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Abstract. Tradeoffs have been proposed in the literature as an ap-
proach to resolving over-constrainedness in interactive constraint-based
tools, such as product configurators. It has been reported how tradeoffs
can be modeled as additional constraints. This paper presents a for-
mal framework for tradeoff generation based on the semiring approach
to soft constraints. In particular, user preferences and tradeoffs are, re-
spectively, represented as soft constraints and as an entailment operator.
The entailment operator is used to interactively generate new constraints
representing tradeoffs. The framework we present is well-motivated by
real-world approaches that exploit tradeoff generation in online buying
and configuration processes.

1 Introduction

A typical interactive configuration session is one where a human user articulates
preferences for product features to a configurator which ensures consistency be-
tween the constraints of the problem and the user’s desires. During such a session
a point may be reached where all of the user’s desires cannot be met. At this
point the user could consider “tradeoffs” between his preferences. For example,
in configuring a car, the user may find that it is impossible to have one “with an
engine size more that 2 litres and having a minimum fuel consumption of 15 km
per litre” , but could accept a tradeoff: “I will reduce my engine size requirement
to 1.6 litres if I can have a minimum fuel consumption of 20 km per litre.” Ide-
ally, we would like the configurator to suggest appropriate tradeoffs to the user.
There are a number of web-sites that attempt to help users to make tradeoffs
between conflicting preferences and desires given the space of possible products
that are available. The most well-known of these is the very successful Active
Buyer’s Guide web-site!, which takes a similar two-stage approach to the one

! See http://www.activebuyersguide.com.



proposed here. Initially, user preferences are acquired with tradeoffs being pro-
posed/elicited where necessary. Finally, users make their choices for the features
of the desired product.

In this paper we extend and formalize previous work on tradeoffs. In [13]
tradeoffs are crisp binary constraints that are interactively generated to substi-
tute strict unary crisp constraints representing user desires. In this paper we
increase the utility of tradeoff generation since the amount of information gath-
ered from the user is increased by using soft constraints to represent preferences.
Representing the preferences of the user in a formal way was not addressed in
the earlier work in this area. Furthermore, the extended framework presented
here is general enough to deal with any arity of preference constraints, not only
unary ones as reported in [13].

The task of tradeoff generation is also formalized in this paper. The possible
tradeoffs are given as the result of an “entailment” function. A filter function is
used to select one of the possible entailed tradeoff constraints. The final general-
ization in our framework is that tradeoff constraints are not necessarily limited
to being binary. This provides us with a richer model of tradeoff. For example,
we may wish to add a non-binary tradeoff constraint in certain situations, such
as when we are prepared to have a pair of constraints, ¢, and ¢, replaced by a
ternary constraint, c’(z,y,z). The additional constraining influence on z could be
regarded as an imposed constraint.

To handle both of these extensions we use the semiring-based framework [4,
5,7] that has been shown to be capable of representing both crisp and soft
constraints in a uniform way.

Thus, the primary contribution of this paper is a formal and general theoret-
ical framework for tradeoff generation for interactive constraint processing that
uses soft constraints to represent user preferences and an entailment operator to
generate tradeoffs.

The remainder of the paper, which extends [8], is organized as follows. Sec-
tion 2 presents the necessary background on the semiring-based approach to han-
dling soft constraints and on the tradeoff generation schema. Section 3 presents
our general framework for tradeoff generation. An example is presented in Sec-
tion 4. In Section 5 an evaluation of the framework is presented with a discussion
of how this can be deployed in a real world context. Some concluding remarks
are made in Section 6.

2 Background: Tradeoffs and Soft Constraints

Product configuration is becoming a well studied design activity which is often
modeled and solved as a constraint satisfaction problem [1,12,14,19]. In this
paper we present a formal framework for tradeoff generation in interactive con-
straint processing. In the existing literature on this topic, a tradeoff is a binary
constraint which substitutes a pair of unary preference constraints; the tradeoff
constraint representing a satisfactory compromise for the user [13]. For example,
consider a set, U = {ei1,...,cr}, of user-specified unary preference constraints,



and a set P of constraints defining the underlying problem, such that U U P is
inconsistent. A tradeoff constraint, T;;, is a binary constraint involving a pair of
variables, v; and v;, on which the user has specified a pair of unary preference
constraints, ¢; € U and ¢; € U, such that U U T;; — {c;,¢;} is consistent and
the user’s preference on one variable has been strengthened and relaxed on the
other. Therefore, currently, a tradeoff is a binary constraint which replaces a
pair of unary preference constraints defined over the same pair of variables.

In this paper we regard each constraint in U as a soft constraint whose
preference levels can be combined according to the specific notion of combination
for the problem. Soft constraints associate a qualitative or quantitative value
either to the entire constraint or to each assignment of its variables. Such values
are interpreted as a level of preference, importance or cost. The levels are usually
ordered, reflecting the fact that some levels (constraints) are better than others.
When using soft constraints it is necessary to specify, via suitable combination
operators, how the level of preference of a global solution is obtained from the
preferences in the constraints.

Several formalizations of the concept of soft constraints are currently avail-
able. In the following, we refer to the formalization based on c-semirings [4, 5,
7], which can be shown to generalize and express both crisp and soft constraints

A semiring-based constraint assigns to each instantiation of its variables an
associated value from a partially ordered set. When dealing with crisp con-
straints, the values are the booleans true and false representing the admissible
and non-admissible values; when dealing with soft constraints the values are
interpreted as preferences.

The framework must also handle the combination of constraints. To do this
one must take into account such additional values, and thus the formalism must
provide suitable operations for combination (x) and comparison (4) of tuples
of values and constraints. This is why this formalization is based on the concept
of c-semiring.

More precisely, they are based on a semiring structure S = (4,+, x,0,1)
and a set of variables V' with domain D. In particular the semiring operation x
is used to combine constraints together, and the 4+ operator for projection.

Technically, a constraint is a function which, given an assignment n : V- — D
of the variables, returns a value of the semiring that is C : n — A is the set of
all possible constraints that can be built starting from S, D and V (values in A
are interpreted as level of preference or importance or cost).

Note that in this functional formulation, each constraint is a function (as
defined in [7]) and not a pair (as defined in [5]). Such a function involves all the
variables in V', but it depends on the assignment of only a finite subset of them.
We call this subset the support of the constraint.

Consider a constraint ¢ € C. We define his support as supp(c) = {v € V|
I, dy, ds.cnfv := dy] # enfv := do]}, where

d ifv=1v,

nv'  otherwise.

nlv :=dp' = {



Note that en[v := di] means cn’ where 7' is n modified with the association
v := dy (that is the operator [ | has precedence over application).

When using soft constraints it is necessary to specify, via suitable combina-
tion operators, how the level of preference of a global solution is obtained from
the preferences in the constraints. The combined weight of a set of constraints is
computed using the operator ® : C x C — C defined as (¢1 ® c2)n = c1m X g can.
Moreover, given a constraint ¢ € C and a variable v € V', the projection of ¢ over
V — {v}, written ¢ {(y_{y}) is the constraint ¢’ s.t. ¢'p =3, penlv == d].

Informally, projecting means eliminating some variables from the support.
This is done by associating to each tuple over the remaining variables a semiring
element which is the sum of the elements associated by the original constraint to
all the extensions of this tuple over the eliminated variables. In short, combina-
tion is performed via the multiplicative operation of the semiring, and projection
via the additive one.

The solution of a SCSP P = (C, con) is the constraint Sol(P) = (Q C) Vecon-
That is, we combine all constraints, and then project over the variables in con.
In this way we get the constraint with support (not greater than) con which is
“induced” by the entire SCSP. Note that when all the variables are of interest
we do not need to perform any projection.

Solutions are constraints in themselves and can be ordered by extending the
<g order. We say that a constraint ¢ is at least as constraining as constraint cs
if ¢; C ¢o, where for any assignment n of variables then ¢; C c2 = e1n <g ca1).
Notice that using the functional formulation [7] we can also compare constraints
that have different support (in [4,5] only constraints with the same support
could be compared).

Sometimes it may be useful to find only a semiring value representing the
least upper bound among the values yielded by the solutions. This is called the
best level of consistency of an SCSP P and it is defined by blevel(P) = Sol(P) 4.

3 Tradeoff as an Entailment Operator

In this section we define a general notion of tradeoff using the semiring-based
framework presented above. We use hard constraints to represent the strict and
unmodifiable conditions of the problem (denoted P). We use soft, constraints to
represent, modifiable, user preferences (denoted U).

While, in general, we may have some constraints in P that are soft, we would
regard this softness as a cost that would not be handled in the same way as user-
specified preference constraints. In our framework we model softness in the user’s
desires, U, as preferences. The user makes statements like “I prefer to have a
petrol engine over a diesel one” in a quantifiable manner by associating semiring
values with each option. However, any softness in the physical constraints in the
problem, P, represent the costs, or penalties, associated with relaxing them.
These costs can be thought of as problem statements such as “a diesel engine is
not normally available for the small chassis, but for an additional cost, we can
make the option available”. Note that these types of softness are semantically



different and we would treat them as such. For the remainder of the paper we
will simply regard each problem constraint in P as a hard (crisp) constraint.
We model tradeoffs as a special entailment operator [20]. As shown in [7], an
entailment operator for soft constraints, given a set of constraints C', generates
constraints ¢’ s.t. Q C C ¢ (written as C' F ¢').
Tradeoffs specialize entailments in two respects:

— firstly, constraints ¢’ generated by the tradeoff operator are substituted for
the preference constraints, C', while entailed constraints are usually added to
the problem.

— secondly, when we add tradeoffs, we do not necessarily obtain a globally
better solution, but we may obtain a Pareto incomparable one. Specifically,
while low preference constraints, C' € U, are substituted by ¢, thus increasing
the overall level of preference, ¢’ usually also lowers the preference of some
other constraints C' € U.

So, for instance, if U = {¢i,...,c,}, a tradeoff for constraints C' = {c1,co}
could be a constraint ¢’ s.t. C'F ¢ and supp(c') D supp(c1) U supp(cs) (usually
we have supp(c') D supp(cr) U supp(ce)). Formally, we can define the notion of
potential tradeoffs as follows:

Definition 1 (Potential Tradeoffs). Given a configuration problem {PUU}
and a subset of user preference constraints C C U. We say that ¢’ is a Potential
Tradeoff for C' (c' € Tradesp,yy(C)) if

— supp(® C) C supp(c'); let’s call C C U the greatest set of preference con-

straints s.t. supp(@Q{C,C}) = supp(c');
- Ckd (thatis CCd);

The meaning of this definition is that a potential tradeoff will increase the level
of some user preference constraints (those in C' = {¢;,¢2}), and possibly lower
some other ones whose support is in C.

Notice that after the application of the tradeoff operator, we never obtain a
best level of consistency worse than before.

Theorem 1. Given a configuration problem {PUU} and a subset of user prefer-
ence constraints C C U. If ¢’ is a Potential Tradeoff for C' (' € Trades p(C))
Then, blevel(PUU — C U {c'}) £ blevel(PUU).

3.1 Computing Tradeoffs

The way the preference constraints C' C U are selected, and the way a specific
tradeoff ¢ is filtered from all the potential ones, and thus, C' computed, is one
of the most important issues when dealing with configuration problems. The
potential tradeoffs can be restricted in various ways, which may be problem
or context-specific. For example, we may wish to select a tradeoff in a way
which could be regarded as “user-friendly”. In the context of an interactive
constraint-based configuration tool we may need to ensure that the user “trusts”



the configurator, which may imply that previously accepted tradeoffs are not
revisited. Some possible approaches to selecting preferences and filtering tradeoff
constraints are presented in Section 3.2.

Notice that the filtered tradeoff could depend on the presence of a particular
(partial) assignment, 1, of the variables of the problem whose association has to
be maintained?.

Usually the configuration process first requests preference constraints from
the user, and only if a solution better than a threshold « cannot be found with
the acquired constraints, then a tradeoff is computed. To perform this check we
always compute blevel(PUU) = Sol(PUU) |y and compare this value with the
semiring level a.

Therefore, tradeoff generation can be characterized in this context as a func-
tion:

Trades{p 1y : C = C

where:

— P is the set of Problem constraints;

— U is the set of User-specified preference constraints;

— lis a filter (cut function) that first selects a set of preference constraints,
C C U, and then selects one from among the potential tradeoffs giving ¢’
(see Section 3.2).

— 7 is a (partial) assignment of the variables whose association has to be main-
tained;

— « represents the minimum best level of consistency we wish to achieve in
the SCSP. The level « can be seen as the minimum level of global preference
satisfaction we want to achieve;

Definition 2 (Tradeoffs). Given a configuration problem {PUU}, and a sub-
set of the user’s preference constraints, C C U. We say that ¢’ is a Trade-
off for C wusing the threshold «, the filter | and the partial assignment n (¢ €
Trades{p 1y (C)), if the following are satisfied:

— ¢ is a Potential Tradeoff, that is:

o supp(® C) C supp(c;

o Ok
— blevel({PUU}) < « (i.e. the problem is no longer a-consistent);
— blevel({PU{U —C}UC(c'}) £ a (starting from a solution with an insufficient
level of consistency, we want an assignment that gives a solution with a best
level of consistency not worse than «).
l'is used as a filter (see Section 3.2).

2 In this paper 7 is fixed and never changes, so in all the definitions it could be omitted.
Nevertheless it is important to include it in the notion of preference/tradeoff because
in the next step of a configuration problem it will play an important role. After giving
the user the opportunity to specify constraint preferences, he will be asked to make
some more precise choices. In that phase of the configuration process, n becomes
a partial assignment. We plan to address this second phase of the configuration
problem as part of our research agenda in this area.



3.2 Heuristics for selecting preference and tradeoff constraints

To completely define a tradeoff function we need to specify the selection and
filtering heuristic, !, we will use to:

1. select the user preference constraints to eliminate, C' — we will denote this
selector 1°%* and

2. select a tradeoff, ¢/, from the set of potential tradeoffs computed by the
entailment operator — we will denote this filter !"*; notice that this also
implies the selection of the preference constraints C' whose level of preference
could be reduced.

Before presenting some specific examples of the selection heuristic, !1°f, and
the filtering heuristic, 1", recall that the trigger for generating tradeoff con-
straints is the detection that there does not exist a solution which is a-consistent,
i.e. that blevel({PUU}) < «. In a configuration context « can represent a thresh-
old in utility, cost or some other application-specific metric for measuring the
quality or suitability of the outcome.

Below, we give here some possible instantiations o and !"?. Firstly we
consider heuristics for implementing the !°“¢ selector. Of course, in addition to
the heuristics we present below, a variety of others are possible which can be
made application- or user-specific.

f fout

Random Selection: Random selection is always a possibility. In this case, the
set C' containing the preference constraint(s) to remove is randomly selected
from amongst those in 1°“(U) = {¢; € U : PUU — {¢;} is a-consistent};
This heuristic is an obvious naive approach.

Strictly related to P: The preference constraint we want to modify is strictly
connected to the problem definition. In this case, the set C' containing
the preference constraint(s) to remove is selected from amongst those in
ut(U) = {e; € U : PUU — {¢;j} is a-consistent A I¢; € P : supp(c;) N
supp(c;) # 0};

Has not appeared in a tradeoff: The preference constraint we want to mod-
ify has not already been affected by a tradeoff. In this case, the set C' con-
taining the preference constraint(s) to remove is selected from amongst those
in 1°%(U) = {¢; € U : PUU — {c;} is a-consistent A # a tradeoff t € U :
supp(t) D supp(c;j)}; this heuristic can be regarded as “user-friendly” since
we do not ask the user to consider tradeoffs on variables which have already
been involved in a tradeoff.

The tradeoff constraint, ¢', that we will choose to proposed to the user, by
filtering from the set of potential tradeoffs using !"*, has the properties that it
will:

1. reflect a relaxation of the user’s preference for constraint(s) C (selected by
using 1°4t), and



2. a strengthening of the user’s preference for constraint(s) C.

Proposition 1. Given a configuration problem {P U U},_a subset of user pref-
erence constraints C C U and a tradeoff ¢’ for C; let also C C U the greatest set

s.t. supp(Q{C,CY) = supp(c'); Then,

- (P U {U - C} U Cl) Usupp(C)g (P U U) Usupp(C) ;
- (P U {U - C} U Cl) Usupp(@)g (P U U) Usupp(@)'

We now give some examples of " filters that select one tradeoff from among
all possible potential tradeoffs. Some possible approaches we could adopt, based
on [13] are:

Maximum viability ¢ is mazimal w.r.t. P, U and n (that is for all ¢" €
Trades{p 1y we have @{P U{U —C}uc"In 2 @{PU{U - C}ruUc'}n;

Minimum viability ¢ is minimal w.r.t. P, U and n (that is there not exists
" € Trades{py,, 1 st. @{PU{U - Cruc"In < @{PU{U - C}Uc'}n.

Notice that the first approach will be less tasking on the configurator since
it always selects the less restrictive tradeoff, i.e. we will have ¢’ {;ypp(c)= 1; the
tradeoff will give to all domain values of the variables in C' the best preference.
However, in this way the preferences made by the user on this assignment are
lost. Essentially, using the first approach we maximize the possible solutions that
the user will be able to choose from, but we cannot guarantee that the user’s
original set of preferences will be satisfied to the maximal extent.

On the other hand, the second approach will try to always stay as close as
possible to the user’s preferences, i.e. we will have ¢’ {5,pp(cy3 C. The tradeoff
will increase the preference on C' just sufficiently to reach the required level of
consistency a. Therefore, such a minor increment could result in a significant
number of tradeoff interactions during the configuration process. In fact, the
constraint ¢’ inserted by the configurator could be too strict to be a-consistent
when the user will insert new preference constraints in future interactions. How-
ever, in this case we run the risk of being misled by the user, in the sense that
we may have to generate many tradeoffs in order to recover from a set of strong
and over-constraining preferences.

It is worth pointing out at this point that a good user-interface could as-
sist in the detection of preference constraints to strengthen and which to relax.
An appropriate user-interface could also take care of preference elicitation. For
example, we could assume that importance relationships between variables is
reflected by the order in which user-choices are made. This is also an issue we
are investigating as part of our research agenda in this area.

Furthermore, the approach we are advocating in this work can be seen as
an automated version of that used on the very successful Active Buyer’s Guide
web-site.



4 An Example

The example configuration problem that will be studied here is based on the
soft n-queens problem [6]. However, we will assume, for space reasons, that all of
the problem constraints in P are hard in the traditional sense. Furthermore, for
this example we have chosen the fuzzy semiring, S = ([0, 1], maz, min,0, 1), so
constraints in U have preference between 0 and 1 and they are combined using
min.

The n-queens problem exhibits many of the features one finds in a real-world
configuration problem. Specifically, consider the formulation of the problem that
we use here, where each column is represented as a variable and the row position
of a queen in a particular column is denoted by the value assigned to the appro-
priate variable. Between the variables are constraints encoding the requirement
that no pair of queens attack each other. In terms of a configuration problem,
the variables represent the features over which the user/customer make choices.
The domain of each variable represents the possible choices that the user can
make for a particular feature. The constraints between the variables represent
the compatibilities between combinations of instantiations of the features of the
product.

The user attempts to solve this configuration problem by interactively speci-
fying some preference constraints to a constraint-based configurator. During the
interactive session with the configurator, the user may specify a preference con-
straint which causes the problem to become “over-constrained”, identified by
the problem becoming less than a-consistent (for some fixed «). At this point
our configurator attempts to recommend tradeoff constraints to the user which
he/she can accept before continuing.

Thus, the interactive solving process, based on [13], can be summarized as
follows:

Repeat until preferences are specified for all variables in the problem:
— Repeat until over-constrained — blevel(PUU) < a:
e the user specifies a preference constraint, ¢ € U;
— Repeat until user is satisfied:
e the system proposes a tradeoff

For the purposes of this example let’s assume we wish to solve the 4-Queens
problem with a crisp set of problem constraints, P, i.e. the configuration prob-
lem constraints are hard. This means that the only preference/costs we have to
consider are given by the user (inside the set U).

In the following example we will consider only unary preference constraints
representing the columns, {c1,¢a,c3,c4} of the chess-board. The user proposes
unary preference constraints on each of the columns, sequentially from the first
to the fourth, representing wishes for the placement of queens.

Furthermore, we also assume that only binary tradeoff constraints ¢’ will be
generated. Finally, lets assume that the user wishes to achieve a minimum level
of 0.5-consistency, i.e. a = 0.5.
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Fig. 1. An example interaction with all hard constraints in P.




Problem constraints in P: Figure 1(a) the no-attack crisp constraints inP
are represented. The grey squares represent impossible configurations (i.e.
with preference level 0); the white squares represent consistent positions for
the queens.

User Decision #1: The user states a unary preference constraint on the val-
ues for column 1: ¢;(1) = 1.0,¢:(2) = 0.6,¢1(3) = 0.6,¢1(4) = 1.0 (see
Figure 1(b)). The constraint network representing this problem is still a-
consistent, because it is possible to achieve a solution having a semiring
value of 0.6 (Figure 1(c)) by putting the queen in row 2 or 3, so the user is
free to continue articulating preference constraints. Notice that queens can-
not, be positioned in row 1 or row 4 because the crisp constraints in P do
not, admit any solution with queens in these positions.

User Decision #2: The user states a unary preference constraint on the values
for column 2: ¢c2(1) = 1.0,¢2(2) = 0.4,¢2(3) = 0.4,c2(4) = 1.0 (Figure 1(d)).
The constraint network representing this problem is still a-consistent: setting
¢ = 2 and ¢; = 4 could yield a solution with preference 0.6 (Figure 1(e)).
In fact, possible solutions are obtained by putting the queen in row 1 or 43
Therefore, the user is free to continue articulating preferences.

User Decision #3: The user states a unary preference constraint on the values
for column 3: ¢3(1) = 0.4,¢3(2) = 1.0,¢3(3) = 1.0,¢5(4) = 0.4 (Figure 1(f)).
The constraint network representing this problem is no longer a-consistent:
the best solution has a semiring value of 0.4 (for example setting ¢; = 2,
¢y =4 and ¢35 = 1) (Figure 1(g)). Therefore, the user must consider tradeoffs.

Tradeoff #1: The configurator needs to select a preference constraint to re-
move and a tradeoff to add. In this case all the heuristics presented in Sec-
tion 3.2 for !°¥% will select the preference constraint on column 3. In fact
C = {c3} is the only set of preference constraint s.t. P UU —C is 0.5-
consistent.

Furthermore, lets assume that the tradeoff constraint selected using ! in-
volves column 1 and 3. Let’s suppose our heuristic select: ¢;3 = {(1,1) =
0.6,(2,1) = 0.6,(3,1) = 0.6,(4,1) = 0.6,(1,2) = 1.0,(2,2) = 1.0,(3,2) =
1.0,(4,2) = 1.0,(1,3) = 1.0,(2,3) = 1.0,(3,3) = 1.0,(4,3) = 1.0,(1,4) =
0.5,(2,4) = 0.5,(3,4) = 0.5, (4,4) = 0.5} (Figure 1(h)).

Assuming the user accepts this tradeoff constraint, the network is once again
a-consistent (Figure 1(i)). The user could set ¢; = 2, co =4 and ¢3 = 1 for
a semi-ring value of 0.5. Note that by adding the tradeoff we also remove
the unary preference constraint on column 3 and relax the preferences on
column 1.

3 In this example all of the constraints in P are crisp, so the possible positions of the
queens are strictly imposed. Instead, if P contained soft constraints, more possibili-
ties (with different costs) would be possible.



User Decision #4: The user states a unary preference constraint on the values
for column 4: ¢4(1) = 0.5,¢4(2) = 1.0,¢4(3) = 1.0, ¢4(4) = 0.5 (Figure 1(j)).
The constraint network representing this problem is still a-consistent (Fig-
ure 1(k)). The user could set ¢; = 2, co = 4, c3 = 1 and ¢4 = 3 for a semi-ring
value of 0.6. Preferences have now been defined for each column.

5 Evaluation and Discussion

To inform intuition on our approach to tradeoff generation based on the frame-
work presented in this paper, we implemented a concretisation which satisfies
the requirements of the framework in a minimal way. Specifically, we generated
random entailed constraints ¢’ such that Vn.c'n > «. In this way we guarantee
that the problem will always be alpha-consistent after we perform the tradeoff
operation. Obviously this approach is not intended to reflect any “real-world”
tradeoffs, however, it does provide us with some basic insights as to the number
of tradeoffs will be required with different levels of « in a real-world instantiation
of this framework.

10 T T T T T

Numbe; of tradeoff:s —

Average number of Tradeoffs required

0.1 0.2
alpha

Fig. 2. Average number of tradeoffs required over a fifty user-interaction simulations
at various levels of a.

In Figure 2 we show results obtained by averaging the number of tradeoffs
required over fifty user-interaction simulations. In this experiment, we use the



10-queens problem. The constraints that define this problem represent the crisp
set of constraints P. We randomly generate unary fuzzy constraint functions to
represent each of the user preference constraints in U. To simulate a general
user-interaction we take a sequential approach to eliciting user preferences and
determine if the user has stated a preference which over-constrains the overall
problem (i.e. PUU). If the user has over-constrained, identified by the problem
becoming a-inconsistent, then it is necessary to generate a tradeoff constraint.

Thus, in this experiment we sequentially generate 10 unary preference func-
tions and evaluate blevel(PUU) after each constraint is added. If this evaluates
to greater than «a, we continue on to generate the next preference function, if
not we generate a tradeoff to make the problem a-consistent again.

If we consider Figure 2 we see that at low levels of @ we do not need to gen-
erate many tradeoffs, but at higher levels of «, as the user gets more demanding,
we find that the number of tradeoffs required to find a solution increase dramat-
ically. This is to be expected since at lower levels of « the likelihood of over-
constraining the problem are very low, while as « increases we are more likely
to over-constrain the problem after each user preference constraint is added to
the model.

An interesting question here is how many a-consistent solutions of the prob-
lem do we find as a changes. Interestingly, we observed that at very low and very
high levels of a we “lost” very few «-consistent solutions. By the term “lost”
solution, we mean how many of the solutions to the problem are no longer a-
consistent, at the end of the simulated interaction, due to tradeoffs. Specifically,
we observed that as a increased, the number of solutions we “lost” gradually
increased from 0 to some maximum, less than the number of solutions to the
problem, and after some level of a began to decrease again. From Figure 2 we can
see that low (high) « implies fewer (more) tradeoffs. This suggests that having
to rely either lightly or heavily on tradeoffs is likely to be a successful strategy
to find satisfactory solutions to a problem. Of course the extent to which this
is possible is determined by the level of o sought by the user. Therefore, we are
more likely to be able to satisfy the expectations of easy-to-please users, who
require low «, or very selective users, who require high a. Note that this is a
similar phenomenon to that observed by Freuder and O’Sullivan in the earlier
work on tradeoff generation for crisp CSPs [13]. They noted how both greedy and
easy-to-please users were easy to satisfy, but non-committal users were difficult.

While the instantiation of the tradeoff framework for soft constraints studied
in this evaluation is based on very naive random methods to generating user pref-
erences and tradeoff constraints, we can regard the results presented in Figure 2
as a worst-case scenario for this problem. While we always succeed in finding a
solution, any form of intelligence that can be built into the selection heuristics,
tout and 1", will improve upon these results. This raises the interesting issue of
how our work can be deployed in a real-world context. We address that issue in
some detail below.

Many approaches to dealing with compromises in user preferences or con-
straints exist [2,9,10,16-18]. In our work we are concerned with attempting to



automate tradeoff generation in order to take the onus from the user and place
it with the system. The objective is that users will be assisted find satisfactory
tradeoffs to their preference constraints in a search-style interaction while the
system monitors consistency. Ideally, the tradeoff generation mechanism in such
an interactive system will be capable of presenting tradeoffs which are likely
to be accepted by the user, so that he or she can continue to search for his or
her solution. This style of interaction is search focused, rather than the solution
focused approaches of Recommender Systems or example critiquing systems [11].

In the framework we present here, the critical components are the filter used
to select constraints to relax to regain consistency (!°“!) and the filter used to
decide what preferences to modify to form a tradeoff (I"). One approach we
could adopt is to attempt to learn appropriate filters based on past sessions
with the user, or application-specific characteristics of the problem domain.

We also do not preclude user involvement in the tradeoff process. Indeed, one
could imagine that the user participates in the selection of preferences to relax
and strengthen. The framework we have presented still applies.

Finally, the role of user-interfaces for preference elicitation is an important
one. For example, a user-interface can help translate user-choices into appropri-
ate semiring values for each preference constraint. Also, a user-interface could
provide us with a mechanism for reasoning about the relative importance of user
preferences, upon which we could develop appropriate filters.

Therefore, we would argue that we have presented a generic framework for
interactive search-based tradeoff systems. The framework is general purpose and
can be instantiated in a number of ways. One direction for future work is the
consideration of particular instantiations of the framework targeted at particular
domains, or types of interaction.

6 Conclusions

Tradeoffs have been proposed in the literature as an approach to resolving over-
constrainedness in interactive constraint-based tools, such as product configura-
tors. It has already been reported in the literature how tradeoffs can be modeled
as additional constraints. This paper presents a formal framework for trade-
off generation based on the semiring approach to handling soft constraints. In
particular, we present a formal and general definition of tradeoff generation for
interactive constraint processing. The framework we present is well-motivated
by real-world approaches that exploit tradeoff generation in online buying and
configuration processes.

Our research agenda in this area involves studying intelligent interfaces for
reasoning about the relative importance of the user’s preferences. For example,
we could assume that importance relationships between variables are reflected
by the order in which user-choices are made. We are also interested in a detailed
empirical evaluation of a number of strategies for learning appropriate filter
functions for more natural user-friendly interaction.



In summary, we have presented a formal framework for studying a very impor-
tant aspect of interactive constraint processing, the ability to assist users achieve
their desires to the maximal degree possible. This framework provides the ba-
sis for a research agenda in the area of interactive constraint satisfaction with
practical applications in domains such as product configuration, e-commerce,
interactive scheduling, negotiation and explanation. As future work we also plan
to integrate the notion of tradeoff into the CHR framework [15].
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