
Propagating Multitrust within Trust Networks∗ †

Stefano Bistarelli
Department of Sciences, University “G.

d’Annunzio” of Chieti-Pescara
Viale Pindaro 87, Pescara, Italy

bista@sci.unich.it

Francesco Santini
IMT Lucca - School for Advanced Studies

Piazza San Ponziano 6, Lucca, Italy

f.santini@imtlucca.it

ABSTRACT
We suggest the concept of multitrust, which is aimed at com-
puting trust by collectively involving a group of trustees at
the same time: the trustor needs the concurrent support
of multiple individuals to accomplish its task. We propose
Soft Constraint Logic Programming based on semirings as
a mean to quickly represent and evaluate trust propagation
for this scenario. To attain this, we model the trust network
adapting it to a weighted and-or graph, where the weight on
a connector corresponds to the trust feedback value among
the connected nodes. Semirings are the parametric and flex-
ible structures used to appropriately represent trust metrics.

Keywords
Soft Constraint Logic Programming, and-or Graphs, Trust
Propagation, Trust Network

1. INTRODUCTION
Decentralized trust management [5, 11] provides a dif-

ferent paradigm of security in open and widely distributed
systems where it is not possible to rely solely on traditional
security measures as cryptography. The reasons usually are
that the nodes appear and disappear from the community,
span multiple administrative domains, their direct interac-
tions are limited to a small subset of the total number of
nodes and, moreover, there is no globally trusted third party
that can supervise the relationships. For this reason a com-
putational model is needed to derive a trust value among the
individuals of a community, represented as a trust network,
in the following abbreviated as TN.

Two contributions are given in this paper: first we pro-
pose the concept of multitrust, i.e. when the relationship of
trust concerns one trustor and multiple trustees in a corre-
lated way (the name recalls the multicast delivery scheme

∗Partially supported by Institute for Informatics and Telem-
atics (IIT-CNR) Pisa, Italy.
†Supported by the MIUR PRIN 2005-015491

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

in networks). An example in peer-to-peer networks is when
we download a file from multiple sources at the same time,
and we need a reliability feedback for the whole download
process. Notice that the trust feedback towards a group of
individuals is usually different from merely summing up the
component of each one: the characteristics and capabilities
of individuals can benefit if suitably collaborating together,
or loss something if in contrast. Consider sport teams, for
example: having many good players in the same team does
not necessarily imply to have the winner team.

Secondly, we outline a model to solve trust propagation
in this new scenario: we represent TNs (the same model ap-
plies also to related terms in literature as trust graph, web
of trust or social network [7, 11, 17]) as and-or graphs [14]
(i.e. hypergraphs), mapping individuals to nodes and their
relationships to directed connectors. The and connectors
(i.e. hyperarcs) represent the event of simultaneously trust-
ing a group of individuals at the same time. The costs of the
connectors symbolize how trustworthy the source estimates
the destination nodes, that is a trust value.

Afterwards, we propose the Soft Constraint Logic Pro-
gramming (SCLP) framework [1, 3] as a convenient declar-
ative programming environment in which to solve the trust
propagation problem for multitrust. In SCLP programs,
logic programming is used in conjunction with soft con-
straints, that is, constraints which have a preference level
associated to them. In particular, we show how to trans-
late the and-or graph obtained in the first step into a SCLP
program, and how the semantics of such a program com-
putes the best trust propagation tree in the corresponding
weighted and-or graph. SCLP is based on the general struc-
ture of a c-semiring [1] (or simply, semiring) with two oper-
ations × and +. The × is used to combine the preferences,
while the partial order defined by + (see Section 2) is instead
used to compare them. Therefore, we can take advantage of
the semiring structure to model and compose different trust
metrics. SCLP is also parametric with respect to the cho-
sen semiring: the same program deals with different trust
metrics by only choosing the proper semiring structure.

This paper is organized as follows: in Sec. 2 we present
some background information about trust metrics and the
SCLP framework. Section 3.1 depicts how to represent a TN
with an and-or graph, while in Sec. 4 we describe the way to
pass from and-or graphs to SCLP programs, showing that
the semantic of SCLP program is able to compute the best
trust propagation tree in the corresponding and-or graph.
Section 5 draws the final conclusions and outlines intentions
for future works.

2. BACKGROUND
Trust and Metrics. No universal agreement on the defi-

nition of trust and reputation concepts has been yet reached
in the community [13]. However, we adopt the following
definitions: trust describes a nodes belief in another nodes
capabilities, honesty and reliability based on its own direct
experiences, while reputation is based on recommendations
received also from other nodes. The main difference between
trust and reputation is that trust systems produce a score
that reflects the relying party’s subjective view of an en-
tity’s trustworthiness, whereas reputation systems produce
an entity’s (public) reputation score as seen by the whole
community.

Trust and reputation ranking metrics have primarily been
used for public key certification in distributed or hierarchi-
cal systems (as respectively PGP or PKI systems), rating
and reputation systems part of online communities, peer-
to-peer networks, semantic web and also mobile computing
fields [11, 13, 16, 17]. Each of these scenarios favors different
trust metrics. Trust metrics are used to predict trust scores
of users by exploiting the transitiveness property of rela-
tionships (thus, we are considering transitive trust chains):
if two nodes, say node A and node C in Fig. 1a, do not have
a direct edge connecting them, the TN can be used to gener-
ate an inferred reputation/trust rating. A TN represents all
the direct trust relationship in a community. An example
of a classical TN is provided in Fig. 1a, where we can see
that trust is usually represented as a 1-to-1 relationship be-
tween only two individuals: the edges are directed from the
trustor to the trustee. If node A knows node B, and node B
knows node C, then A can use the path to compose the in-
ferred rating for C. This process is called trust propagation
by concatenation, and it is a necessary requirement since in
most settings a user has a direct opinion only about a very
small portion of nodes in the TN. Therefore, trust needs to
be granted also by basing on third-party recommendations.

According to [16], trust metrics can be classified in:

• Basic: based only on the reachability of the nodes in
the TN (as in Fig. 1a): if a target node is reachable,
then it can be trusted by the source node. The length
of the path can be bounded, i.e. bounded reachability.
One example is X.509 [16], in which an extension of
the certificate can limit the length of the remaining
segment of the certification path.

• Weighted : if the edges representing trust relationships
are weighted, and the trust score is obtained by find-
ing the cost of the paths between the source and the
target nodes. Examples are Maurer or Rahman-Hailes
metrics [16].

• Flow Related : where a “flow” or an “energy” amount
is injected in the graph and the trustworthiness of a
node is defined by the quantity of flow which reaches
it. These metrics show a greater resistance to forgery-
based attacks [16, 17].

Soft Constraint Logic Programming. The SCLP
framework [1, 3], is based on the notion of c-semiring intro-
duced in [4]. A c-semiring S is a tuple 〈A, +,×, 0, 1〉 where
A is a set with two special elements (0, 1 ∈ A) and with two
operations + and × that satisfy certain properties: + is de-
fined over (possibly infinite) sets of elements of A and thus

Table 1: A simple example of an SCLP program.

s(X) :- p(X,Y).

p(a,b) :- q(a).

p(a,c) :- r(a).

q(a) :- t(a).

t(a) :- 2.

r(a) :- 3.

is commutative, associative, idempotent, it is closed and 0 is
its unit element and 1 is its absorbing element; × is closed,
associative, commutative, distributes over +, 1 is its unit
element, and 0 is its absorbing element (for the exhaustive
definition, please refer to [4]).

The + operation defines a partial order ≤S over A such
that a ≤S b iff a + b = b; we say that a ≤S b if b repre-
sents a value better than a. Other properties related to the
two operations are that + and × are monotone on ≤S , 0
is its minimum and 1 its maximum, 〈A,≤S〉 is a complete
lattice and + is its lub. Finally, if × is idempotent, then +
distributes over ×, 〈A,≤S〉 is a complete distributive lattice
and × its glb.

Semiring-based constraint satisfaction problems (SCSPs)
are constraint problems where each variable instantiation
is associated to an element of a c-semiring A (to be inter-
preted as a cost, level of preference or, in this case, as a
trust/reputation level), and constraints are combined via
the × operation and compared via the ≤S ordering. Vary-
ing the set A and the meaning of the + and × operations, we
can represent many different kinds of problems, having fea-
tures like fuzziness, probability, and optimization. In Sec. 3,
the set A is used to collect the trust values, the × operator
to combine them into a result for a complete tree, and + to
find the best (i.e. the most trustworthy) tree.

A simple example of a SCLP program over the semiring
〈N, min, +, +∞, 0〉, where N is the set of non-negative inte-
gers and D = {a, b, c}, is represented in Tab. 1. The intuitive
meaning of a semiring value like 3 associated to the atom
r(a) (in Tab. 1) is that r(a) costs 3 units. Thus the set N
contains all possible costs, and the choice of the two opera-
tions min and + implies that we intend to minimize the sum
of the costs. This gives us the possibility to select the atom
instantiation which gives the minimum cost overall. Given
a goal like s(x) to this program, the operational semantics
collects both a substitution for x (in this case, x = a) and
also a semiring value (in this case, 2) which represents the
minimum cost among the costs for all derivations for s(x).
To find one of these solutions, it starts from the goal and
uses the clauses as usual in logic programming, except that
at each step two items are accumulated and combined with
the current state: a substitution and a semiring value (both
provided by the used clause). The combination of these two
items with what is contained in the current goal is done via
the usual combination of substitutions (for the substitution
part) and via the multiplicative operation of the semiring
(for the semiring value part), which in this example is the
arithmetic +. Thus, in the example of goal s(X), we get two
possible solutions, both with substitution X = a but with
two different semiring values: 2 and 3. Then, the combina-
tion of such two solutions via the min operation give us the
semiring value 2.

3. PROPAGATING MULTITRUST
We introduce the concept of multitrust, which extends the

usual trust relationship from couples of individuals to one
trustor and multiple trustees in a correlated way:

Definition 3.1. Given a set of entities S in the consid-
ered trust domain, multitrust is defined as a relationship Rmt

between a trustor t ∈ S and a set of trustees T ⊂ S, where
t 6∈ T and |T | ≥ 1. Rmt can be described in terms of time
(e.g. at the same time), modalities (e.g. with the same be-
havior) or collaboration among the trustees in T w.r.t. t.

Consequently, this trust relation Rmt is 1-to-n (no more
1-to-1 as in all the classical trust systems [17]) and can be
created by concurrently involving all the interested parties
in a shared purpose. Some everyday examples can be found
when downloading a file from multiple sources at the same
time in peer-to-peer networks, or, in general, when a task
must/can be accomplished with the help of many individ-
uals acting together and a trust feedback must be found
for the whole process. Another general application can be
for team effectiveness [8]: suppose we have a decentralized
community of open-source programmers and we want to
know if a subset of them can be reliably assigned to a new
project. Delegating the search to a group of 3 individuals,
for example, could significantly enhance the result since we
suppose they will accurately collaborate together by joining
their skills and obtaining a better result w.r.t. 3 different
and independent searches. Thus, the group will be more
trustworthy than the single individuals, and even the final
trustees will benefit from this group collaboration: they will
be reached with an higher score during the propagation of
trust in the TN.

According to the classification in [17], also group metrics
are very well suited to computing membership in a group,
since they parallelly evaluate groups of trust assertions [17]
for a target node. However, notice that our definition of
multitrust for groups is different, since only one 1-to-n as-
sertion is considered among a trustor and its trustees, and
not a group of them. Moreover, the idea of the correlated
event is not present in group metrics.

3.1 From Trust Networks to And-or Graph
An and-or graph [14] is defined essentially as a hyper-

graph. Namely, instead of arcs connecting pairs of nodes
there are hyperarcs connecting an n-tuple of nodes (n =
1, 2, 3, . . .). The arcs are called connectors and they must
be considered as directed from their first node to all others.
Formally an and-or graph is a pair G = (N, C), where N is
a set of nodes and C is a set of connectors

C ⊆ N ×
k[

i=0

N i.

Note that the definition allows 0-connectors, i.e. connec-
tors with one input and no output node. In the following of
the explanation we will also use the concept of and tree [14]:
given an and-or graph G, an and tree H is a solution tree of
G with start node nr, if there is a function g mapping nodes
of H into nodes of G such that: i) the root of H is mapped
in nr, and ii) if (ni0 , ni1 , . . . , nik) is a connector of H, then
(g(ni0), g(ni1), . . . , . . . , g(nik)) is a connector of G.

Informally, a solution tree of an and-or graph is analo-
gous to a path of an ordinary graph: it can be obtained by
selecting exactly one outgoing connector for each node.

xxxxxxxxx
xxxxxxxxx

xxxxx
xxxxx
xxxxx
xxxxx

xxx
xxx
xxx
xxxxxxxxxxxxx
xxxxxxxxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx

n

n

n

n

n

2

1

3

4

5

0.9

0.4

0.79

0.88

0.98

0.94

0.88

0.82

0.93 0.8

a) b)

A

B

C

D

E

Figure 1: a) a classical trust network, and b) an
and-or graph representing multitrust.

In Fig. 1b we directly represent a TN for multitrust as
a weighted and-or graph, since for its characteristics, this
translation is immediate. Each of the individuals can be
easily cast in a corresponding node of the and-or graph. In
Fig. 1b we represent our trustor as a black node (i.e. n1)
and the target trustees as two concentric circles (i.e. n4 and
n5). Nodes n2 and n3 can be used to propagate trust.

To model the classical trust relationship between two nodes
we use 1-connectors, which correspond to usual TN arcs:
the 1-connectors in Fig. 1b are (n1, n2), (n1, n3), (n2, n3),
(n2, n4), (n3, n4), (n3, n5), (n4, n5). We remind that the
connectors are directed, and thus, for example the connector
(n4, n5) means that the input node n4 trusts the individual
represented by n5. Moreover, since we are now dealing with
multitrust, we need to represent the event of trusting more
individuals at the same time. To attain this, in Fig. 1b we
can see the three 2-connectors (n1, n2, n3), (n2, n3, n4) and
(n3, n4, n5): for example, the first of these hyperconnectors
defines the possibility for n1 to trust both n2 and n3 in a
correlated way. In Fig. 1b we draw these n-connectors (with
n > 1) as curved oriented arcs where the set of their output
nodes corresponds to the nodes traversed by the curved arc.
Considering the ordering of the nodes in the tuple describing
the connector, the input node is at the first position and the
output nodes (when more than one) follow the orientation
of the related arc in the graph (in Figure 1b this orientation
is lexicographic). Notice that in the example we decided to
use connectors with dimension at most equal to 2 (i.e. 2-
connectors) for sake of simplicity. However it is possible to
represent whatever cardinality of trust relationship, that is
among a trustor and n trustees (i.e. with a n-connector).

Each of the connectors in Fig. 1b is labeled with a trust
value in the range [0, 1]. A trust value close to 1 indicates
that the output nodes of the connector have gained good
reputation in terms of their past performance and thus are
more trustworthy, whereas a low trust value means the nodes
showed relatively poor QoS in the past and are rated with
low reputations. In general, we could have trust expressed
with a k-dimensional vector representing k different metrics.

Collecting the trust values to assign to the labels of the
connectors is out of the scope of this work, since they can be
described in terms of specificity/generality dimensions (one
or more aspects) and subjective/objective dimensions (per-
sonal, as e-Bay, or formal criteria, as credit rating) [13].
However, for n-connectors with n ≥ 2, we can suppose
also the use of a composition operation ◦ which takes n 1-
dimensional vectors (e.g. tvalue1, . . . , tvaluen) as operands
and returns the estimated trust value for that n-connectors

(tvaluenc): ◦ (tvalue1, tvalue2, . . . , tvaluen) −→ tvaluenc.
This ◦ operation can be easily found for objective ratings,

since they are the result of applying formal aspects that have
been clearly defined, while automating the computation of
subjective ratings is undoubtedly more difficult. Notice also,
as said before, that such a ◦ operation is not only a plain
“addition” of the single trust values, but it must take into
account also the “added value” (or “subtracted value”) de-
rived from the combination effect. For example, considering
the connector (n3, n4, n5) in Fig. 1b, its cost, i.e. 0.93, sig-
nificantly benefits from simultaneously trusting n4 and n5,
since both the trust values of (n3, n4) and (n3, n5) are sen-
sibly lower (i.e. respectively 0.8 and 0.88). On the other
hand, n2 does not consider n3 and n4 to be so “collabora-
tive” since the trust label of (n2, n3, n4), i.e. 0.6, is decidedly
worse than the costs of (n2, n3) and (n2, n4) (i.e. 0.94 and
0.88). In the example in Fig. 1b we supposed to use subjec-
tive ratings, and therefore the trust values for 2-connectors
do not follow any specific ◦ function.

So far, we are able to represent an entire TN with a
weighted and-or graph, but still we need some algebraic
framework to model our preferences for the connectors, to
use during trust propagation. For this reason, we decided
to use the semiring structure (see Sec. 2) usually adopted
for Probabilistic SCSPs [1], since the confidence of a node
is often seen as a probability score in many works [7, 16]:
STrust = 〈[0, 1], max,×, 0, 1〉. With this semiring we com-
pose the independent probabilities with the product oper-
ation (i.e. the arithmetic ×) and we maximize the global
trust result with max.

Notice that other semirings can be used to model other
trust metrics: for example, the Fuzzy Semiring 〈[0, 1], max,
min, 0, 1〉 can be used if we decide that the score of a trust
chain corresponds to the weakest of its links. Or we can
select the Weighted Semiring, i.e. 〈R+, min, +,∞, 0〉, to
count negative referrals in reputation systems as e-Bay [13].
Moreover, since the cartesian product of semirings is still a
semiring [1], trust can be propagated by considering several
independent criteria (i.e. metrics) at the same time. If the
k-dimensional costs of the connectors are not elements of
a totally ordered set, it may be possible to obtain several
Pareto-optimal trees.

In Fig. 1b we avoided cycles to keep the graph readable;
however, the Probabilistic Semiring automatically avoids cy-
cles in the SCLP program, since it maximizes the result [3].

4. AND-OR GRAPHS USING SCLP
In this Section, we represent the and-or graph in Fig. 1b

with a program in SCLP. Since SCLP is a declarative pro-
gramming environment, it is relatively easy to specify trust
relationships; moreover, the c-semiring structure is a very
parametric tool where to represent different trust metrics.

Using this framework, we can easily find the trust propa-
gation trees over the hypergraph built in Sec. 3.1. In fact,
in this paper our aim is to find the best tree simultane-
ously reaching all the desired trustees, which is only one of
the possible choices when computing trust [7]: according to
multipath propagation, when multiple propagation paths (in
this case, trees) exist between A and C (in this case, sev-
eral trustees at the same time), all their relative trust scores
can be composed together in order to have a single result
balanced with every opportunity.

To represent the connectors in SCLP we can write clauses

Table 2: The CIAO program representing all the
AND trees over the and-or graph in Fig. 1b

:- module(trust,_,_).
:- use_module(library(lists)).

times(T1, T2, T) :-
 T is T1 * T2,!.

leaf([n1], 1).
leaf([n2], 1).
leaf([n3], 1).
leaf([n4], 1).
leaf([n5], 1).

connector(n1,[n2], 0.9).
connector(n1,[n3], 0.4).
connector(n1,[n2,n3], 0.79).
connector(n2,[n3], 0.94).
connector(n2,[n4], 0.88).
connector(n2,[n3,n4], 0.82).
connector(n3,[n4], 0.8).
connector(n3,[n5], 0.88).
connector(n3,[n4,n5], 0.93).
connector(n4,[n5], 0.98).

tree(X,[X], T):-
 leaf([X], T).

tree(X, Z, T):-
 connector(X,W, T1),
 treeList(W,Z, T2),
 times(T1, T2, T).

treeList([],[], 1).

treeList([X|Xs],Z, T):-
 tree(X, Z1, T1),
 append(Z1, Z2, Z),
 treeList(Xs, Z2, T2),
 times(T1, T2, T).C

o
n

n
e

c
to

rs

1)

2)

3)

4)

L
e

a
v

e
s

like c(ni, [nj , nk]) : − tvalue, meaning that the graph has
connector from ni to nodes nj and nk with tvalue cost.
Then, other SCLP clauses describe the structure of the tree
we desire to search over the graph.

We chose to represent an and-or graph with a program
in CIAO Prolog [6], a system that offers a complete Pro-
log system supporting ISO-Prolog and constraint program-
ming expressions. CIAO Prolog has also a fuzzy extension,
but since it does not completely conform to the semantic of
SCLP defined in [3] (due to interpolation in the interval of
the fuzzy set). For this reason, we inserted the cost of the
connector in the head of the clauses, differently from SCLP
clauses which have the cost in the body of the clause.

From the and-or graph in Fig. 1b we can build the cor-
responding CIAO program of Tab. 2 as follows. First, we
describe the connectors of the graph with facts like

connector(source node, [list of destination nodes], tvalue)

e.g. the fact connector(n1, [n2, n3], 0.79) represents the con-
nector of the graph (n1, n2, n3) with a trust value of 0.79.
The set of connector facts is highlighted as Connectors in
Tab. 2. The Leaves facts of Tab. 2 represent the termina-
tions for the Prolog rules. Their cost must not influence
the final trust score, and then it is equal to the unit ele-
ment of times, i.e. 1. The Times clause in Tab. 2 mimics
the × operation of the c-semiring proposed in Section 3.1:
STrust = 〈[0, 1], max,×, 0, 1〉. At last, the rules 1-2-3-4 of
Tab. 2 describe the structure of the trees we want to find
over the graph. Rule 1 represents a tree made of only one
leaf node, Rule 2 outlines a tree made of a connector plus a
list of sub-trees with root nodes in the list of the destination
nodes of the connector, Rule 3 is the termination for Rule 4,
and Rule 4 is needed to manage the junction of the disjoint
sub-trees with roots in the list [X|Xs]. When we compose
connectors and trees (Rule 2 and Rule 4), we use the Times
clause to compose their costs together.

To make the program in Tab. 2 as readable as possible, we
omitted two predicates: the sort predicate, needed to order
the elements inside the list of destination-nodes of connec-
tors and trees (otherwise, the query tree(n1, [n4, n5], T) and
tree(n1, [n5, n4], T) would produce different results), and the
intersection predicate to check that multiple occurrences of
the same node do not appear in the same list of destination

n1 n 2

0.9

n 3

0.94

n 5

n 4

0.93
0.9 x

0.94 x

0.93 =

0.78

Trust result:

Figure 2: One of the trust propagation tree that can
be found with the program in Tab. 2, and its cost.

nodes, if reachable from different connectors (otherwise, for
example, tree(n1, [n4, n4, n5] would be a valid result).

To solve the and-or graph problem it is enough to per-
form a query in Prolog language: for example, if we want
to compute the cost of all the trees rooted at n1 and having
as leaves the nodes representing the receivers (in this case,
{n4, n5}), we have to perform the query tree(n1, [n4, n5], T),
where T will be instantiated with the trust cost of the found
trees. One of the outputs of the CIAO program for this
query corresponds to the cost of the tree in Fig. 2, i.e. 0.78.
Using multiple metrics can be clearly ore informative than
a plain number in the interval [0, 1].

The representation of TN for multitrust given in Sec. 3.1
can lead to computability problems because of the outde-
gree of the nodes: in theory, for each of the N individuals in
the and-or graph we could have a connector towards each
of the subsets of individuals in the network, whose num-
ber is O(2N). The model could be composed by a total of
O(N ·2N) connectors, thus in the worst case it is exponential
in the number of graph nodes. However, the complexity of
the tree search can be reduced by using tabling (or memoing)
techniques [9]. The calls to tabled predicates are stored in
a searchable structure together with their proven instances,
and subsequent identical calls can use the stored answers
without repeating the computation. However, notice that
most of social networks bear significant traits of small-world
networks in which most nodes are not neighbors of one an-
other [17]: therefore, the complexity problem is limited.

5. CONCLUSIONS
We have defined the concept of multitrust and we have de-

scribed a method to represent and solve the trust propaga-
tion problem in such scenario, with the combination of and-
or graph and SCLP programming. Our framework can be
fruitfully applied to have a quick and elegant formal-model
where to compute the results of different trust metrics. We
think that multitrust can be used in many real-world cases:
trusting a group of individuals at the same time can lead to
different conclusions w.r.t. simply aggregating together the
trust values of the single individuals in the group.

Our future goal is to find a structure able to aggregate
distinct paths and trees (for multitrust) in a sigle trust
value, i.e. to compute multipath propagation (e.g. an av-
erage cost of the independent paths). Moreover, we would
like to model network-flow related metrics, as Levien and
Reiter-Stubblebine metrics [16], or energy-propagation met-
rics as Appleseed [17], because all these group metrics show
a greater resistance to forgery-based attacks. .

Moreover, we are considering to adapt Subjective Logic [12]
to semirings and use the results of this paper for the prop-
agation of opinion metric [12]. We also plan to use the
expectation semiring [10], where an element of the semir-

ing set corresponds to the couple “trust-probability”, that
is a trust value and the confidence in that value (a referral
trust [17]). Then, we would like to study in our framework
the correlated evidence problem described in [15].

At last, we would like to introduce the notion of “distrust”
in the model and to propagate it by using operations based
on the inverse of the semiring × operator [2].

6. REFERENCES
[1] S. Bistarelli. Semirings for Soft Constraint Solving and

Programming, volume 2962 of LNCS. Springer, 2004.

[2] S. Bistarelli and F. Gadducci. Enhancing constraints
manipulation in semiring-based formalisms. In ECAI
2006, pages 63–67. IOS Press, 2006.

[3] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based constraint logic programming. In Proc.
IJCAI97, pages 352–357. Morgan Kaufman, 1997.

[4] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based constraint solving and optimization.
Journal of the ACM, 44(2):201–236, 1997.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In SP ’96: Symp. on Security and
Privacy, page 164. IEEE Computer Society, 1996.

[6] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo,
P. López-Garćıa, and G. Puebla. The CIAO prolog
system: reference manual. Technical Report
CLIP3/97.1, School of Computer Science, Technical
University of Madrid (UPM), 1997.

[7] G. Caronni. Walking the web of trust. In WETICE
’00, pages 153–158. IEEE Computer Society, 2000.

[8] A. C. Costa, R. A. Roe, and T. Taillieu. Trust within
teams: the relation with performance effectiveness.
European Journal of Work and Organizational
Psychology, 10(3):225–244, 2001.

[9] B. Cui and D. Warren. A system for tabled constraint
logic programming. In Computational Logic, pages
478–492. Springer-Verlag, 2000.

[10] J. Eisner. Parameter estimation for probabilistic
finite-state transducers. In ACL ’02, pages 1–8.
Association for Computational Linguistics, 2001.

[11] J. Jonczy and R. Haenni. Credential networks: a
general model for distributed trust and authenticity
management. In PST, 2005.

[12] A. Jøsang. A logic for uncertain probabilities. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst.,
9(3):279–311, 2001.

[13] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision.
Decis. Support Syst., 43(2):618–644, 2007.

[14] A. Martelli and U. Montanari. Optimizing decision
trees through heuristically guided search. Commun.
ACM, 21(12):1025–1039, 1978.

[15] M. Schillo, P. Funk., and M. Rovatsos. Who can you
trust: dealing with deception. In Proc. of of the
Autonomous Agents Workshop on Deception, Fraud
and Trust in Agent Societies, pages 95–106, 1999.

[16] A. Twigg and N. Dimmock. Attack-resistance of
computational trust models. In WETICE ’03, pages
275–280. IEEE Computer Society, 2003.

[17] C.-N. Ziegler and G. Lausen. Propagation models for
trust and distrust in social networks. Information
Systems Frontiers, 7(4-5):337–358, 2005.

