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1. INTRODUCTION

Classical constraint satisfaction problems (CSPs) [Tsang 1993; Mackworth 1992]
are a very expressive and natural formalism to specify many kinds of real-life prob-
lems. However, they also have some limitations, mainly when they are used to
represent real-life scenarios where the knowledge is not completely available nor
crisp. In fact, in such situations, the ability of stating whether an instantiation of
values to variables is allowed or not is not enough or sometimes not even possible.
Recently, a proposal which extends classical CSPs in this direction has been devel-
oped [Bistarelli et al. 1995; 1997a], which is able to model many desired features,
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like fuzziness [Dubois et al. 1993], probability [Fargier and Lang 1993], uncertainty,
partiality [Freuder and Wallace 1992], hierarchy [Borning et al. 1989], and opti-
mization. This framework is based on the observation that a semiring (that is, a
domain plus two operations satisfying certain properties) is all what is needed to
describe many constraint satisfaction schemes. In fact, the domain of the semiring
provides the levels of consistency (which can be interpreted as cost, or degrees of
preference, or probabilities, or others), and the two operations define how to com-
bine constraints together. In particular, from one of the operations we can derive
a partial order ≤ among the elements of the semiring which allows us to compare
different elements: if a ≤ b then it means that b is better than or equal to a. This is
crucial in situations which involve some kind of optimization. Constraint problems
described according to this framework are called SCSP (for Semiring-based Con-
straint Satisfaction Problems) and will also be called in this paper, more simply,
soft constraint problems.

A similar approach, called valued CSPs, has been developed in Schiex et al. [1995].
Although being simpler in its use, because the levels of preference are associated to
constraints and not to tuples, it is less general than the SCSPs approach, because
it requires a total order on these levels [Bistarelli et al. 1999].

Constraint logic programming (CLP) [Jaffar and Lassez 1987] languages extend
logic programming (LP) by replacing term equalities with constraints and unifica-
tion with constraint solving. Programming in CLP means choosing a constraint
system for a specific class of constraints (for example, linear arithmetic constraints,
or finite domain constraints) and embedding it into a logic programming engine.
This approach is very flexible, since one can choose among many constraint sys-
tems without changing the overall programming language, and has shown to be
very successful in specifying and solving complex problems in terms of constraints
of various kind [Wallace 1996]. However, it can handle only classical constraint
solving. Thus it is natural to try to extend the CLP formalism in order to be able
to handle also soft constraints. In fact, this new programming paradigm, which we
will call SCLP (for Semiring-based CLP, or also Soft CLP), has the advantage of
treating in a uniform way, and with the same underlying machinery, all constraints
that can be seen as instances of the semiring-based approach: from optimization
to satisfaction problems, from fuzzy to probabilistic, prioritized, or uncertain con-
straints, and also multicriteria problems, without loosing the ability to treat and
solve classical hard constraints. This leads to a high-level declarative programming
formalism where real-life problems involving constraints of all these kinds can be
easily modeled and solved.

In passing from CLP to SCLP languages, we will replace classical constraints
with the more general SCSP constraints. By doing this, from the technical point of
view, we have to modify the notions of interpretation, model, model intersection,
and others, since we have to take into account the semiring operations and not the
usual CLP operations. For example, while CLP interpretations associate a truth
value (either true or false) to each ground atom, here ground atoms must be given
one of the elements of the semiring. Also, while in CLP the value associated to an
existentially quantified atom is the logical or among the truth values associated to
each of its instantiations, here we have to replace the or with another operation
which refers to one of the semiring operations.
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.
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After describing the syntax of SCLP programs, we will define three equivalent
semantics for such languages: model-theoretic, fix-point, and operational. These
semantics are conservative extensions of the corresponding ones for LP, since by
choosing a particular semiring (the one with just two elements, true and false,
and the logical and and or as the two semiring operations) we get exactly the LP
semantics. The extension is in some cases predictable, but it possesses some crucial
new features. For example, the presence of a partial order among the semiring
elements (and not a total order like it is in the LP/CLP case, where we just have
two comparable elements) brings some conceptual complexity in some aspects of
the semantics. In fact, in the operational semantics, there could be two refutations
for a goal which lead to different semiring elements which are not comparable in
the partial order. In this case, these elements have to be combined in order to
get the solution corresponding to the given goal, and their combination could be
not reachable by any derivation path in the search tree. This means that any
constructive way to get such a solution by visiting the search tree would have to
follow all the incomparable paths before being able to find the correct answer.
However, in practice classical branch and bound techniques can be adapted to this
framework to cut some useless branches.

We also show the equivalence of the three semantics. In particular, given the set
of all refutations starting from a given goal, we prove that it is possible to derive
the declarative meaning of both the existential closure of the goal and its universal
closure.

We also investigate the decidability of the semantics of SCLP programs, obtaining
an interesting semidecidability result: if a goal has a semiring value greater than,
or greater than or equal to, a certain value in the semiring, then we can discover
this in finite time. Moreover, for SCLP programs without functions, the problem
is completely decidable: the semantics of a goal can be computed in finite and
bounded time. In fact, in this case we can consider only a finite number of finite-
and bounded-length refutations (see Section 8): infinite refutations do not bring
more information due to the properties of the semiring operations. Notice that the
absence of functions is obviously a restriction; however, not all sources of infiniteness
are taken away, since nothing is said about the semiring, which could still be infinite.

The paper is organized as follows. Section 2 recalls the main definitions and
properties about semiring-based CSPs; then Section 3 defines the syntax of SCLP
programs. Afterward, Sections 4, 5, and 6 provide SCLP programs with a model-
theoretic, a fix-point, and an operational semantics, respectively. Then, Section
7 presents a semidecidability result for SCLP programs, and Section 8 adds some
more decidability results that hold for programs without functions. Finally, Section
9 discusses the relationship with related work, and Section 10 concludes the paper
summarizing its contributions and hinting at some possible lines for future work.

A shorter version of this paper, where the operational semantics was restricted
to ground goals only, programs could not contain functions, and there was no de-
cidability result (neither for SCLP programs nor for function-free SCLP programs),
has appeared in Bistarelli et al. [1997b].
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2. SEMIRING-BASED CONSTRAINTS

Here we give the basic notions about constraint solving over semirings, introduced
in Bistarelli et al. [1995; 1997a].

Definition 2.1 (Semiring). A semiring is a tuple 〈A,+,×,0,1〉 such that

—A is a set and 0,1 ∈ A;
—+, called the additive operation, is a closed (i.e., a,b ∈ A implies a + b ∈ A),

commutative (i.e., a + b = b + a) and associative (i.e., a + (b + c) = (a + b) + c)
operation such that 0 is its unit element (i.e., a + 0 = a = 0 + a);

—×, called the multiplicative operation, is a closed and associative operation such
that 1 is its unit element and 0 is its absorbing element (i.e., a×0 = 0 = 0×a);

—× distributes over + (i.e., a× (b + c) = (a× b) + (a× c)).

We recall that the difference between semirings and rings is that semirings do
not have the inverse over the additive operation. That is, in a ring, for any element
a, there exists an element −a such that a+ (−a) = (−a) + a = 0.

Semirings are standard and well-known structures. However, to deal with semiring-
based constraints we need some more properties, leading to structures that we call
c-semirings (again defined in [1995; 1997a]), where the c stands for constraint-based.

Definition 2.2 (C-Semiring). A c-semiring is a semiring 〈A,+,×,0,1〉 such that

—+ is idempotent (i.e., a ∈ A implies a + a = a);
—× is commutative;
—1 is the absorbing element of +.

Intuitively, the idempotence of + is needed to get a partial order over the elements
of the semiring (otherwise we would not have reflexivity); the commutativity of ×
allows us to consider sets of constraints (instead of ordered tuples); and the fact
that 1 is the absorbing element of + makes the element 1 the maximum element
of the partial order. This is useful for our treatment, since it gives us an upper
bound to all the preference levels. We recall, in fact, that the elements of the chosen
semiring can be interpreted in many ways: costs, levels of preference, uncertainties,
probabilities, etc.

The following is a list of properties about c-semirings which will be used in this
paper. Their proof can be found in Bistarelli et al. [1997a].

—Given any c-semiring S = 〈A,+,×,0,1〉, the relation≤S overA such that a ≤S b
iff a + b = b is a partial order. The intuitive meaning of this partial order is to
state when an element is better than another one: if a ≤S b then we mean that
b is better than a.

—Since 0 is the unit element of the additive operation, it is the minimum element
of the ordering. Thus, for any a ∈ A, we have 0 ≤S a.

—Both the additive and the multiplicative operation are monotone on the ordering
≤S.

—Since 1 is also the absorbing element of the additive operation, then a ≤S 1 for
all a. Thus 1 is the maximum element of the partial ordering. This implies that
the × operation is intensive, that is, that a×b ≤S a. This means that combining
more constraints leads to a worse (w.r.t. the ≤S ordering) result.
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—Given a c-semiring S = 〈A,+,×,0,1〉, and its partial order ≤S , 〈A,≤S〉 is a
complete lattice.1 Moreover, for any a,b ∈ A, we have a ∨ b = a + b, where ∨
is the lub operation of the lattice.

—Given a c-semiring S = 〈A,+,×,0,1〉, consider the corresponding lattice 〈A,≤S〉.
If × is idempotent, then we have that:
(1) + distributes over ×;
(2) × = ∧, where ∧ is the glb operation of the lattice;
(3) 〈A,≤S〉 is a distributive lattice.

The last of the above properties might suggest to base our approach over dis-
tributive lattices instead of semirings. However, by using semirings we have the
two operations, + and ×, that are fundamental in treating constraints. Instead, by
using lattices, we would have the least upper bound and the greatest lower bound:
while the least upper bound always corresponds to +, the greatest lower bound
corresponds to × only when × is idempotent. Thus by using lattices we could not
have treated the cases with nonidempotent multiplicative operators.

Definition 2.3 (SCSPs). Given a c-semiring S = 〈A,+,×,0,1〉 and a finite do-
main D, a constraint over such a c-semiring is characterized by a set of k variables
and a function from Dk to A. A semiring-based constraint problem (SCSP) is a set
of such constraints.

Thus, each constraint associates an element of the semiring with each tuple of
values of D for the variables involved in the constraint.

It is interesting to note that classical constraints, as defined for example in Tsang
[1993] and Mackworth [1992], are just semiring-based constraints where the semiring
has just two values: true and false, and the two operations are logical and and logical
or. That is, the semiring is SCSP = 〈{true, false},∨,∧, false, true〉. This means
that a classical constraint is either satisfied (by the tuples whose associated semiring
element is true) or violated (by the tuples whose associated semiring value is false),
and that solving a classical constraint problem means satisfying all constraints (via
the multiplicative operation, in this case the logical and). The additive operation
(in this case logical or) is used when projecting a constraint set over a subset of the
variables; in fact, in classical constraints this means that at least one (thus the use
of the logical or operation) of the tuple extensions (from the subset of variables to
all involved variables) satisfies the constraint set.

Fuzzy constraints [Dubois et al. 1993; Schiex et al. 1995] can instead be modeled
in the SCSP framework by choosing the c-semiring: SFCSP = 〈[0, 1],max,min, 0, 1〉.
In this case each tuple of values gets a value between 0 and 1; constraints are com-
bined via the min operator, and are compared via the max operator.

3. SYNTAX OF SCLP PROGRAMS

For readers familiar with Constraint Logic Programming (CLP) programs, we can
say that SCLP(S) programs (also written SCLP when the semiring is obvious or
not important) are just CLP programs [Jaffar and Lassez 1987] where constraints
are defined over a certain c-semiring S = 〈A,+,×,0,1〉.

1Actually, for this result to hold we must assume that there exists the sum of an infinite number
of elements.
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As usual, a program is a set of clauses. Each clause is composed by a head and
a body. The head is just an atom, and the body is either a collection of atoms, or a
value of the semiring, or a special symbol (2) to denote that it is empty. Clauses
where the body is empty or it is just a semiring element are called facts and define
predicates which represent constraints. When the body is empty, we interpret it as
having the best semiring element (that is, 1).

Atoms are n-ary predicate symbols followed by a tuple of n terms. Each term
is either a constant or a variable or an n-ary function symbol followed by n terms.
Ground terms are terms without variables. Finally, a goal is a collection of atoms.

The BNF for this syntax follows.

P :: CL | CL,P
CL :: H : −B
H :: AT where AT is the category of atoms
LAT :: 2 | LAT ′
LAT ′ :: AT | AT,LAT ′
B :: LAT | a where a ∈ A
G :: : −LAT

As an example, consider the following SCLP(S) program where the semiring is
S = 〈[0, 1],max,min, 0, 1〉. We recall that this is the fuzzy semiring, where tuples
of values are given values between 0 and 1, and constraints are combined via the
min operator and compared via the max operator. Note that the ordering ≤S in
this semiring coincides with the ≤ ordering over the reals in [0, 1].

Our example is a generalization of the usual n-queens problem, which can be
found for example in van Hentenryck [1989]. The classical formulation requires
that n queens are placed on a n × n chessboard in such a way that they do not
attack each other. In our formulation, we allow also attacking queens, but we give a
higher preference to solutions where queens attacking each other are farther apart.
Thus, if there are solutions where no queens attack each other, these solutions
will remain the best ones. But there are also other solutions, and among these
additional solutions the best ones are those where the queens attacking each other
are as far apart as possible.

We assume here that the reader is familiar at least with the logic programming
[Lloyd 1987] concepts and notation.

myqueens([],N).
myqueens([X|Y],N) :-

noattack(X,Y,N), myqueens(Y,N).
noattack(X,Xs,N) :-

noattack(X,Xs,N,1).
noattack(X,[],N,Nb).
noattack(X,[Y|Ys],N,Nb) :-

row(X,Y,N,Nb), diag1(X,Y,N,Nb), diag2(X,Y,N,Nb),
noattack(X,Ys,N,Nb+1).

row(X,X,N,Nb) :- Nb/N.
row(X,Y,N,Nb) :- different(X,Y).
diag1(X,X+Nb,N,Nb) :- Nb/N.
diag1(X,Y,N,Nb) :- different(Y,X+Nb).

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.
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diag2(X,X-Nb,N,Nb) :- Nb/N.
diag2(X,Y,N,Nb) :- different(Y,X-Nb).

In this program, the n queens are represented by a list of n variables, say
[X1,...,Xn], where variable Xi represents the queen in column i, and its value
represents the row index where this queen is located. This is one of the usual for-
mulations of the n-queens problem, and it is worth to notice, that by adopting this
formulation, we assume that different queens are in different columns.

The first predicate, myqueens/2, traverses the whole list of n variables and sets
the constraints between any pair of queen, by using the predicate noattack/4,
which sets the constraints between any queen and all the queens in subsequent
columns. The actual constraints are set by predicates row/4, diag1/4, and diag2/4.
In the classical (hard) formulation, these predicates basically say that different
queens cannot stay in the same row, nor in the same diagonal. In our case, these
constraints are made soft by accepting also situations where different queens are on
the same row or diagonal. For example, for the row constraint, we give the semiring
value Nb/N to two queens in the same row, where Nb is the distance between the
two queens (that is, the number of columns between them) and where N is the
total number of columns. This means that the farther apart the two queens are,
the higher this value will be. The same reasoning holds also for the two diagonals,
except that the presence of both queens X and Y on the same diagonal corresponds
to having Y = X +Nb or Y = X −Nb.

Notice that each solution of this generalized n-queens problem has a semiring
value which is obtained by minimizing the semiring values of all its constraints. This
comes from the choice of the fuzzy semiring, where the multiplicative operation is
the min. Therefore, if a solution contains three pairs of attacking queens, each of
such pairs will have a semiring value given by one of the clauses defining predicates
row/4, diag1/4, or diag2/4 (proportional to the distance between the two queens),
and then the value of this solution will be the minimum among such three values.
Different solutions are then ordered using the other semiring operation, which in
this case is the max. Note that this same program can be used also with a different
semiring, obtaining a different way to compute a solution and a different ordering.
For example, we could have chosen the semiring {R ∪+∞,min,+,+∞, 0}, where
the value of each solution would have been obtained by summing the values of each
attacking pair, and solutions would have been compared using the min operator.

To use this program over a specific value for N , we need to add some clauses to
set the domain for the constraint variables (from 1 to N) and to define predicate
different/2. For example, for N = 5, we have to write the following clauses:

fivequeens([X1,X2,X3,X4,X5]) :-
domain5(X1), domain5(X2), domain5(X3), domain5(X4), domain5(X5),
myqueens([X1,X2,X3,X4,X5],5).

domain5(a) :- 1.
(for all a ∈ {1, . . . , 5})

different(a,b) :- 1.
(for all a, b ∈ {1, . . . , 5} such that a 6= b)

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.
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We now anticipate the behavior of this SCLP program, which obeys to the se-
mantic development of the future sections.

—Given the goal :- fivequeens(L)., the program will instantiate L to be a list
of 5 values, indicating the row positions of the 5 queens. Since there are solutions
where queens do not attack each other, the solution returned by the program will
be one of these, with semiring value 1.

—Given the goal :- fivequeens([1,3,X3,X4,X5])., the program will return a
position for each queen such that the first queen is in row 1 and the second
one in row 3. Given these additional constraints (i.e., the positions of the first
two queens), it is possible that all solutions will have some attacking pairs of
queens. Then, among these possible solutions, the program will return one with
the highest level of preference, which means that the attacking queens are as far
apart as possible.

—Assume to delete one or more of the facts defining predicate domain5. Then, if
we give the goal :- fivequeens(L)., it means that we have five queens (thus
five columns) but a smaller number of domain elements (thus rows). Even in
this case, it is possible that all solutions will have some attacking pairs of queens.
Thus the program will return one where the attacking queens are as far apart as
possible.

While this example of an SCLP program uses semiring values to be able to find
the best quasi-solutions in an otherwise overconstrained problem, other examples
exploit the power of the chosen semiring to express features which are intrinsic to
the considered problem. Consider the problem that can arise when a client in a
restaurant wants to select items from the menu in a way that their preferences
over the combinations of drinks and dishes are satisfied in the best way. In this
example, each combination (for example, beer and pizza, or white wine and fish)
is associated to a level of preference, according to the taste of the client. Then,
solving the problem means finding the menu with the highest level of preference.
As in the previous example, here the semiring that is used is the fuzzy one, but its
role is definitely different. This menu problem is one of those that have been used
to show the expressive power of the clp(fd,S) system [Georget and Codognet 1998],
a very general implementation of SCLP programming.

Notice, that by just changing the semiring, but maintaining the same program
structure of the menu example, we could model rather different situations. Consider
for example the situation in which a conference organizer has to decide the menu
for the conference dinner, trying to satisfy the participants as much as possible. Of
course the organizer cannot ask for their preferences, but can reason with proba-
bilities. Therefore, they can associate, to each combination of drink and dish, the
estimated probability that it will please the conference attendees. Then, solving
the problem means finding the menu which has the highest probability to please the
participants. To model this situation, it is enough to keep the same program above
(modulo the new semiring values), but choose the semiring 〈[0, 1],max,×, 0, 1〉,
which can represent probabilities combined via × (assuming their independence)
and compared via the max operator.
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4. MODEL-THEORETIC SEMANTICS

In this section we will generalize the usual development of the model-theoretic
semantics in logic programming [Lloyd 1987] to be able to deal correctly with semi-
ring values. The main generalization will involve the assignment of semiring values
to atoms and formulas, instead of truth values. As usual, we will just consider
Herbrand interpretations in the following, which however we will call just interpre-
tations for sake of conciseness.

Definition 4.1 (Preinterpretation). A preinterpretation maps each ground term
in a program into a chosen domain. More precisely, it consists of a domain D plus
a mapping from each constant to an element of D and, for each n-ary function, a
mapping from Dn to D.

Notice that the domain D of the preinterpretations contains the domain of the
constraints, as defined in Definition 2.3.

Definition 4.2 (Interpretation). An interpretation I is a preinterpretation plus
a function which takes a predicate and an instantiation of its arguments (that is, a
ground atom), and returns an element of the semiring:

I :
⋃
n

(Pn → (Dn → A)),

where Pn is the set of n-ary predicates.

This notion of interpretation can now be extended and used to associate elements
of the semiring also to formulas which are more complex than ground atoms. In
the following, this extension of an interpretation I will be called an interpretation
and denoted by I as well, since the extension is uniquely determined. When we
will want to consider the restriction of an interpretation I to ground atoms we will
sometimes write GA(I).

—The value associated to a formula of the form F = ∃x.F ′(x) is computed by
considering the lub of the values associated to all ground formulas F ′(x/d), where
d is any domain element. That is, I(F ) = lub{I(F ′(d)), for all d ∈ D}. Formulas
of this kind occur in SCLP languages, since variables appearing in the body of
a clause but not in its head are considered to be existentially quantified. For
example, in the special case of logic programming the clause p(a) :- q(X,a) is
just a shorthand for the formula p(a)← ∃x.q(x, a).

—The value associated to a formula of the form F = ∀x.F ′(x) is computed by
considering the greatest lower bound (glb) of the values associated to all the
ground formulas F ′(x/d), where d is any domain element. That is, I(F ) =
glb{I(F ′(d)),for all d ∈ D}. Formulas of this kind occur when a variable appears
in the head of a clause. In fact, for example, in logic programming, a clause like
p(X) :- q(X,a) is a shorthand for the formula ∀x.(p(x)← q(x, a)).

—The value associated to a conjunction of atomic formulas of the form (A,B) is the
semiring product of the values associated to A and B: I(A,B) = I(A) × I(B).
Such formulas appear in the body of the clauses, when the body contains more
than one atom.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.
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—For any semiring element a, I(a) = a. Such elements appear in the body of the
facts.

Note that the meaning associated to formulas by function I coincides with the
usual logic programming interpretation [Lloyd 1987] when considering constraints
over the semiring SCSP = 〈{true, false},∨,∧, false, true〉. In fact, in this case
the ordering ≤S is defined by false ≤S true, the lub operation of the lattice
〈{true, false},≤S〉 is ∨, and the glb is ∧. Thus, for example, I(∃x.A(x)) =
lub{I(A(d)), for all d ∈ D} = ∨{I(A(d)), for all d ∈ D}. Thus it is enough
that one of the A(d) is assigned the value true to have that the value associated to
the whole formula ∃x.A(x) is true. Note also that in this special instance the lub
and glb of the lattice coincide with the two semiring operations, but this is not true
in general for the multiplicative operation (see Section 2).

Definition 4.3 (Clause Satisfaction). Given a clause of the form H : −B and an
interpretation I, we say that the clause is satisfied in I if and only if, for any ground
instantiation of H , say Hθ, we have that I(Hθ) ≥S I(∃Bθ).

Note that the existential quantification over the body Bθ is needed, since there
may be variables in B which do not appear in H . Thus Bθ could be not ground.
This definition of clause satisfiability is consistent with the usual treatment of
clauses in logic programming, where a clause is considered to be satisfied if the body
logically implies the head, and by noting that logical implication in the semiring
SCSP coincides with the ordering ≤SCSP .

Our Running Example. We will use as our running example in this paper the
following program, which is not as expressive as the program in the previous section
but is simple enough to be analyzed in detail. This is an SCLP(S) program over
the semiring S = 〈N ∪ {+∞},min,+,+∞, 0〉, where N is the set of nonnegative
integers. This semiring allows us to model constraint optimization problems where
each tuple of values is assigned an integer, to be interpreted as its cost, constraints
are combined by summing their costs, and are compared by using the min operator.
Note that the ordering ≤S in this semiring coincides with the ≥ ordering over
integers.

s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).
q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

In this program, the constraints are represented by predicates t and r. The
intuitive meaning of a semiring value like 3 associated to the atom r(a) is that r(a)
costs 3 units. Thus the set N ∪ {+∞} contains all possible costs, and the choice of
the two operations min and + implies that we intend to minimize the sum of the
costs. This gives us the possibility to select the atom instantiation which gives the
minimal cost overall.

As an example of clause satisfiability, consider the following four clauses:
ACM Transactions on Programming Languages and Systems, Vol. 23, No. 1, January 2001.



Semiring-Based Constraint Logic Programming · 11

—the clause p(a) :- q(b) is satisfied in I if I(p(a)) ≥S I(q(b));
—the clause p(X) :- q(X,a) is satisfied if ∀x.(I(p(x)) ≥S I(q(x, a)));
—the clause p(a) :- q(X,a) is satisfied if I(p(a)) ≥S I(∃x.q(x, a));
—the clause p(X) :- q(X,Y) is satisfied if ∀x.(I(p(x)) ≥S I(∃y.q(x, y))).

As in logic programming, an interpretation I is a model for a program P if all
clauses of P are satisfied in I. Given a program and all its models, one would like
to identify a unique single model as the representative one. In logic programming
this is done by considering the minimal model [Lloyd 1987], which is obtained by
intersecting all the models of the program. This works because models in logic
programming are assimilable to sets of ground atoms, those with associated value
true. Here we follow the same approach, but we have to generalize the notion of
intersection of two models, written as “◦”, as their greatest lower bound in the
lattice 〈A,≤S〉.

Definition 4.4 (Model Intersection). Consider an SCLP program over the c-semiring
〈A,+,×,0,1〉, the corresponding ordering ≤S and the lattice 〈A,≤S〉. For every
ground atomic formula F and a family of models {Mi}i∈I , we define ◦i∈IMi(F ) =
glbi∈I{Mi(F )}, where glb is the greatest lower bound over the lattice 〈A,≤S〉.

Theorem 4.1 (Model Intersection). Consider a family of models {Mi}i∈I
for a CLP(S,D) program P . Then ◦i∈IMi is a model for P as well.

Proof. Since Mi is a model for P for all i ∈ I, it must be, that for every clause
H : −B, and for all θ such that Hθ is ground, Mi(∃Bθ) ≤S Mi(Hθ). Consider now
the model M = ◦i∈IMi. We need to prove, for all H : −B, and for all θ such that
Hθ is ground, that M(∃Bθ) ≤S M(Hθ) holds also.

Without loss of generality, assume that B = A1, A2. Thus, for all i ∈ I,
Mi(∃Bθ) = lub{Mi(Bθθ′), for all θ′ such that Bθθ′ is ground} = lub{Mi(A1θθ

′)×
Mi(A2θθ

′), for all θ′ such thatBθθ′ is ground}. Moreover,M(∃Bθ) = lub{M(Bθθ′),
for all θ′ such that Bθθ′ is ground} = lub{M(A1θθ

′) ×M(A2θθ
′), for all θ′ such

that Bθθ′ is ground}= lub{glbi∈I{Mi(A1θθ
′)}×glbi∈I{Mi(A2θθ

′)} for all θ′}. Also,
M(Hθ) = glbi∈I{Mi(Hθ)}.

Consider any model Mj with j ∈ I. Since glbi∈I{Mi(A1θθ
′)} ≤S Mj(A1θθ

′)
and glbi∈I{Mi(A2θθ

′)} ≤S Mj(A2θθ
′) by definition of glb, and recalling that × is

monotone, we have that M(∃Bθ) ≤S Mj(∃Bθ). By transitivity of ≤S, we thus get
M(∃Bθ) ≤S Mj(Hθ). Since M(Hθ) is the glb of all Mi(Hθ) for i ∈ I, and since
the glb of a set of elements is the greatest among the elements which are smaller
than all of them, we have that M(∃Bθ) ≤S M(Hθ).

It is easy to see that the operation of model intersection is associative, idempo-
tent, and commutative.

Definition 4.5 (Minimal Model). Given a program P and the set of all its mod-
els, its minimal model is obtained by intersecting all models: MP = ◦({M |M is a
model for P}). The model-theoretic semantics of a program P is its minimal model,
MP .

Consider our running example program P . The minimal model MP for such a
program must assign an integer to each formula, and when restricted to ground
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atoms it is the following function: MP (t(a)) = 2, MP (q(a)) = 2, MP (r(a)) = 3,
MP (p(a, c)) = 3, MP (p(a, b)) = 2, MP (s(a)) = min(2, 3) = 2. For each atom
different from the ones considered above, MP returns +∞. To explain why function
MP returns these values, we give some examples:

—Any model must assign to t(a) a semiring value smaller (that is, better) than 2,
because of the clause t(a) :- 2. Since MP is the minimal model, it must assign
to t(a) the glb (that is, the max) of all such values, that is, 2.

—The value assigned to p(a, c) must be smaller than that of r(a), which in turn
must be smaller than 3. Being in the minimal model, we have that the value of
r(a) is exactly 3, and the value of p(a, c) is again 3. The same reasoning holds
also for p(a, b), whose value is 2. Instead, p(a, v), for any v 6= b, c, gets the value
+∞, because a model can give any value to p(a, v), since there is no clause about
it, and thus the minimal model gives to it the glb ( that is, the max) of all values,
that is, the worst element of the semiring.

—For s(a), we know that every model must assign to it a value smaller than the
value assigned to ∃y.p(a, y). Now, for any model M , M(∃y.p(a, y)) is the lub
(that is, the min) of all the values assigned by M to p(a, v) for any v in the
domain. We know that p(a, b) has value 2, p(a, c) has value 3, and any p(a, v),
with v 6= b, c, has value +∞. Therefore the lub of all such values is 2. Thus any
model must assign to s(a) a value smaller than 2, and the minimal model MP

must give it value 2.

For the same program, it is also useful to notice which semiring value is assigned
to formulas like ∀y.p(a, y) by the function MP . In fact, this is one of the kinds of for-
mulas we will consider when studying the relationship between the operational and
the model-theoretic semantics, in Section 6. By definition, to get MP (∀y.p(a, y))
we must compute the glb of all the semiring values assigned by MP to the ground
atoms of the form p(a, v) where v is any element of the domain D. We know, by the
paragraph above, that MP (p(a, c)) = 3, MP (p(a, b)) = 2, and MP (p(a, v)) = +∞ if
v is different from both b and c. Thus the glb (that is, the max) of all these values
is +∞. Therefore MP (∀y.p(a, y)) = +∞.

5. FIX-POINT SEMANTICS

In order to describe the fix-point semantics, we need to define the operator TP
which extends the one used in logic programming [Lloyd 1987]. We will do that
by following the same approach as in the previous section. The resulting operator
maps interpretations into interpretations, that is, TP : ISP → ISP , where ISP is
the set of all interpretations for P .

Definition 5.1 (TP Operator). Given an interpretation I and a ground atom A,
assume that program P contains k clauses defining the predicate in A. Clause i is
of the form A : −Bi1, . . . , Bini . Then

TP (I)(A) =
∑k
i=1(

∏ni
j=1 I(Bij)).

This function coincides with the usual immediate consequence operator of logic
programming (see Lloyd [1987]) when considering the semiring SCSP .
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Consider now an ordering � among interpretations which respects the semiring
ordering.

Definition 5.2 (Partial Order of Interpretations). Given a program P and the
set of all its interpretations ISP , we define the structure 〈ISP ,�〉, where for any
I1, I2 ∈ ISP , I1 � I2 if I1(A) ≤S I2(A) for any ground atom A.

It is easy to see that 〈ISP ,�〉 is a complete partial order, whose greatest lower
bound coincides with the glb operation in the lattice A (suitable extended to inter-
pretations). It is also possible to prove that function TP is monotone and continuous
over the complete partial order 〈ISP ,�〉.

By using these properties, classical results on partial orders [Tarski 1955] allow
us to conclude the following:

—TP has a least fix-point, lfp(TP ), which coincides with glb({I | TP (I) � I});
—the least fix-point of TP can be obtained by computing TP ↑ ω. This means start-

ing the application of TP from the bottom of the partial order of interpretations,
called I0, and then repeatedly applying TP until a fix-point.

Consider again our running example program. We recall in this specific case that
the semiring is S = 〈N ∪ {+∞},min,+,+∞, 0〉 and D = {a, b, c}. Thus function
TP is

TP (I)(A) = min{
∑n1
j=1 I(B1

j ), . . . ,
∑nk

j=1 I(Bkj )}.

In this semiring the bottom interpretation I0 is the interpretation which maps
each semiring element into itself and each ground atom into the bottom of the
lattice associated to the semiring, that is, +∞. Note that we slightly abused the
notation, since interpretations are functions whose domain contains only ground
atoms (see Section 4), while here we also included semiring elements. This simpli-
fies the definition of I0; however, it is possible to obtain the same result with a more
complex definition of I0 which satisfies the definition of interpretation. Given I0,
we obtain I1 by applying function TP above. For example, I1(r(a)) = +3. Instead,
I1(p(a, c)) = +∞, and I2(p(a, c)) = I1(r(a)) = +3. The following table gives the
value associated by the interpretation Ii to each ground atom. Some of the atoms2

are not listed because each interpretation Ii gives them value +∞. All interpreta-
tion Ii with i > 4 coincide with I4; thus I4 is the fix-point of TP .

I1 I2 I3 I4
t(a) 2 2 2 2
r(a) 3 3 3 3
q(a) +∞ 2 2 2
p(a,c) +∞ 3 3 3
p(a,b) +∞ +∞ 2 2
s(a) +∞ +∞ 3 2
s(b) +∞ +∞ +∞ +∞
s(c) +∞ +∞ +∞ +∞

2Actually, an infinite number of them.
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The most interesting case is the computation of the value associated to s(a). In
fact, I3(s(a)) = min{I2(p(a, a)), I2(p(a, b)), I2(p(a, c))} = min{+∞, +∞, 3} = 3.
Instead, I4(s(a)) = min{I3(p(a, a)), I3(p(a, b)), I3(p(a, c))} = min{+∞, 2, 3} =
2. Note that the clause s(X) :- p(X,Y) is considered equivalent to all its instan-
tiations. In particular, when x = a, we have the three clauses s(a) :- p(a,a),
s(a) :- p(a,b), and s(a) :- p(a,c). These are the clauses to consider when
computing I(s(a)).

We will now prove that the least fix-point of function TP coincides with the
minimal model of program P , when restricted to ground atoms. To do that, we
need an intermediate result which shows that the ground models of a given program
P are the solutions of the equation TP (I) � I.

Theorem 5.1 (Models and TP ). Given any interpretation I for a program P ,
I is a ground model for P if and only if TP (I) � I.

Proof. Consider any ground atom H and assume there are two clauses with H
as their head: H : −B1 and H : −B2. By definition of model, each clause H : −Bi
is satisfied in I. Thus I(H) ≥S I(∃Bi). Now, function TP assigns to H the sum
of the values assigned by I to ∃B1 and ∃B2; thus TP (I)(H) = I(∃B1) + I(∃B2).
But the + operation coincides with the lub of the semiring; thus any value of the
semiring which is greater than both I(∃B1) and I(∃B2) is also greater than their
sum. Therefore TP (I)(H) ≤ I(H). A similar reasoning works also for proving that
if TP (I)(H) ≤ I(H) for any ground atom H then I is a model.

Theorem 5.2 (Ground Models and Fix-Point Semantics). Given an
SCLP program P , we have that GA(MP ) = lfp(TP ).3

Proof. By definition of ground minimal model, GA(MP ) = glb({I | I is a model
for P}). By the previous theorem, we get GA(MP ) = glb({I | TP (I) � I}). By the
classical results cited above [Tarski 1955], this coincides with the least fix-point of
TP .

Notice that the result of Theorem 4.1 (that is, the glb of two models is a model)
can be proven also by using Theorem 5.1 (which states that a model is a prefixpoint
of TP ) and by easily showing that the glb of two prefixpoints of a monotone operator
(as TP is) is a prefixpoint as well.

6. PROOF-THEORETIC SEMANTICS

We will define here a proof-theoretic semantics in the style of CLP [Jaffar and
Lassez 1987]. However, we first rewrite the program into a form which allows us to
make the semantics treatment more uniform and simpler.

First, we rewrite each clause so that the head is an atom whose arguments are
different variables. This means that we must explicitly specify the substitution
that was written in the head, by inserting it in the body. That is, given a clause
of the form p(t1, . . . , tn) : −B, we transform it into p(x1, . . . , xn) : −〈B, θ〉 where
θ = {x1/t1, . . . , xn/tn}. Thus bodies now have the following syntax: B1 :: 〈B, θ〉.
We recall that B can be either a collection of atoms or a value of the semiring. To

3We recall, that for any interpretation I, GA(I) is the restriction of I to ground atoms.
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give a uniform representation to bodies, we can define them as triples containing
a collection of atoms (possibly empty), a substitution, and a value of the semiring
(possibly, 1). Thus bodies are now of the form B2 :: 〈LAT, θ, a〉. If we have a
body belonging to the syntactic category B1 of the form 〈a, θ〉, we get 〈2, θ, a〉.
If instead we have 〈C, θ〉, where C is a collection of atoms, we get 〈C, θ,1〉. Thus
clauses have now the syntax CL1 :: H : −B2.

Initial goals need to be transformed as well: given a goal G = (: −C), where C
is a collection of atoms, we get the goal G′ = (: −〈C, ε,1〉). The reason why we
write the value 1 of the semiring is that this element is the unit element w.r.t. the
operation we want to perform on it, that is, constraint combination.

In summary, given a SCLP program, we get a program in an intermediate lan-
guage, whose syntax is as follows:

B2 :: 〈LAT, θ, a〉
CL1 :: H : −B2
P1 :: CL1 | CL1, P1
G1 :: B2

Consider again our running example. The transformed program is then

s(X) :- 〈 p(X,Y), ε, 0〉.
p(X,Y) :- 〈 q(a), {X=a,Y=b}, 0〉.
p(X,Y) :- 〈 r(a), {X=a,Y=c}, 0〉.
q(X) :- 〈 t(a), {X=a}, 0〉.
t(X) :- 〈2, {X=a}, 2 〉.
r(X) :- 〈2, {X=a}, 3 〉.

Once we have transformed the given SCLP program into a program in the syntax
just given, we can apply the following semantic rule. This rule defines the transitions
of a nondeterministic transition system whose states are goals (according to the
syntactic category G1).

C = A,Cr
Cl = (A′ : −〈C1, θ1, a1〉) is a variant of a clause or a fact

θ′ = mgu(Aθ,A′θ1)

〈C, θ, a〉 Cl,θ
′

−→ 〈(C1, Cr), (θ ◦ θ′ ◦ θ1), a× a1〉

If the current goal contains an atom which unifies with the head of a clause, then
we can replace that atom with the body of the considered clause, performing a step
similar to the resolution step in CLP. The main difference here is that we must
update the third element of the goal, that is, the semiring value associated to the
goal: if before the transition this value is a and the transition uses a clause whose
body has value a1, then the value associated to the new goal is a× a1. The reason
for using the × operation of the semiring is that this is exactly the operation used
when accumulating constraints in the SCSP framework.

Notice that we must use a variant of the clause involved in the rule, because
we need fresh variables to avoid confusion between the variables of the clause and
those of the current goal.
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Definition 6.1 (Derivations and Refutations). A derivation is a finite or infinite
sequence of applications of the above rule. A refutation is a finite derivation whose
final goal is of the form 〈2, θ, a〉.

Note that in this paper we give a simplified view of the solver for soft constraints,
where the solver is implemented by some clauses in the program (see the last two
clauses of our running example). These clauses have a special shape, since they are
ground facts. Also, they are in a finite number, since our constraints have finite
domains. Therefore, when executing such a program, the soft constraints (like t
and r in our example) are solved using these clauses, and thus they do not appear
in the resulting final goal. This allows us to simplify the usual CLP operational
semantic rules (like those in Jaffar and Maher [1994]), so that, instead of having
computation states made by a current goal and a store, we can just have a goal, a
substitution for the variables (this would be in the store in CLP), and a semiring
value. Therefore, our operational semantic rule and states are consistent with those
of CLP, in the case that we have (1) finite domain variables in the constraints, (2)
solver specified by program clauses (this again can be done in this straightforward
way only because we have finite domains), and (3) soft constraints. While the first
two points are special cases, the third is an extension of CLP. Notice also that we
can have just one rewriting rule (instead of several rules, as in Jaffar and Maher
[1994]) because we first rewrite the program into a syntax which makes clauses and
facts uniform. A last point to notice is that we do not test at each step if the
constraint store is consistent (that is, if the semiring value collected is greater than
0) because the notion of inconsistency is not so strong in soft constraints, and we
perform this check only at the end.

Definition 6.2 (Compact Refutation Set). Given an SCLP program P , its com-
pact refutation set S(P ) is defined as follows:

S(P ) = 〈C, θ|var(C)
, a〉 | 〈C, ε,1〉 →∗ 〈2, θ, a〉}.

S(P ) contains all triples representing all refutations for the given program. Note
that we only record the part of θ which involves the variables in C. Notice also that
a triple 〈C, θ, a〉 may represent more than one refutation, but all these refutations
start from the same goal C, build the same substitution θ, and generate the same
semiring value a. Thus we do not mind making them indistinguishable.

A property of the set S(P ) is that for any triple 〈C, θ, a〉 in this set, there is also
the triple 〈Cθ, ε, a〉. Notice that this is a generalized version of the lifting lemma
of Lloyd [1987].

Theorem 6.1 (Goal Specialization). Given an SCLP program P and the
corresponding set S(P ), let us consider any triple 〈C, θ, a〉 in S(P ). Then also the
triple 〈Cθ, ε, a〉 is in S(P ).

Proof. Triple 〈C, θ, a〉 says that there is a refutation which starts from C, builds
θ, and obtains the semiring value a. If we start from Cθ, we can construct a
refutation which follows exactly the same steps as the previous one, and thus obtains
the same semiring value, since θ is compatible with all these steps.

Our goal is now to study the correspondence between the operational semantics
of a goal and its model-theoretic meaning. In particular, given a goal C, we will
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define the operational semantics of C in two different ways, to model the meaning
of both ∀C and ∃C.

6.1 Universal Closure

Among all refutations represented by the triples in S(P ), there are some which
have the same first element, say C, and which build the empty substitution, ε,
during the computation. These refutations have to be merged by the operational
semantics, since they represent different alternative branches for goal C which lead
to possibly different semiring values and that hold for any value of the variables of
C. Thus they naturally correspond to the intuitive meaning of ∀C.

When merging such elements of S(P ), the respective semiring values must be
merged as well. This is done by performing the + operation. Actually, we should
also merge those refutations which start from different goals, say C and C ′, such
that C ′ is more instantiated than C, i.e., such that there exists a substitution θ
such that C′ = Cθ. In fact, the semiring value obtained from C holds also for
all goals which are more instantiated than C. For example, if we have the triples
〈p(x), ε,v1〉 and 〈p(a), ε,v2〉, the first refutation says, that for all values of x, p(x)
gets the semiring value v1. Thus also p(a) will get this value. On the other hand,
the other refutation says that p(a) gets the value v2. Therefore the value to be
assigned to p(a) is the lub between v1 and v2, which is v1 + v2 by definition of
+. However, it is possible to show, that if there is the triple 〈C, ε,v〉 in S(P ), then
there is also the triple 〈Cθ, ε,v〉 for any θ. In other words, if we have a refutation
starting from C, building the empty substitution and obtaining the semiring value
v, then there is also a refutation starting from any goal more instantiated than C
(that is, Cθ), which follows the same steps as the refutation for C and thus obtains
the same semiring value. Therefore, we just need to merge those refutations which
start from the same goal.

Theorem 6.2 (More about Goal Specializations). Given an SCLP pro-
gram P and the corresponding set S(P ), let us consider any triple 〈C, ε,a〉 in S(P ).
Then, for any θ, also the triple 〈Cθ, ε, a〉 is in S(P ).

Proof. The refutation represented by the triple 〈C, ε,a〉 does not bind any
variable present in C. By starting from a goal Cθ, which is more instantiated than
C, we can follow exactly the same steps as in the refutation for C. In fact, at each
step we can use the same clause as before, since we know that such a step did not
bind the variables in C.

Let us now define a function OS1P (for Operational Semantics), which, given
a goal, returns a value of the semiring by looking at all refutations for that goal
which build the empty substitution.

Definition 6.3 (Function OS1P ). Given an SCLP program P , function OS1P :
LAT → A, where LAT is the set of conjunctions of atoms and A is the semiring
set, is defined as follows: OS1P (C) =

∑
〈C,ε,a〉∈S(P ) a.

Note, that when there is no triple 〈C, ε,a〉 ∈ S(P ), function OS1P (C) returns the
unit element of the + operation, that is, 0. This is reasonable, since the absence of
such triples means that there is no refutation starting from C and builds the empty
substitution.
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Notice, that if OS1P (C) = a, there is not necessarily a refutation starting from
C and obtaining the semiring value a. In fact, as noted above, the value a may
have been obtained by combining several refutations, which may be incomparable
with respect to ≤S .

Let us now consider some examples of goal refutations and their operational
semantics via function OS1. By considering the goal 〈s(a), {ε}, 0〉 in our running
example, we get two refutations, which end respectively with the goals 〈2, {ε}, 2〉
and 〈2, {ε}, 3〉. Thus S(P ) contains the triples 〈s(a), {ε}, 2〉 and 〈s(a), {ε}, 3〉.
Theferore OS1P (s(a)) = min(2, 3) = 2. Instead, OS1P (s(b)) = +∞ (which is the
bottom of the semiring), since there is no refutation for 〈s(b), {ε}, 0〉. Consider now
the goal 〈s(x), ε, 0〉. In this case, we get two refutations with the same final goals as
above, and thus S(P ) contains the same elements as above. More precisely, S(P )
does not contain any triple of the form 〈s(x), ε, a〉, and therefore OS1P (s(x)) =
+∞.

A more complex example is related to the goal 〈p(a, y), {ε}, 0〉, which has two
refutations ending with the goals 〈2, {y = b}, 2〉 and 〈2, {y = c}, 3〉, which are
therefore represented in S(P ) by the triples 〈p(a, y), {y = b}, 2〉 and 〈p(a, y), {y =
c}, 3〉. Therefore, the operational semantics of p(a, y) is OS1P (p(a, y)) = +∞,
even if there are refutations starting from p(a, y) and obtaining a semiring value
smaller than +∞. Formally, this is due to the fact that such refutations all build
a substitution different from ε, and thus are not considered by function OS1P .
Intuitively, the fact that the operational semantics assigns to p(a, y) the worst
semiring value even if there are refutations which lead to better values can be
explained by considering that by only looking at the refutations, as the operational
semantics does, there will be other domain values, say d, for which p(a, d) does not
hold. We will come back to this issue in the following paragraph, when we will
formally compare the operational and the model-theoretic semantics. However, we
can already notice that this behavior leads to the same result (that is, the same
semiring value) we computed via the model-theoretic tools (that is, function MP )
at the end of Section 4 for the formula ∀y.p(a, y).

We now prove formally that in general the operational semantics of SCLP pro-
grams, as just defined via function OS1P , for each goal C, computes the same
semiring value as the model-theoretic semantics of ∀C, defined in Section 4, and
thus also as the fix-point semantics of Section 5 when applied to any ground in-
stantiation of C.

However, before stating and proving the main theorem it is useful to prove two
lemmas, which will be used in the proof of the theorem. The first lemma basically
proves that the operational semantics of a collection of ground atoms is the same
as the multiplication of the operational semantics of the single atoms, while the
second one uses the fact that we have an infinite domain, but a finite number of
domain elements in the program, to prove that the operational semantics of a goal
coincides with the glb of the operational semantics of all its ground instances.

Lemma 6.1 (Distribution). Given an SCLP program P , consider two collec-
tions of atoms C1 and C2. Then we have that OS1P (C1, C2) = OS1P (C1) ×
OS1P (C2).

Proof. By the definition of OS1P , we have that OS1P (C1) × OS1P (C2) =
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(
∑
〈C1,ε,a〉∈S(P ) a)× (

∑
〈C2,ε,b〉∈S(P ) b). Let us assume that we have n elements of

the form 〈C1, ε,a〉 and m elements of the form 〈C2, ε,b〉 in S′(P ). Therefore we
will consider the semiring values a1, . . . ,an and b1, . . . ,bm. Notice that n and m
may be infinite; however, since we work with complete lattices, the lub (+) and
glb are defined also in the infinite case. Thus we have OS1P (C1) × OS1P (C2) =
(
∑
i=1,...,n ai)× (

∑
j=1,...,m bj). Now, since × distributes over + (by the definition

of semiring), this can be rewritten as
∑

i=1,...,n,j=1,...,m(ai×bj). Consider now any
refutation for the goal (C1, C2) which does not instantiate any variable, and assume,
without loss of generality, that its selection strategy first “consumes” C1 and then
C2. Then, after C1 has been “consumed,” we have a goal of the form 〈C2, ε,ai〉.
Then the refutation continues by “consuming” C2, leading to a final goal of the
form 〈2, ε,ai × bj〉. Now, OS1P (C1, C2) just sums all the semiring values of all
such simple refutations; therefore we have that OS1P (C1, C2) =

∑
i,j(ai × bj),

which is the same as OS1P (C1)×OS1P (C2) for what we have said before.

Lemma 6.2 (Infinite Domain). Given an SCLP program P , consider any col-
lection of atoms C. Then OS1P (C) = glb{OS1P (Cθ), for all θ such that Cθ is
ground}.

Proof. Given a goal C, function OS1P returns the sum of all the semiring
values obtained by all those refutations of C which build the empty substitution.
Let us call E(C) the set of such refutations. Since Cθ is more instantiated than C,
then the refutations of Cθ will be able to use more clauses than those for C. In fact,
if the head of a clause is as instantiated as a subgoal of Cθ but more instantiated
than the corresponding subgoal of C, then a refutation of Cθ will be able to use it
without building a nonempty substitution, while any refutation of C using such a
clause will have to add a nonempty substitution to the substitution of the current
goal. Therefore we have that E(C) ⊆ E(Cθ), which, by definition of OS1P and
by the fact that the + operation is the lub, means that OS1P (C) ≤S OS1P (Cθ).
Now, this holds for any θ, but it is possible to show that for some θ we actually
have OS1P (C) = OS1P (Cθ). To do that, it is enough to consider a θ which binds
all variables of C to domain elements not present in P . In this way, the refutations
of Cθ will not be able to use more clauses than those of C. Therefore, the glb of all
OS1P (Cθ) for all θ is actually equal to OS1P (C), since we know that OS1P (C) is
smaller than (or equal to) all elements OS1P (Cθ) and that it is actually equal to
one of them.

Theorem 6.3 (Operational Meaning of ∀C). Given an SCLP program P ,
consider a collection of atoms C. Then we have that MP (∀C) = OS1P (C).

Proof. If OS1P (C) = a, it means that S(P ) contains triples of the form
〈C, ε,ai〉, for i = 1, . . . , n, such that

∑
i=1,...,n ai = a. Again, we recall that n

may be infinite. However, we work with complete lattices, and thus both infinite
lub (that is, sum) and infinite glb are defined.

We will prove the statement of the theorem by induction on the length of the
longest of the refutations corresponding to such triples.

—Base Case: If all refutations 〈C, ε,ai〉 have length 1, it means that there are n
facts in the program of the form C′ : −〈2, θi, ai〉, where C′ contains only variables
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and C′θi is equally or less instantiated than C. In fact, if the head of such facts
would be more instantiated than C, then we would have a substitution different
from ε in the refutation.
By definition of model-theoretic semantics, MP (∀C) is the greatest lower bound
of the values given to each ground instantiation of C by function MP . Now,
consider any of such ground instantiations, say Cθ. Since C′θi is equally or less
instantiated than C, it is also equally or less instantiated than Cθ. Therefore
MP (Cθ) =

∑
i=1,...,n ai +

∑
j=1,...,m bj, where the semiring values bj are present

in other m facts whose head is less instantiated than Cθ but more instantiated
than C. Now we must compute the glb of all such MP (Cθ) for all θ. But it is
possible to see that there is a θ such that MP (Cθ) involves only the n facts with
semiring values ai: just choose a substitution, say θ′, which binds all variables
in C to domain elements not present in P . Therefore MP (Cθ′) =

∑
i=1,...,n ai.

This means that the glb of all MP (Cθ) is exactly MP (Cθ′), that is, a.
—Inductive Case: Let us assume that the statement of the theorem holds when

the longest of the refutations of the form 〈C, ε,ai〉 has length n. Let us now
consider a collection of atoms C such that the longest refutations for C have
length n + 1. We have two cases to consider: one occurs when C contains just
one atom, and the other one when C has two or more atoms.
—1st Case (One Atom): The reasoning we will use in this case is very similar

to that of the base case. To consider the refutation 〈A, ε, a〉, let us assume
to start from the goal 〈A, ε,1〉, where A is an atom. Consider now the set of
n clauses contained in the program P of the form A′ : −〈Bi, θi,0〉, for i =
1, . . . , n, where Bi is a collection of atoms and A′ contains only variables and
the same predicate symbol as A. To be used to expand our goal, it must be that
A′θi is equally or less instantiated than A. In fact, if the head of such clauses
would be more instantiated than A, then we would have a substitution different
from ε in the refutation. By definition of OS1P , we have that OS1P (A) =∑
i=1,...,nOS1P (Biθi).

By definition of model-theoretic semantics,MP (∀A) is the greatest lower bound
of the values given to each ground instantiation of A by function MP . Now,
consider any of such ground instantiations, say Aθ. Since A′θi is equally or less
instantiated than A, it is also equally or less instantiated than Aθ. Therefore
MP (Aθ) =

∑
i=1,...,n ai+

∑
j=1,...,m bj, where ai = MP (∀Biθi) for i = 1, . . . , n,

and bj = MP (∀Bjθj) for j = 1, . . . ,m, with A′ : −〈Bj , θj ,0〉, for j = 1, . . . ,m
other clauses where A′θj is more instantiated than A but less instantiated than
Aθ.
Now we must compute the glb of all such MP (Aθ) for all θ. But it is pos-
sible to see that there is a θ such that MP (Aθ) involves only the n clauses
with semiring values ai: just choose a substitution, say θ′, which binds all
variables in A to domain elements not present in P . Therefore MP (Aθ′) =∑
i=1,...,n ai = a. This means that the glb of all MP (Aθ) is exactly MP (Aθ′),

that is,
∑

i=1,...,nMP (∀Biθi). Now, by inductive hypothesis, this coincides
with

∑
i=1,...,nOS1P (Biθi), which is OS1P (A) as we stated before.

—2nd Case (Two or More Atoms): Let us assume that we start from
the goal 〈C, ε,1〉, and that C = A,C′. Then we have that: MP (∀C) =
{by definition of C }MP (∀(A,C′)) = {by definition of interpretation over a
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universally quantified formula}glbθ{MP ((A,C′)θ)} = glbθ{MP ((Aθ,C′θ)} =
{by definition of interpretation over a conjunction of formulas}glbθ{MP (Aθ)×
MP (C′θ)} = {by inductive hypothesis and by the assumption that C′ is not
empty}glbθ{OS1P (Aθ)×OS1P (C′θ)} = {by 6.1}glbθ{OS1P (Aθ,C′θ)} =glbθ
{OS1P ((A,C′)θ)} = {by 6.2}OS1P (A,C′) = {by definition of C}OS1P (C).

6.2 Existential Closure

Theorem 6.3 relates the operational semantics of a goal C to the model-theoretic
meaning of its universal quantification, that is, ∀C. We will now show also that
the declarative meaning of the existential quantification of C, that is, ∃C, can
be computed operationally. First we need to define a function OS2P (C) which
combines all the refutations for C by summing all the corresponding semiring values.

Definition 6.4 (Function OS2P ). Given an SCLP program P , function OS2P :
LAT → A, where LAT is the set of conjunctions of atoms and A is the semiring
set, is defined as follows: OS2P (C) =

∑
〈C,θ,a〉∈S(P ) a.

An intuitive explanation of why OS2P is defined this way is the following: since
we are interested in describing the operational meaning of ∃C, we do not care
which substitution is built during a refutation starting from C. Therefore we take
all refutations starting from C. Then, we choose the best among all such refutations
by using the + operator.

It is worth noting at this point that this definition of OS2P coincides with the
following one:

∑
〈Cθ,ε,a〉∈S(P ) a. First we need the following lemma.

Lemma 6.3. Given an SCLP program P and a conjunction of atoms C, we have,
that if 〈Cθ, ε, a〉 is in S(P ), then there exists θ′ such that 〈C, θ′, a〉, with θ′ ≤ θ is
in S(P ) as well.

Proof. If we start a refutation from C instead of Cθ, we can follow the same
steps as in refutation 〈Cθ, ε, a〉, because we have a more general goal. The only
difference is that we may need to build a substitution, say θ′, different from ε.
However, such a substitution will be compatible with θ, since we followed the same
steps. Moreover, θ′ cannot be more specific than θ; otherwise the refutation starting
from Cθ would have built a substitution different from ε.

Theorem 6.4. Given an SCLP program P and a conjunction of atoms C, we
have that

∑
〈C,θ,a〉∈S(P ) a =

∑
〈Cθ,ε,a〉∈S(P ) a.

Proof. We will prove this theorem by showing that the set S1 of semiring values
reached by refutations of the form 〈C, θ, a〉 coincides with the set S2 of values
reached by refutations of the form 〈Cθ, ε, a〉. In fact, if we show this, then, since +
is idempotent, the two sums coincide as well.

One direction of the proof has already been proven in Theorem 6.1: if 〈C, θ, a〉 is
a refutation, then 〈Cθ, ε, a〉 is a refutation as well. Therefore we have that S1 ⊆ S2.
Now we have to prove that S2 ⊆ S1. In general, it is not true that if 〈Cθ, ε, a〉 is a
refutation, then 〈C, θ, a〉 is a refutation as well. However, by Lemma 6.3, we have
that if 〈Cθ, ε, a〉 is a refutation then there exists θ′ such that 〈C, θ′, a〉, with θ′ ≤ θ,
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is a refutation as well. This is enough to prove that S2 ⊆ S1, since we are proving
the equality between sets of semiring values and not sets of refutations.

Another alternative way to define OS2P is by using the definition of OS1P , as
follows.

Theorem 6.5. Given an SCLP program P and a conjunction of atoms C, we
have that OS2P (C) =

∑
Cθ ground OS1P (Cθ).

Proof. The statement of the theorem comes from the definition of OS1P , the
associativity and idempotence of +, and Theorem 6.2.

Now we formally show that the result of the application of function OS2P over
any goal C is a semiring value which coincides with the model-theoretic meaning
of ∃C.

Theorem 6.6 (Operational Meaning of ∃C). Given an SCLP program P ,
consider a collection of atoms C. Then we have that MP (∃C) = OS2P (C).

Proof. By definition of interpretation, MP (∃C) = lub{MP (Cθ) for all θ such
that Cθ is ground} =

∑
Cθ groundMP (Cθ). Since Cθ is ground, Theorem 6.3 says

that MP (Cθ) = OS1P (Cθ). Therefore, we have that MP (∃C) =
∑

Cθ ground
OS1P (Cθ), which is exactly OS2P (C) by the Theorem 6.5.

7. A SEMIDECIDABILITY RESULT

In logic programming, looking for an answer of a given goal is a semidecidable
problem: if the goal is satisfiable, then a refutation for such a goal can be found in
finite time; but if the goal is not satisfiable, then there are cases in which we can
go on forever without detecting such an unsatisfiability.

We will now show that a similar semidecidability result holds also for SCLP
programs. More precisely, if the semantics of an SCLP goal is a semiring value
greater than (or greater than or equal to) a certain semiring value k, then we can
discover this in finite time.

The main idea, as in the logic programming case, is to visit the derivation tree of
the given goal in a breadth-first way. We recall that the derivation tree of a goal is
the tree whose root is the given goal, each node is a state in a derivation, and each
path from the root to a leaf represents a derivation for that goal. If we visit this
tree in a breadth-first way, it means that after k steps (that is, after examining k
levels) we have seen all refutations of length k or less, and the first k steps of all
derivations/refutations longer than k.

During this visit, we construct a sum of semiring values: starting from the 0 of
the semiring at the root level, when we are at level k we add to the current sum the
sum of all the semiring values associated to all refutations of length k. By the fact
that the sum always leads to better values, as we go on we get new values which
are better than or equal to the old ones.

Now, the crucial point is that given any semiring value representing a partial
sum, even though the values better than it are infinite (because a semiring can
be infinite), the number of times that this value can be improved is finite. Thus,
after examining at most a finite number of refutations, we will have computed the
semiring value of the goal.
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To formally prove this result, we will basically define an ordering among partial
sums, and we will show that such an ordering is well-founded. Any partial sum will
be represented by a suitable set of semiring values, obtained from the refutations
examined so far.

We first need to give some formal definitions.

Definition 7.1 (C-Products). Let C = {ci}i=1,...,k be a finite set of elements of a
semiring S. A (symbolic) product p =

∏
i=1,...,k c

ni
i is called a C-product, and its

value in S is denoted by [[p]].

Informally, a C-product represents the semiring value obtained by a refutation.
In fact, such a value is obtained by multiplying all the semiring values of the various
clauses used by the refutation. Such values belong to a specific set: the set of all
semiring values that appear in the given program, which we call C here. The
exponents in the product are needed because each semiring value in C may be used
several times during a refutation, and all these occurrences have to be considered,
since in general the multiplicative operation is not idempotent.

Definition 7.2 (Partial Order of C-Products). We define a partial ordering v on
C-products as

∏
i=1,...,k c

ni
i v

∏
i=1,...,k c

n′i
i iff ni ≥ n′i for all i = 1, . . . , k.

Given two C-products p and p′, if p v p′ it means that all the semiring values of
C have more (or the same number of) occurrences in p than in p′. Thus, the value
of p is worse than that of p′ in the semiring: multiplying more items leads to worse
results, by the intensivity of ×. Formally: p v p′ implies [[p]] ≤S [[p′]]. Thus we can
say that p is “dominated” by p′.

Definition 7.3 (Saturation of a Set of C-Products). Given a finite or countably
infinite set P of C-products, its saturation P is defined as P = {p | ∃p′ ∈ P.p v p′}.

By saturating a set of C-products P , we basically add to P all those other C-
products which are dominated by some element in P . Notice that [[P ]] = [[P ]],
where we extended the use of the semantic parenthesis [[]] from C-products to sets
of C-products: [[Q]] =

∑
p∈Q[[p]].

In our method to compute the semantics of a goal, every time we add an element
to the current partial sum, such an element is a C-product. If the semiring value of
this element is dominated by another one already in the partial sum, in reality the
sum value does not change, because of the properties of the + operation: if a ≤S b
then a+ b = b.

The main result of this section is that such a chain of partial sums has a finite
number of distinct elements, and that thus after such a finite number of steps we
have computed the semantics of a goal in an SCLP program. But before stating
this results we need a lemma.

Lemma 7.1 (Well-Foundedness). Let PC be the set of all saturated (i.e.,
P = P ) sets of C-products. This set is well-founded under the inverse proper
inclusion relation ⊃, i.e., all the chains P0 ⊂ P1 ⊂ . . . of elements of PC are of
finite length.

Proof. We first consider only chains where Pj = Rj , with Rj finite. Also,
without loss of generality, we assume P0 = R0 = ∅ and Rj = Rj−1 ∪ {pj}, with of
course ∀p ∈ Rj−1, pj 6v p.
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We prove the property by mathematical induction on the number k of constants
in C. If k = 1 the property is trivial, since Pj = {cn | n ≥ nj} for some nj , and
thus Pj ⊂ Pj+1 means nj > nj+1.

Let us now assume that the property holds for k − 1 and prove it for k. We
work trying to reach a contradiction: assuming that an infinite chain exists for
k, and constructing an infinite chain also for k − 1. Let us now decompose pj as

pj = p′j × c
nj
k

k , with p′j =
∏
i=1,...,k−1 c

nj
i

i . Now, since we must have ph 6v pj when
j < h, we either have p′h 6v p′j or njk > nhk . We now use a colored graph method
to help us in the proof. The nodes of the graph are the indexes of the chain, and
we draw a red arc from i to h in the latter case (that is, njk > nhk) or when both
conditions hold, a black arc otherwise. We now construct an infinite subsequence
with no red arcs, i.e., where p′h 6v p′j for h > j.

Notice first that there is no infinite red path: in fact our graph is acyclic, and
exponent njk cannot be indefinitely decreased. Assume now that we have already
examined a finite initial segment of the chain, and assume we have already con-
structed a set of indexes I, initially empty. We assume inductively that there is no
red arc outgoing from the indexes in I to the indexes of the rest of the chain. To
find a new index to add to I, let us consider the first index of the rest of the chain.
If it has no outgoing red arc, we are done. Otherwise, we follow any outgoing red
arc, and we repeat the above procedure until an index without outgoing red arcs is
found. Since there is no infinite red path, the procedure must terminate.

Finally, it is easy to see for every P in PC that we have P = R, for some finite R.
In fact, let R = {p ∈ P | ∀p′ ∈ P.p 6v p′}. If R were infinite (but of course countable:
R = {pj}j=1,2,...), the chain ∅ ⊂ {p1} ⊂ {p1, p2} ⊂ . . . ⊂ {pj | j ≤ h} ⊂ . . . would
be infinite.

Theorem 7.1 (Finite Chains). Let P = {pj}j=1,2,... be a finite or countably
infinite set of C-products. Then there is a natural number N such that

∑
j=1,...,N [[pj ]]

=
∑

j=1,2,...[[pj ]].

Proof. The statement is trivial if P is finite. Thus, let us assume that P is
infinite. According to Lemma 7.1, the chain Q1 ⊆ Q2 ⊆ . . . ⊆ Qn ⊆ . . . with
Qh = {pj | j ≤ h}, is finite, i.e., there is a natural number N such that Qr = QN
for r ≥ N . Since [[Qh]] =

∑
j=1,...,h[[pj ]] by definition, this proves the theorem.

Summarizing, the formal developments of this section show, that by examining
the refutations of a given SCLP goal while visiting the search tree in a breadth-first
way, the semantics of the goal can be computed in a finite number of steps (that
is, after examining a finite number of refutations). This result, together with the
property that + is the lub of the lattice, leads us to the following semidecidability
statement:

It is semidecidable to decide whether the semantics of a goal is in relation
R with a certain semiring value k, where R ∈ {>,≥}.

In fact, if it is in such a relation, then the theorem of this section tells us that after
a finite number of steps we have computed such semantics. Thus, after a smaller or
equal number of steps the current partial sum will have value k or more, at which
point we can stop and say that the goal has a semantics in relation R with k. If
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instead it is not in such a relation, then we do not have a method to know this in
finite time. However, if there were a method to semidecide whether the semantics
of a goal is in relation not(R) with a certain semiring value k, where not(R) ∈
{<,=,≤, 6≡}, with 6≡ meaning “incompatible with,” then by Post’s theorem (if a
property and its complement are semidecidable, then the property is decidable) we
would conclude that it is decidable to know whether the semantics of a goal is equal
to a certain semiring value k, which we know is not true for the special case of logic
programming.

8. SCLP PROGRAMS WITH NO FUNCTIONS

In the previous section we have proved, that if a goal of an SCLP program has a
semiring value greater than, or greater than or equal to, some k, then it is possible
to discover this in finite time. In this section we will show, that for the special class
of SCLP programs with no functions, we have the additional result that once the
program is fixed, the time for computing the value of any goal for this program is
finite and bounded by a constant (see Theorem 8.2 later in this section). Thus the
semantics of SCLP programs without functions is decidable.

This result is based on the observation that, in SCLP programs without functions,
we just have to consider a finite subclass of refutations, called in the following simple
refutations, with a bounded length. After having considered all these refutations
up to that bounded length, we have finished computing the semiring value of the
given goal.

Notice that while the absence of functions in SCLP programs is obviously a
restriction the underlying semiring could in general contain an infinite number of
elements. Thus this result is not so obvious as it may appear, since not all sources
of infiniteness are taken away.

First we define an alternative representation for refutations, which is based on
trees.

Definition 8.1 (Refutation Tree). Given a refutation r as follows,

〈A, ε,1〉 Cl1,θ
′
1→ 〈C1, θ1, a1〉

Cl2,θ
′
2→ . . .

Cln,θ
′
n→ 〈2, θn, an〉

its refutation tree is a labeled tree where each node is labeled by a clause instan-
tiation of the form 〈Cli, σi〉, for i ∈ {1, . . . , n}, where σi = θ′i restricted onto the
variables of the head of Cli. More precisely, starting from a single nonlabeled node,
the entire tree can be built as follows:
for k:=1 to n do

Select the first nonlabeled node (which is a leaf) in a depth-first visit of
the current tree, and label it with 〈Clk, σk〉.
If Clk is H : −B1, . . . , Bm, attach to this node m children.

end-for.

Definition 8.2 (Simple Refutation). Given a refutation tree, a path from the root
to a leaf is called simple if all its nodes have different labels up to variable renaming.
A refutation is a simple refutation if all paths from the root to a leaf in its refutation
tree are simple.
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Thus in a simple refutation it is not possible to use the same clause, instantiated
in the same way, more than once on atoms which depend on each other.

We will now show, that if we delete all nonsimple refutations from S(P ), we do
not change the value computed by OS1P (C) for any C.

Theorem 8.1 (Simple Refutations Only). Consider an SCLP program P
with no functions and its compact refutation set S(P ), and let us call S′(P ) the
subset of S(P ) containing all its simple refutations. Then, for any goal C, we have
that

∑
〈C,ε,a〉∈S′(P ) a = OS1P (C).

Proof. Given any nonsimple refutation r1 for a goal, we can obtain a simple
refutation r2 for the same goal: just take the refutation tree of the nonsimple
refutation and delete the part of the tree between any two nodes with the same
label up to variable renaming. It is easy to see that this new tree still represents a
refutation, and that such a refutation is simple.

Now we can notice that refutation r2 has fewer steps than r1, and all the steps
in r2 are present in r1. Therefore, by the extensivity of ×, the semiring value
computed by r2 is better than or equal to the one computed by r1.

Now, OS1P (C) sums all the semiring values computed by all refutations in S(P )
which start from C and build ε. Therefore, considering what we have said before,
the sum of the semiring values associated to r1 and r2 gives the semiring value of
r2, that is, of the simple refutation. Thus, by “forgetting” all nonsimple refutations
we do not change the result of the sum of all the semiring values, which is exactly
OS1P (C).

We will now prove that given a goal C there is only a finite number of simple
refutations starting from C and building the empty substitution.

Theorem 8.2 (Finite Set of Simple Refutations). Given an SCLP pro-
gram P with no functions and a goal C, consider the set SR(C) of simple refu-
tations starting from C and building the empty substitution. Then SR(C) is finite.
Moreover, each refutation in SR(C) has length at most N , where N =

∑c
i=1 b

i, c
is the number of all clauses with head instantiated in all possible ways, and b is the
greatest number of atoms in the body of a clause in program P .

Proof. Since a program contains a finite number of domain elements and of
clauses, the number of different labels in a path of a simple refutation tree is finite.
Thus the number of different refutation trees for simple refutations of C is finite.
Therefore SR(C) is finite.

Moreover, each simple refutation tree has the property that no two labels in a
path from the root to a leaf are the same. Since such labels are clauses plus head
instantiations, each path is long at most as the number of all possible clause head
instantiations, say c. Furthermore, the branching factor of a simple refutation tree
depends on the number of atoms in the bodies of the clauses used in the refutation.
Thus the number of nodes of a simple refutation tree, and thus of steps in a simple
refutation, is bounded by

∑c
i=1 b

i.

Therefore, computing OS1P (C) involves looking at a finite number of bounded-
length simple refutations. Thus, OS1P (C) can be computed in a finite number of
steps.
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Corollary 8.1 (Finite Number of Steps for OS1P ). Given an SCLP pro-
gram P with no functions, consider a collection of atoms C. Then we have that
OS1P (C) can be computed in a finite number of steps.

Proof. The statement follows directly from the results of Theorem 8.1 (we can
forget about the nonsimple refutations) and Theorem 8.2 (the number of simple
refutations is finite, and the length of each simple refutation is bounded by a con-
stant N). In fact, we can consider only those refutations with length at most N ,
and among these we take only the simple refutations and we sum their semiring
values.

It is also easy to prove that OS2P (C) can be computed in a finite number of
steps as well. Moreover, the TP operator need to be applied only a finite number
of times before reaching the fixpoint and thus computing the fixpoint semantics, as
defined in Section 5.

9. RELATED WORK

In Fitting [1981] a bilattice structure is used to model the presence of a family
of truth values in logic programming, and a fixpoint semantics for this kind of
programs is given. In this approach, the meet and join operators of the bilattice
are used as extensions of classical and and or, while in our approach we use such
operators to model the universal and existential quantification, but we adopt a
different operator (the multiplicative operation of the semiring, possibly different
from the meet operator), to extend the logical and. The bilattice structure he
uses allows to always have a negation operator, which in general we do not have.
By having less properties for our structure, we can model also situations where
the multiplicative operator is not idempotent, like optimization and probabilistic
problems.

The approach taken in van Emden [1986] associates a value to each clause. From
such values, taken from [0, 1], a value is also associated to each atom. Then, atoms
are combined by using the min and max operators. Thus this kind of logic pro-
gramming is similar to what we have when using the fuzzy semiring. He also gives
a model-theoretic semantics, a fixpoint semantics, and an operational semantics
based on game theory.

A recent approach to multivalued logic programming [Mobasher et al. 1997] uses
bilattices with two orderings to model both truth and knowledge levels. The re-
sulting logic programming semantics is just operational and fix-point, while no
model-theoretic semantics is presented. Moreover, the presence in our approach of
just one ordering (modeling truth levels) is not a restriction, since the vectorization
of several semirings is still a semiring (see Bistarelli et al. [1995; 1997a]), and thus
optimization based on multiple criteria can be cast in our framework as well.

From another point of view, where classical constraints are extended to have
several degrees of satisfaction, a related approach is HCLP (Hierarchical CLP)
[Borning et al. 1989], where each constraint has a level of importance (like strong,
weak, required), and these levels are used to decide which constraints to satisfy.
However, a constraint can only be satisfied or not, and thus HCLP is a crisp for-
malism. Moreover, their treatment is only algorithmic, and they do not provide
their language with a fix-point or a model-theoretic semantics.
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10. CONCLUSIONS AND FUTURE WORK

We have introduced a framework for constraint programming over semirings. This
allows us to use a CLP-like language for both constraint solving and optimization.
In fact, constraint systems based on semirings are able to model both classical con-
straint solving and more sophisticated features like uncertainty, probability, fuzzi-
ness, and optimization. We have then given this class of languages three equivalent
semantics: model-theoretic, fix-point, and proof-theoretic, in the style of classical
CLP programs. Finally, we have obtained interesting decidability results for general
SCLP programs and for those SCLP programs without functions.

To make SCLP a practical programming paradigm, we plan to investigate efficient
techniques to implement their operational semantics, so that one optimal solution
can be found efficiently. In this respect, we plan to collaborate with the LOCO
research group at INRIA-Roquencourt, which has implemented a version of our
framework on top of the existing constraint language clp(fd) [Codognet and Diaz
1996]. At the URL http://pauillac.inria.fr/~georget/clp fds.html there
is the latest version of this system, and in Georget and Codognet [1998] there is
a description of their implementation. In this implementation, full semiring-based
arc-consistency (as in Bistarelli et al. [1997a]) is used to keep the computation states
compact and to check them for inconsistencies. In general, each domain element, as
well as each constraint tuple, can be assigned a semiring value. However, they also
provide useful built-ins which assign just two values to each arithmetic constraint:
one to the tuples which satisfy it, and the other one to those which do not satisfy it.
In this way, the modeling is easier and the computation faster, and in some cases
it is expressive enough. We plan to collaborate with them to reach a reasonable
trade-off between efficiency, semantic elegance of the language, and user needs.

The HCLP (Hierarchical CLP) framework [Borning et al. 1989] is the closest to
what we propose in this paper. We will investigate in more detail the relationship
between the two frameworks and the possibility of implementing HCLP in the SCLP
framework developed over clp(fd) [Georget and Codognet 1998].

We have used SCLP programs to model and solve framework and some classical
operation research problems, like shortest-path problems [Bistarelli et al. 2001].
The aim is to show, on one hand, that SCLP can be a good programming and
specification environment for such problems and generalizations of them, and, on
the other hand, that some classical algorithms for these problems can be used to
provide an efficient alternative semantics to some classes of SCLP programs.
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