
A Theoretical Framework for Tradeoff
Generation using Soft Constraints

Stefano Bistarelli

Istituto di Informatica e Telematica, CNR, Pisa, Italy

Dipartimento di Scienze

Universitá degli Studi “G. D’annunzio”, Pescara, Italy

Barry O’Sullivan

Cork Constraint Computation Centre

Department of Computer Science

University College Cork, Ireland

Abstract

Tradeoffs have been proposed in the literature as an approach to re-
solving over-constrainedness in interactive constraint-based tools, such
as product configurators, that reason about user preferences. It has been
reported how tradeoffs can be modeled as additional constraints. This
paper presents a formal framework for tradeoff generation based on the
semiring approach to soft constraints. In particular, user preferences and
tradeoffs are represented as soft constraints and as an entailment oper-
ator, respectively. The entailment operator is used to interactively gen-
erate new constraints representing tradeoffs. We also introduce a novel
definition of substitutability for soft constraints upon which we present
a relaxed definition of tradeoffs.

1 Introduction

A typical interactive configuration session is one where a human user articulates
preferences for product features to a configurator which ensures consistency
between the constraints of the problem and the user’s desires. During such a
session a point may be reached where all of the user’s desires cannot be met.
At this point the user could consider “tradeoffs” between his preferences. For
example, in configuring a camera, the user may find that it is impossible to
have one “weighting less that 10 ounces with a zoom lens of 10X or more”, but
could accept a tradeoff: “I will increase my weight limit to 14 ounces if I can
have a zoom lens of 20X or more.” Ideally, we would like the configurator to
suggest appropriate tradeoffs to the user.

In this paper we extend and formalize previous work on tradeoffs. In [7]
tradeoffs are crisp binary constraints that are interactively generated to sub-
stitute strict unary crisp constraints representing user desires. In this paper
we increase the utility of tradeoff generation since the amount of information
gathered from the user is increased using soft constraints to represent pref-
erences. The ability to capture the preferences of the user in a formal way

was not addressed in the earlier work in this area. Furthermore, the extended
framework presented here is general enough to deal with any arity of preference
constraints, not only unary ones as reported in [7].

The task of tradeoff generation is also formalized in this paper. The possible
tradeoffs are given as the result of an “entailment” function. A filter function
is used to select one of the possible entailed tradeoff constraints. The final
generalization in our framework is that tradeoff constraints are not necessarily
limited to being binary. This provides us with a richer model of tradeoff.
For example, we may wish to add a non-binary tradeoff constraint in certain
situations, such as when we are prepared to have a pair of constraints, cx and cy,
replaced by a ternary constraint, c′(x,y,z). The additional constraining influence
on z could be regarded as an imposed constraint.

To handle both of these extensions we use the semiring-based framework [3,
4, 5] that has been shown to be able to represent both crisp and soft con-
straints in a uniform way. This general framework also gives us the possibility
of expressing approximate tradeoffs. When it is not possible to find a trade-
off resulting in a solution better than some fixed level of consistency, we can
consider the possibility of suggesting to the user solutions that are not worse
than a given degradation factor. To do this we extend the notion of soft sub-
stitutability [?] from domain values to constraints.

Thus, the contributions of this paper are as follows:

1. a formal and general theoretical framework for tradeoff generation for
interactive constraint processing that uses soft constraints to represent
user preferences and an entailment operator to generate tradeoffs;

2. a notion of substitutability for soft constraints and a relaxed definition of
tradeoff based on substitutability and solution degradation.

The remainder of the paper is organized as follows. Section 2 presents the
necessary background on the semiring-based approach to handling soft con-
straints and on the tradeoff generation schema. Section 3 presents our general
framework for tradeoff generation. An extension to our approach, for comput-
ing approximate tradeoffs, is presented in Section 4. Some concluding remarks
are made in Section 5.

2 Background: Tradeoffs and Soft Constraints

Product configuration is becoming a well studied design activity which is often
modeled and solved as a constraint satisfaction problem [1, 6, 10, 11]. In
this paper we present a formal framework for tradeoff generation in interactive
constraint processing. In the existing literature on this topic, a tradeoff is a
binary constraint which substitutes a pair of unary preference constraints; the
tradeoff constraint representing a satisfactory compromise for the user [7]. For
example, consider a set, U = {c1, . . . , ck}, of user-specified unary preference
constraints, and a set P of constraints defining the underlying problem, such
that U ∪ P is inconsistent. A tradeoff constraint, Tij , is a binary constraint

involving a pair of variables, vi and vj , on which the user has specified a pair
of unary preference constraints, ci ∈ U and cj ∈ U , such that U ∪ Tij −{ci, cj}
is consistent and the user’s preference on one variable has been strengthened
and relaxed on the other. Therefore, currently, a tradeoff is a binary constraint
which replaces a pair of unary preference constraints defined over the same pair
of variables.

In this paper we regard each constraint in U as a soft constraint whose
preference levels can be combined accordingly to the specific notion of combi-
nation for the problem. Soft constraints associate a qualitative or quantitative
value either to the entire constraint or to each assignment of its variables. Such
values are interpreted as a level of preference, importance or cost. The levels
are usually ordered, reflecting the fact that some levels (constraints) are better
than others. When using soft constraints it is necessary to specify, via suit-
able combination operators, how the level of preference of a global solution is
obtained from the preferences in the constraints.

Several formalizations of the concept of soft constraints are currently avail-
able. In the following, we refer to the formalization based on c-semirings
[3, 4, 5], which can be shown to generalize and express both crisp and soft
constraints [2].

A semiring-based constraint assigns to each instantiation of its variables
an associated value from a partially ordered set. When dealing with crisp con-
straints, the values are the booleans, true and false, representing the admissible
and non-admissible values; when dealing with soft constraints the values are
interpreted as preferences.

The framework must also handle the combination of constraints. To do
this one must take into account such additional values, and thus the formalism
must provide suitable operations for combination (×) and comparison (+) of
tuples of values and constraints. This is why this formalization is based on
the concept of c-semiring. Below we present an overview of semiring-based
constraint satisfaction.

Semirings.

A semiring is a tuple 〈A,+,×,0,1〉 such that:

• A is a set and 0,1 ∈ A;

• + is commutative, associative and 0 is its unit element;

• × is associative, distributes over +, 1 is its unit element and 0 is its
absorbing element.

A c-semiring is a semiring 〈A,+,×,0,1〉 such that: + is idempotent, 1 is its
absorbing element and × is commutative. Let us consider the relation ≤S over
A such that a ≤S b iff a + b = b. Then it is possible to prove that (see [4]):

• ≤S is a partial order;

• + and × are monotone on ≤S ;

• 0 is its minimum and 1 its maximum;

• 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a + b = lub(a, b).

Moreover, if × is idempotent, then: + distribute over ×; 〈A,≤S〉 is a complete
distributive lattice and × its glb. Informally, the relation ≤S gives us a way to
compare semiring values and constraints. In fact, when we have a ≤S b, we will
say that b is better than a. In the following, when the semiring will be clear
from the context, a ≤S b will be often indicated by a ≤ b.

Constraint Problems.

Given a semiring S = 〈A,+,×,0,1〉 and an ordered set of variables V over a
finite domain D, a constraint is a function which, given an assignment η : V →
D of the variables, returns a value of the semiring.

By using this notation we define C = η → A as the set of all possible
constraints that can be built starting from S, D and V .

Note that in this functional formulation each constraint is a function (as
defined in [5]) and not a pair (as defined in [4]). Such a function involves all
the variables in V , but it depends on the assignment of only a finite subset of
them. We call this subset the support of the constraint.

Consider a constraint c ∈ C. We define its support as supp(c) = {v ∈ V |
∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the association
v := d1 (that is the operator [] has precedence over application).

A soft constraint satisfaction problem is a pair 〈C, con〉 where con ⊆ V and
C is a set of constraints: con is the set of variables of interest for the constraint
set C, which however may concern also variables not in con.

Note that a classical CSP is a SCSP where the chosen c-semiring is: SCSP =
〈{false, true},∨,∧, false, true〉. Fuzzy CSPs can instead be modeled in the
SCSP framework by choosing the c-semiring SFCSP = 〈[0, 1],max,min, 0, 1〉.
Many other “soft” CSPs (Probabilistic, weighted, . . .) can be modeled by using
a suitable semiring structure, such as, (Sprob = 〈[0, 1],max,×, 0, 1〉, Sweight =
〈R,min,+, 0,+∞〉, . . .).

Example 1 Figure 1 shows the graph representation of a fuzzy CSP.Variables
X and Y , and constraints are represented, respectively, by nodes and by undi-
rected (unary for c1 and c3 and binary for c2) arcs, and semiring values are
written to the right of the corresponding tuples. The variables of interest (that
is the set con) are represented with a double circle. Here we assume that the
domain D of the variables contains the values a, b and c.

If semiring values represent probability/fuzziness then, for instance, the tu-
ple 〈a, c〉 → 0.2 in constraint c2 can be interpreted as the probability/fuzziness
of X and Y having values a and c, respectively, is 0.2. 4

<b, c> −−> 0.1

<a, c> −−> 0.2

X Y

〈a〉 → 0.9
〈a〉 → 0.9

〈b〉 → 0.1
〈b〉 → 0.5

〈c〉 → 0.9
〈c〉 → 0.5

〈a, a〉 → 0.8

〈a, b〉 → 0.2

〈c, a〉 → 0.8

〈c, b〉 → 0.2

〈b, a〉 → 0

〈b, b〉 → 0

〈c, c〉 → 0.2

c1

c2

c3

Figure 1: A fuzzy CSP.

Constraints can be defined in both extensional and intensional form. Con-
straints can be defined extensionally by listing each possible tuple with its
preference level. An alternative way is to define constraints in an intensional
way (for instance x 6= y, or x ≤ y) and assign a level to each instantiation by
using a function. As an example, consider the following fuzzy constraints:

c : {x, y} → R
2 → [0, 1] s.t. c(x, y) =

1

1 + |x − y|

and

c′ : {x} → R → [0, 1] s.t. c′(x) =

{

1 if x ≤ 10,

0 otherwise.

Notice that the domain of both variables x and y is, in this example, the set of
real numbers. As any fuzzy CSP, the definition of the constraints is instead in
the interval [0, 1].

Combining constraints.

When there is a set of soft constraints C, the combined weight of the constraints
is computed using the operator ⊗ : C×C → C defined as (c1⊗c2)η = c1η×S c2η.

Given a constraint c ∈ C and a variable v ∈ V , the projection of c over
V − {v}, written c ⇓(V −{v}), is the constraint c′ s.t. c′η =

∑

d∈D cη[v :=
d]. Informally, projecting means eliminating some variables from the support.
This is done by associating with each tuple over the remaining variables a
semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables. In
short, combination is performed via the multiplicative operation of the semiring,
and projection via the additive one.

Solutions.

The solution of a SCSP, P = 〈C, con〉, is the constraint Sol(P) = (
⊗

C) ⇓con.
That is, we combine all constraints, and then project over the variables in con.
In this way we get the constraint with support (not greater than) con which is
“induced” by the entire SCSP. Note that when all the variables are of interest
we do not need to perform any projection.

Solutions are constraints in themselves and can be ordered by extending the
≤S order. We say that a constraint c1 is at least as constraining as constraint
c2 if c1 v c2, where for any assignment η of variables then c1 v c2 ≡ c1η ≤S

c2η. Notice that using the functional formulation [5] we can easily compare
constraints eventhough they have different supports (in [3, 4] only constraints
with the same support could be compared).

Example 2 Consider again the solution of the fuzzy CSP of Figure 1. It as-
sociates a semiring element with every domain value of variable X. Such an
element is obtained by first combining all the constraints together and then
projecting the obtained constraint over X.

For instance, for the tuple 〈a, a〉 (that is, X = Y = a), we have to compute
the minimum between 0.9 (which is the value assigned to X = a in constraint
c1), 0.8 (which is the value assigned to 〈X = a, Y = a〉 in c2) and 0.9 (which is
the value for Y = a in c3). Hence, the resulting value for this tuple is 0.8. We
can do the same work for tuple 〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0, 〈b, b〉 → 0,
〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and 〈c, c〉 → 0.2. The tuples obtained
are then projected over variable X, obtaining the solution 〈a〉 → 0.8, 〈b〉 → 0.1
and 〈c〉 → 0.8. 4

Sometimes it may be useful to just find the semiring value representing the
least upper bound of the values yielded by the solutions. This is called the best
level of consistency of an SCSP P and it is defined by blevel(P) = Sol(P) ⇓∅.
We say that P is α-consistent when blevel(P) = α.

3 Tradeoff as an Entailment Operator

In this section we define a general notion of tradeoff using the semiring-based
framework presented above. We use hard constraints to represent the strict and
unmodifiable conditions of the problem (denoted P). We use soft constraints
to represent, modifiable, user preferences (denoted U).

While, in general, we may have some constraints in P that are soft, we
would regard this softness as a cost that would not be handled in the same
way as user-specified preference constraints. In our framework we model soft-
ness in the user’s desires, U , as preferences. The user makes statements like
“I prefer to have a petrol engine over a diesel one” in a quantifiable manner
by associating semiring values with each option. However, any softness in the
physical constraints in the problem, P , represent the costs, or penalties, associ-
ated with relaxing them. These costs can be thought of as problem statements
such as “a diesel engine is not normally available for the small chassis, but for
an additional cost, we can make the option available”. Note that these types
of softness are semantically different and we would treat them as such. For the
remainder of the paper we will simply regard each problem constraints in P as
a hard (crisp) constraint.

We model tradeoffs as a special entailment operator [12]. As shown in [5], an
entailment operator for soft constraints, given a set of constraints C, generates

constraints c′ s.t.
⊗

C v c′ (written as C ` c′).
Tradeoffs specialize entailments in two respects:

• firstly, constraints c′ generated by the tradeoff operator are substituted
for the preference constraints, C, while entailed constraints are usually
added to the problem.

• secondly, when we add tradeoffs, we do not necessarily obtain a globally
better solution, but we may obtain a Pareto incomparable one. Specif-
ically, while low preference constraints, C ∈ U , are substituted by c′,
thus increasing the overall level of preference, c′ usually also lowers the
preference of some other constraints C̄ ∈ U .

So, for instance, if U = {c1, . . . , cn}, a tradeoff for constraints C = {c1, c2}
could be a constraint c′ s.t. C ` c′ and supp(c′) ⊇ supp(c1)∪ supp(c2) (usually
we have supp(c′) ⊃ supp(c1)∪ supp(c2)). Formally, we can define the notion of
potential tradeoffs as follows:

Definition 1 (Potential Tradeoffs) Given a configuration problem {P ∪U}
and a subset of user preference constraints C ⊆ U . We say that c′ is a Potential
Tradeoff for C (c′ ∈ Trades〈P,U〉(C)) if

• supp(
⊗

C) ⊆ supp(c′); let’s call C̄ ⊆ U the greatest set of preference
constraints s.t. supp(

⊗

{C, C̄}) = supp(c′);

• C ` c′ (that is C v c′);

The meaning of this definition is that a potential tradeoff will increase the level
of some user preference constraints (those in C = {c1, c2}), and possibly lower
some other ones whose support is in C̄.

Notice that after the application of the tradeoff operator, we never obtain
a best level of consistency worse than before.

Theorem 1 Given a configuration problem {P∪U} and a subset of user prefer-
ence constraints C ⊆ U . If c′ is a Potential Tradeoff for C (c′ ∈ Trades〈P,U〉(C))
Then, blevel(P ∪ U − C ∪ {c′}) 6< blevel(P ∪ U);

Proof Easily follows from the monotonicity of the ⊗ operator and from the
hypotheses that C v c′. �

3.1 Computing Tradeoffs

The way the preference constraints C ⊆ U are selected, and the way a spe-
cific tradeoff c′ is filtered from all the potential ones, and thus, C̄ computed,
is one of the most important issues when dealing with configuration problems.
The potential tradeoffs can be restricted in various ways, which may be prob-
lem or context-specific. For example, we may wish to select a tradeoff in a
way which could be regarded as “user-friendly”. In the context of an interac-
tive constraint-based configuration tool we may need to ensure that the user

“trusts” the configurator, which may imply that previously accepted trade-
offs are not revisited. Some possible approaches to selecting preferences and
filtering tradeoff constraints are presented in Section 3.2.

Notice that the filtered tradeoff could depend on the presence of a particular
(partial) assignment, η, of the variables of the problem whose association has
to be maintained1.

Usually the configuration process first requests preference constraints from
the user, and only if a solution better than a threshold α cannot be found with
the acquired constraints, then a tradeoff is computed. To perform this check
we always compute blevel(P ∪U) = Sol(P ∪U) ⇓∅ and compare this value with
the semiring level α.

Therefore, tradeoff generation can be characterized in this context as a
function:

Tradesα
〈P,U,η,!〉 : C → C

where:

• P is the set of Problem constraints;

• U is the set of User-specified preference constraints;

• ! is a filter (cut function) that first selects a set of preference constraints,
C ⊆ U , and then selects one from among the potential tradeoffs giving c′

(see Section 3.2).

• η is a (partial) assignment of the variables whose association has to be
maintained;

• α represents the minimum best level of consistency we wish to achieve
in the SCSP. The level α can be seen as the minimum level of global
preference satisfaction we want to achieve;

Definition 2 (Tradeoffs) Given a configuration problem {P ∪U}, and a sub-
set of the user’s preference constraints, C ⊆ U . We say that c′ is a Tradeoff
for C using the threshold α, the filter ! and the partial assignment η (c′ ∈
Tradesα

〈P,U,η,!〉(C)), if the following are satisfied:

• c′ is a Potential Tradeoff, that is:

– supp(
⊗

C) ⊆ supp(c′);

– C ` c′;

• blevel({P ∪ U}) < α (i.e. the problem is no longer α-consistent);

1In this paper η is fixed and never changes, so in all the definitions it could be omitted.
Nevertheless it is important to include it in the notion of preference/tradeoff because in the
next step of a configuration problem it will play an important role. After giving the user the
opportunity to specify constraint preferences, he will be asked to make some more precise
choices. In that phase of the configuration process, η becomes a partial assignment. We plan
to address this second phase of the configuration problem as part of our research agenda in
this area.

• blevel({P∪{U−C}∪c′}) 6< α (starting from a solution with an insufficient
level of consistency, we want an assignment that gives a solution with a
best level of consistency not worse than α).

• ! is used as a filter (see Section 3.2).

3.2 Heuristics for selecting preference and tradeoff

constraints

To completely define a tradeoff function we need to specify the selection and
filtering heuristic, !, we will use to:

1. select the user preference constraints C to be eliminated – we will denote
the selector !out), and

2. select a tradeoff, c′, from the set of potential tradeoffs computed by the
entailment operator – we will denote the filter !in; notice that this also
implies the selection of the preference constraints C̄ whose level of pref-
erence could be reduced.

Before presenting some specific examples of the selection heuristic, !out,
and the filtering heuristic, !in, recall that the trigger for generating tradeoff
constraints is the detection that there does not exist a solution which is α-
consistent, i.e. that blevel({P ∪ U}) < α. Below, we give here some possible
instantiations of !out and !in.

Random Selection: Random selection is always a possibility. In this case,
the set C containing the preference constraint(s) to remove is randomly
selected among those in !out(U) = {cj ∈ U : P ∪U−{cj} is α-consistent};

Strictly related to P : The preference constraints we want to modify are
strictly connected to the problem definition. In this case, the set C
containing the preference constraint(s) to remove is randomly selected
among those in !out(U) = {cj ∈ U : P ∪ U − {cj} is α-consistent ∧ ∃ci ∈
P : supp(ci) ∩ supp(cj) 6= ∅};

Has not appeared in a tradeoff: The preference constraints we want to mod-
ify have not already been affected by a tradeoff. In this case, the set C con-
taining the preference constraint(s) to remove is randomly selected among
those in !out(U) = {cj ∈ U : P ∪U−{cj} is α-consistent∧@ a tradeoff t ∈
U : supp(t) ⊇ supp(cj)}; this heuristic can be regarded as “user-friendly”
since we do not ask the user to consider tradeoffs on variables which have
already been involved in a tradeoff.

The tradeoff constraint, c′, that we will choose, by filtering using !in, has
the properties that it will: (a) reflect a relaxation of the user’s preference for
constraint(s) C (selected by using !out, and (b) a strengthening of the user’s
preference for constraint(s) C̄.

Proposition 1 Given a configuration problem {P ∪U}, a subset of user pref-
erence constraints C ⊆ U and a tradeoff c′ for C; let C̄ ⊆ U be the greatest set
s.t. supp(

⊗

{C, C̄}) = supp(c′); Then,

• (P ∪ {U − C} ∪ c′) ⇓supp(C)w (P ∪ U) ⇓supp(C);

• (P ∪ {U − C} ∪ c′) ⇓supp(C̄)v (P ∪ U) ⇓supp(C̄).

Proof The first item easily follows from the monotonicity of the ⊗ operator
and from the hypotheses that C v c′. The second follows from the properties
of projection and from the fact that C ∩ C̄ = ∅. �

We now give some examples of !in filters that among all possible potential
tradeoffs will select one. Some possible approaches we could adopt, based on [7]
are:

Maximum viability: c′ is maximal w.r.t. P , U and η (that is for all c′′ ∈
Tradesα

〈P,U,η,!〉 we have
⊗

{P ∪{U −C}∪ c′′}η 6≥
⊗

{P ∪{U −C}∪ c′}η;

Minimum viability: c′ is minimal w.r.t. P , U and η (that is there does not
exist c′′ ∈ Tradesα

〈P,U,η,!〉 s.t.
⊗

{P ∪{U −C}∪ c′′}η ≤
⊗

{P ∪{U −C}∪
c′}η.

Notice that the first approach will be less tasking on the configurator since it
always selects the less restrictive tradeoff, i.e. we will have c′ ⇓supp(C)= 1; the
tradeoff will give to all domain values of the variables in C the best preference.
However, in this way, several preferences made by the user on this assignment
are lost.

On the other hand, the second approach will try to always stay as close as
possible to the user’s preferences, i.e. we will have c′ ⇓supp(C)A C. The tradeoff
will increase the preference on C just sufficiently to reach the prefixed level of
consistency α. Therefore, such a minor increment could result in a significant
number of tradeoff interactions during the configuration process. In fact, the
constraint c′ inserted by the configurator could be too strict to be α-consistent
when the user will insert new preference constraints in future interactions.

It is worth pointing out at this point that a good user-interface could assist
in the detection of preference constraints to restrict and which to relax. An
appropriate user-interface could also take care of preference elicitation. For
example, we could assume that importance relationships between variables is
reflected by the order in which user-choices are made. This is also an issue we
are investigating as part of our research agenda in this area.

4 Relaxing Tradeoffs

Sometimes a tradeoff that completely satisfies the user’s desires does not exist.
This results in a dead-end being reached, where the configurator cannot assist
the user to achieve the desired level of consistency. One possibility to resolve

this situation is to assist the user in backing-up through the tradeoffs that
the user previously accepted and modify one or more of them. In this way,
the inserted tradeoffs are considered as user preference constraints that can be
removed and substituted during the configuration process. In any case, in our
view, a good configurator must to be capable of following a strategy to find a
solution for the user without changing tradeoff constraints which have already
been accepted by the user. In this way the user may have more trust in the
configurator.

Alternatively, a notion of less strict tradeoff is useful. In this section we
define a relaxed notion of tradeoffs based on a notion of substitutability for
soft constraints which extends a definition of substitutability among domain
values [?]. In Section 4.1 we present a generalization of the notion of soft
value substitutability to substitutability for soft constraints. We then use this
definition in Section 4.2 to relax the earlier notion of tradeoff.

4.1 Substitutability for Soft Constraints

We propose a definition of substitutability among constraints, extending the
notions of substitutability among values defined in [?]. Informally, according
to the definition of soft value substitutability, a domain value b is substitutable
for a domain value a for a variable v if all solutions involving v := b have a level
of preference greater than solutions involving v := a. We extend this definition
to constraints below.

Definition 3 (constraint substitutability/interchangeability) We say that
constraint c1 is Fully Substitutable for constraint c2 (c1 ∈ FS (c2)) w.r.t. the set
of constraints C when

⊗

{C ∪ c2} v
⊗

{C ∪ c1}. When we have
⊗

{C ∪ c2} =
⊗

{C ∪ c1} we say that c1 and c2 are Fully Interchangeable (FI (c1/c2)).

Note that this definition of substitutability for constraints, when dealing
with crisp constraints, is very similar to that defined in [9]. However, the
definition above is more general since we are dealing with the soft constraint
framework.

As reported in [?] for domain values, the above definition can be relaxed by
using degradations. In particular, a constraint c∗ can be used as a degradation
factor.

Definition 4 (Substitutability with degradation) Consider two constraints
c1 and c2, the set of constraints C and a degradation constraint c∗; we say that
c1 is c∗Substitutable for c2 w.r.t. C if and only if,

⊗

{C ∪ c2 ∪ c∗} v
⊗

{C ∪ c1}

4.2 A Relaxed Definition of Tradeoffs

The above notion of degradation can be used to relax the tradeoffs that the
configurator proposes to the user. In particular, we will define a notion of

approximate tradeoff. However, first we will show that tradeoffs and substi-
tutability constraints are strictly related.

Theorem 2 (Substitutability and Potential Tradeoffs) Consider the sets
of constraints P , U , and C ⊆ U , and a partial assignment of the variable η.
Then, if

1. c′ is substitutable for
⊗

C (c′ ∈ FS(
⊗

C)) w.r.t. the set of constraints
{P ∪ U} and the (partial) assignment η, and

2. supp(c′) ⊇ supp(C),

then c′ ∈ Trades〈P,U〉(C).

Proof By definition of substitutability for constraints we have C ` c′. With
the second hypothesis of the theorem we easily have all that is required to say
that c′ is a potential tradeoff for C (c′ ∈ Trades〈P,U〉(C)). �

We can now relax the definition of tradeoff by using the relaxed version of
substitutability.

Definition 5 (Degradation Tradeoffs) Consider the constraint c′, the (set
of) constraint C ∈ U , a set of constraints {P∪U}, and a degradation constraint
c∗; we say that c′ is a Potential tradeoff for C w.r.t. {P ∪ U} and η with
degradation c∗ (c′ ∈ c∗

Trades〈P,U〉(C)) if and only if, c′ is c∗Substitutable for
⊗

C w.r.t. {P ∪ U}.

Degradation tradeoffs can be regarded as approximate tradeoffs. Notice
that by using the notion of degradation, we do not impose the requirement that
the configurator has to find a better configuration, but rather a configuration
similar to that chosen by the user. In this way the solution that the configurator
will find will be not too far from the solution proposed by the user in terms of
its degree of preference. In this respect the solution is an approximation.

5 Conclusions and Future Work

Tradeoffs have been proposed in the literature as an approach to resolving
over-constrainedness in interactive constraint-based tools, such as product con-
figurators, that reason about user preferences. It has already been reported in
the literature how tradeoffs can be modeled as additional constraints. This pa-
per presents a formal framework for tradeoff generation based on the semiring
approach to handling soft constraints. In particular, we present a formal and
general definition of tradeoff generation for interactive constraint processing.
We present a novel definition of substitutability for soft constraints upon which
we present a relaxed definition of tradeoffs.

Our research agenda in this area involves studying intelligent interfaces for
reasoning about the relative importance of the user’s preferences. For example,

we could assume that importance relationships between variables is reflected by
the order in which user-choices are made. We are also working on an empirical
evaluation of a number of heuristics for selecting preference constraints to be
considered as the basis for generating tradeoffs and strategies for filtering from
the set of tradeoffs generated by our entailment operator.

In summary, we have presented a formal framework for studying a very
important aspect of interactive constraint processing, the ability to assist users
achieve their desires to the maximal degree possible. This framework provides
the basis for a research agenda in the area of interactive constraint satisfac-
tion with practical applications in domains such as product configuration, e-
commerce, interactive scheduling, negotiation and explanation. As future work
we also plan to integrate the notion of tradeoffs into the CHR framework [8].

Acknowledgment

This work has received support from Enterprise Ireland under their Basic Re-
search Grant Scheme (Grant Number SC/02/289) and their International Col-
laboration Programme (Grant Number IC/2003/88).

References

[1] J. Amilhastre, H. Fargier, and P. Marguis. Consistency restoration and
explanations in dynamic csps – application to configuration. Artificial
Intelligence, 135:199–234, 2002.

[2] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Ver-
faillie. Semiring-based CSPs and Valued CSPs: Frameworks, properties,
and comparison. CONSTRAINTS: An international journal. Kluwer, 4(3),
1999.

[3] S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semir-
ings. In Proc. IJCAI95, San Francisco, CA, USA, 1995. Morgan Kaufman.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solv-
ing and Optimization. Journal of the ACM, 44(2):201–236, Mar 1997.

[5] S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint pro-
gramming. In Proc. 11th European Symposium on Programming (ESOP),
Lecture Notes in Computer Science (LNCS), pages 53–67. Springer, 2002.

[6] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumpter. Consistency-
based diagnosis of configuration knowledge-bases. In Proceedings of the
14h European Conference on Artificial Intelligence (ECAI’2000), pages
146–150, 2000.

[7] E. C. Freuder and B. O’Sullivan. Generating tradeoffs for interative
constraint-based configuration. In Proceedings of CP-2001, pages 590–594,
Nov 2001.

[8] T. Frühwirth. Constraint handling rules. In Constraint Programming:
Basics and Trends, volume 910 of Lecture Notes in Computer Science
(LNCS), pages 90–107. Springer, 1995.

[9] P. Jeavons, D. Cohen, and M. Copper. A substitution operation for con-
straints. In Proceedings of the Second International Workshop on Prin-
ciples and Practice of Constraint Programming – CP-94, volume 874 of
LNCS, 1994.

[10] M. Moretti, F. Rossi, E.C. Freuder, C. Likitvivatanavong, and R. Wal-
lace. Explanations and optimisation in preference-based configurators. In
Proceedings of the ERCIM/CologNet Workshop on Constraint Solving and
Constraint Logic Programming, pages 58–71. To appear as a volume for
LNAI, Springer-Verlag, 2002.

[11] D. Sabin and R. Weigel. Product configuration frameworks – a survey.
IEEE Intelligent Systems and their applications, 13(4):42–49, July–August
1998. Special Issue on Configuration.

[12] V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

