
be to leave to the programmer the opportunity to take more
decisions inside the rules, for example based on the current
aggregated semiring value (the process is called reification
of the values, i.e. make them visible to the programmer);
from its evaluation, some rules could be enabled and oth-
ers could be ignored, influencing the derivation process and
the final result. We plan to investigate the complexity of
tractable soft constraints classes [11] in order to cast them
in a tractable Datalog-based language. Therefore, we want
to extend also the RTC language [15] (based on Datalog
enhanced with crisp constraints) in its RTW

C soft version,
as done in this paper for RT0 and RT1.

We want also to study the feasibility of using Soft Con-
current Constraint Programming-like languages [1, 3] to
represent the same authorization process: the soft con-
straints, added to the σ constraint store by the participat-
ing parties, will represent the credentials and the access
rules proposed for the request, each statement with its own
preference value. In fact, soft constraints [1] extend classi-
cal constraints to represent multiple consistency levels, and
thus provide a way to express preferences, fuzziness, and
uncertainty. Then, a query can be modelled with a simple
ask(c) −→a action [1, 3], where the c constraint represents
the fact that we want to check if it is implied by the store:
the ask succeeds (i.e. the request is accepted) if the store
σ entails the constraint c and also if the store is “consistent
enough” w.r.t. the threshold a on the transition arrow, which
represents the minimum requested consistency (or prefer-
ence) level to be satisfied by the query.
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