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Soft constraints extend classical constraints to represent multiple consistency levels, and thus

provide a way to express preferences, fuzziness, and uncertainty. While there are many soft
constraint solving formalisms, even distributed ones, by now there seems to be no concurrent
programming framework where soft constraints can be handled. In this paper we show how the

classical concurrent constraint (cc) programming framework can work with soft constraints, and
we also propose an extension of cc languages which can use soft constraints to prune and direct

the search for a solution. We believe that this new programming paradigm, called soft cc (scc),
can be also very useful in many web-related scenarios. In fact, the language level allows web
agents to express their interaction and negotiation protocols, and also to post their requests in

terms of preferences, and the underlying soft constraint solver can find an agreement among the
agents even if their requests are incompatible.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming; D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; Syntax; D.3.2 [Programming Languages]: Language Classifications—

Concurrent, distributed, and parallel languages; Constraint and logic languages; D.3.3 [Pro-

gramming Languages]: Language Constructs and Features—Concurrent programming struc-

tures; Constraints; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages—Operational semantics

General Terms: Languages

Additional Key Words and Phrases: constraints, soft constraints, concurrent constraint program-
ming

1. INTRODUCTION

The concurrent constraint (cc) paradigm [Saraswat 1993] is a very interesting com-
putational framework which merges together constraint solving and concurrency.
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The main idea is to choose a constraint system and use constraints to model com-
munication and synchronization among concurrent agents.

Until now, constraints in cc were crisp, in the sense that they could only be sat-
isfied or violated. Recently, the classical idea of crisp constraints has been shown
to be too weak to represent real problems and a big effort has been done toward
the use of soft constraints [Freuder and Wallace 1992; Dubois et al. 1993; Rut-
tkay 1994; Fargier and Lang 1993; Schiex et al. 1995; Bistarelli et al. 1997; 2001;
Bistarelli 2001], which can have more than one level of consistency. Many real-life
situations are, in fact, easily described via constraints able to state the necessary
requirements of the problems. However, usually such requirements are not hard,
and could be more faithfully represented as preferences, which should preferably be
satisfied but not necessarily. Also, in real life, we are often challenged with over-
constrained problems, which do not have any solution, and this also leads to the
use of preferences or in general of soft constraints rather than classical constraints.

Generally speaking, a soft constraint is just a classical constraint plus a way to
associate, either to the entire constraint or to each assignment of its variables, a
certain element, which is usually interpreted as a level of preference or importance.
Such levels are usually ordered, and the order reflects the idea that some levels are
better than others. Moreover, one has also to say, via suitable combination opera-
tors, how to obtain the level of preference of a global solution from the preferences
in the constraints.

Many formalisms have been developed to describe one or more classes of soft
constraints. For instance consider fuzzy CSPs [Dubois et al. 1993; Ruttkay 1994],
where crisp constraints are extended with a level of preference represented by a
real number between 0 and 1, or probabilistic CSPs [Fargier and Lang 1993], where
the probability to be in the real problem is assigned to each constraint. Some
other examples are partial [Freuder and Wallace 1992] or valued CSPs [Schiex et al.
1995], where a preference is assigned to each constraint, in order to satisfy as many
constraints as possible, and thus handle also overconstrained problems.

We think that many network-related problem could be represented and solved
by using soft constraints. Moreover, the possibility to use a concurrent language
on top of a soft constraint system, could lead to the birth of new protocols with an
embedded constraint satisfaction and optimization framework.

In particular, the constraints could be related to a quantity to be mini-
mized/maximized but they could also satisfy policy requirements given for perfor-
mance or administrative reasons. This leads to change the idea of QoS in routing
and to speak of constraint-based routing [Awduche et al. 1999; Clark 1989; Jain
and Sun 2000; Calisti and Faltings 2000]. Constraints are in fact able to represent
in a declarative fashion the needs and the requirements of agents interacting over
the web.

The features of soft constraints could also be useful in representing routing prob-
lems where an imprecise state information is given [Chen and Nahrstedt 1998].
Moreover, since QoS is only a specific application of a more general notion of Ser-
vice Level Agreement (SLA), many applications could be enhanced by using such
a framework. As an example consider E-commerce: here we are always looking for
establishing an agreement between a merchant, a client and possibly a bank. Also,
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all auction-based transactions need an agreement protocol. Moreover, also security
protocol [Bella and Bistarelli 2001; 2002] and integrity policy analysis [Bistarelli
and Foley 2003a; 2003b] have shown to be enhanced by using security levels in-
stead of a simple notion of secure/insecure level . All these considerations advocate
for the need of a soft constraint framework where optimal answers are extracted.

In this paper, we use one of the frameworks able to deal with soft constraints
[Bistarelli et al. 1995; 1997]. The framework is based on a semiring structure that
is equipped with the operations needed to combine the constraints present in the
problem and to choose the best solutions. According to the choice of the semiring,
this framework is able to model all the specific soft constraint notions mentioned
above.

We first compare the semiring-based framework with constraint systems “a la
Saraswat” and then we show how use it inside the cc framework. More precisely,
we describe how to use soft constraints instead of classical ones within the original cc
framework. In this scenario, the only addition to classical cc is the use of a function
which transforms preference levels into a yes/no information of consistency.

The next step is the extension of the syntax and operational semantics of the
language to deal with the semiring levels. Here, the main novelty with respect to cc
is that tell and ask agents are equipped with a preference (or consistency) threshold
which is used to determine their success, failure, or suspension, as well as to prune
the search.

After a short summary of concurrent constraint programming (§2.1) and of
semiring-based SCSPs (§2.2), we show how the concurrent constraint framework
can be used to handle also soft constraints (§3). Then we integrate semirings inside
the syntax of the language and we change its semantics to deal with soft levels (§4).
Some notions of observables able to deal with a notion of optimization and with
success (§6.1) and fail (§6.2) computations are then defined. Some examples (§5)
and an application scenario (§7) conclude our presentation showing the expressiv-
ity of the new language. Finally, conclusions (§8) are added to point out the main
results and possible directions for future work.

2. BACKGROUND

2.1 Concurrent Constraint Programming

The concurrent constraint (cc) programming paradigm [Saraswat 1993] concerns
the behaviour of a set of concurrent agents with a shared store, which is a conjunc-
tion of constraints. Each computation step possibly adds new constraints to the
store. Thus information is monotonically added to the store until all agents have
evolved. The final store is a refinement of the initial one and it is the result of the
computation. The concurrent agents do not communicate directly with each other,
but only through the shared store, by either checking if it entails a given constraint
(ask operation) or adding a new constraint to it (tell operation).

2.1.1 Constraint Systems. A constraint is a relation among a specified set of
variables. That is, a constraint gives some information on the set of possible values
that these variables may assume. Such information is usually not complete since
a constraint may be satisfied by several assignments of values of the variables (in
contrast to the situation that we have when we consider a valuation, which tells
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us the only possible assignment for a variable). Therefore it is natural to describe
constraint systems as systems of partial information [Saraswat 1993].

The basic ingredients of a constraint system (defined following the information
systems idea [Scott 1982]) are a set D of primitive constraints or tokens, each
expressing some partial information, and an entailment relation ⊢ defined on ℘(D)×
D (or its extension defined on ℘(D) × ℘(D))1 where ℘(D) is the powerset of D.
The entailment relation satisfies:

—u ⊢ P for all P ∈ u (reflexivity) and

—if u ⊢ v and v ⊢ z, then u ⊢ z for all u, v, z ∈ ℘(D) (transitivity).

We also define u ≈ v if u ⊢ v and v ⊢ u.
As an example of entailment relation, consider D as the set of equations over

the integers; then ⊢ could include the pair 〈{x = 3, x = y}, y = 3〉, which means
that the constraint y = 3 is entailed by the constraints x = 3 and x = y. Given
X ∈ ℘(D), let X be the set X closed under entailment. Then, a constraint in an
information system 〈℘(D),⊢〉 is simply an element of ℘(D).

As it is well known [Saraswat et al. 1991], 〈℘(D),⊆〉 is a complete algebraic
lattice, the compactness of ⊢ gives the algebraic structure for ℘(D), with least
element true = {P | ∅ ⊢ P}, greatest element D (which we will mnemonically
denote false), glbs (denoted by ⊓) given by the closure of the intersection and lubs
(denoted by ⊔) given by the closure of the union. The lub of chains is, however,
just the union of the members in the chain. We use a, b, c, d and e to stand for
elements of ℘(D); c ⊇ d means c ⊢ d.

2.1.2 The Hiding Operator: Cylindric Algebras. In order to treat the hiding op-
erator of the language (see Definition 3.10), a general notion of existential quantifier
for variables in constraints is introduced, which is formalized in terms of cylindric
algebras. This leads to the concept of cylindric constraint system over an infinite
set of variables V such that for each variable x ∈ V , ∃x : ℘(D) → ℘(D) is an
operation satisfying:

(1) u ⊢ ∃xu;

(2) u ⊢ v implies (∃xu) ⊢ (∃xv);

(3) ∃x(u ⊔ ∃xv) ≈ (∃xu) ⊔ (∃xv);

(4) ∃x∃yu ≈ ∃y∃xu.

2.1.3 Procedure Calls. In order to model parameter passing, diagonal elements
are added to the primitive constraints. We assume that, for x, y ranging in V , ℘(D)
contains a constraint dxy. If ⊢ models the equality theory, then the elements dxy
can be thought of as the formulas x = y. Such a constraint satisfies the following
axioms:

(1) dxx = true,

(2) if z 6= x, y then dxy = ∃z(dxz ⊔ dzy),

(3) if x 6= y then dxy ⊔ ∃x(c ⊔ dxy) ⊢ c.

1The extension is s.t. u ⊢ v iff u ⊢ P for every P ∈ v.
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Table I. cc syntax

P ::= F.A

F ::= p(x) :: A | F.F

A ::= success | fail | tell(c) → A | E | A‖A | ∃xA | p(x)

E ::= ask(c) → A | E + E

Note that the in the previous definition we assume the cardinality of the domain
for x, y and z greater than 1 (otherwise, axioms 2 and 3 would not make sense).

2.1.4 The Language. The syntax of a cc program is show in Table I: P is the
class of programs, F is the class of sequences of procedure declarations (or clauses),
A is the class of agents, c ranges over constraints, and x is a tuple of variables.
Each procedure is defined (at most) once, thus nondeterminism is expressed via the
+ combinator only. We also assume that, in p(x) :: A, we have vars(A) ⊆ x, where
vars(A) is the set of all variables occurring free in agent A. In a program P = F.A,
A is the initial agent, to be executed in the context of the set of declarations F .
This corresponds to the language considered in [Saraswat 1993], which allows only
guarded nondeterminism.

In order to better understand the extension of the language that we will introduce
later, let us remind here the operational semantics of the agents.

—agent “success” succeeds in one step,

—agent “fail” fails in one step,

—agent “
∑

i:=1,n ask(ci) → Ai” behaves as follows: if there is at least one ci which
is entailed by the current store, it behaves like Ai; if all ci are inconsistent with
the current store, it fails; otherwise it suspends.

—agent “tell(c) → A” adds constraint c to the current store and then, if the
resulting store is consistent, behaves like A, otherwise it fails.

—agent A1‖A2 behaves like A1 and A2 executing in parallel;

—agent ∃xA behaves like agent A, except that the variables in x are local to A;

—p(x) is a call of procedure p.

A formal treatment of the cc semantics can be found in [Saraswat 1993; Boer and
Palamidessi 1991]. Also, a denotational semantics of deterministic cc programs,
based on closure operators, can be found in [Saraswat 1993]. A more complete
survey on several concurrent paradigms is given also in [de Boer and Palamidessi
1994].

2.2 Soft Constraints

Several formalization of the concept of soft constraints are currently available.
In the following, we refer to the one based on c-semirings [Bistarelli et al. 1997;
Bistarelli 2001], which can be shown to generalize and express many of the others.

A soft constraint may be seen as a constraint where each instantiations of its
variables has an associated value from a partially ordered set which can be inter-
preted as a set of preference values. Combining constraints will then have to take
into account such additional values, and thus the formalism has also to provide
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suitable operations for combination (×) and comparison (+) of tuples of values and
constraints. This is why this formalization is based on the concept of c-semiring,
which is just a set plus two operations.

2.2.1 C-Semirings. A semiring is a tuple 〈A,+,×,0,1〉 such that:

(1) A is a set and 0,1 ∈ A;

(2) + is commutative, associative and 0 is its unit element;

(3) × is associative, distributes over +, 1 is its unit element and 0 is its absorbing
element.

A c-semiring2 is a semiring 〈A,+,×,0,1〉 such that + is idempotent, 1 is its
absorbing element and × is commutative. Let us consider the relation ≤S over A

such that a ≤S b iff a+ b = b. Then it is possible to prove that (see [Bistarelli et al.
1997]):

(1) ≤S is a partial order;

(2) + and × are monotone on ≤S ;

(3) × is intensive on ≤S : a× b ≤S a, b;

(4) 0 is its minimum and 1 its maximum;

(5) 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, + is the least upper bound
operator, that is, a+ b = lub(a, b).

Moreover, if × is idempotent, then: + distributes over ×; 〈A,≤S〉 is a complete
distributive lattice and × its glb. Informally, the relation ≤S gives us a way to
compare semiring values and constraints. In fact, when we have a ≤S b, we will
say that b is better than a. In the following, when the semiring will be clear from
the context, a ≤S b will be often indicated by a ≤ b.

2.2.2 Soft Constraints and Problems. Given a semiring S = 〈A,+,×,0,1〉, a
set D (the domain of the variables) and an ordered set of variables V , a con-
straint is a pair 〈def , con〉 where con ⊆ V and def : D|con| → A. Therefore, a
constraint specifies a set of variables (the ones in con), and assigns to each tuple
of values of these variables an element of the semiring. Consider two constraints
c1 = 〈def1, con〉 and c2 = 〈def2, con〉, with |con| = k. Then c1 ⊑S c2 if for all
k-tuples t, def1(t) ≤S def2(t). The relation ⊑S is a partial order.

A soft constraint problem is a pair 〈C, con〉 where con ⊆ V and C is a set of
constraints: con is the set of variables of interest for the constraint set C, which
however may concern also variables not in con. Note that a classical CSP is a SCSP
where the chosen c-semiring is: SCSP = 〈{false, true},∨,∧, false, true〉. In this
case, the ⊑ relation reduces to set inclusion between the sets of allowed tuples.

Fuzzy CSPs [Schiex 1992] can instead be modeled in the SCSP framework by
choosing the c-semiring SFCSP = 〈[0, 1],max,min, 0, 1〉. Many other “soft” CSPs
(Probabilistic, weighted, . . . ) can be modeled by using a suitable semiring structure
(for example, Sprob = 〈[0, 1],max,×, 0, 1〉, Sweight = 〈R,min,+, 0,+∞〉, . . . ).

Since the Cartesian product of two c-semirings is still a c-semiring [Bistarelli et al.
1997], it is also possible to model multicriteria optimization within this framework.

2“c” stands for “constraint”.
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X Y

c1

c2

c3

〈a〉 → 0.9〈a〉 → 0.9
〈b〉 → 0.1 〈b〉 → 0.5

〈a, a〉 → 0.8
〈a, b〉 → 0.2
〈b, a〉 → 0
〈b, b〉 → 0

Fig. 1. A fuzzy CSP

For example we can model situations where we want to maximize the minimum
preference and also to minimize the sum of the costs. To do this we just have to
pair the fuzzy and the weighted semiring.

Figure 1 shows the graph representation of a fuzzy CSP. Variables and constraints
are represented respectively by nodes and by undirected arcs (unary for c1 and c3
and binary for c2), and semiring values are written to the right of the corresponding
tuples. The variables of interest (that is the set con) are represented with a double
circle. Here we assume that the domain D of the variables contains only elements
a and b.

2.2.3 Combining and Projecting Soft Constraints. Given two constraints c1 =
〈def 1, con1〉 and c2 = 〈def 2, con2〉, their combination c1 ⊗ c2 is the constraint
〈def , con〉 defined by con = con1 ∪ con2 and def (t) = def 1(t ↓

con
con1

)× def 2(t ↓
con
con2

),
where t ↓XY denotes the tuple of values over the variables in Y , obtained by pro-
jecting tuple t from X to Y . In words, combining two constraints means building
a new constraint involving all the variables of the original ones, and which asso-
ciates to each tuple of domain values for such variables a semiring element which is
obtained by multiplying the elements associated by the original constraints to the
appropriate subtuples.

Given a constraint c = 〈def , con〉 and a subset I of V , the projection of c over
I, written c ⇓I is the constraint 〈def ′, con′〉 where con′ = con ∩ I and def ′(t′) =
∑

t s.t. t↓con
I∩con

=t′ def (t). Informally, projecting means eliminating some variables.

This is done by associating to each tuple over the remaining variables a semiring
element which is the sum of the elements associated by the original constraint to
all the extensions of this tuple over the eliminated variables. In short, combination
is performed via the multiplicative operation of the semiring, and projection via
the additive one.

2.2.4 Solutions. The solution of an SCSP problem P = 〈C, con〉 is the constraint
Sol(P ) = (

⊗

C) ⇓con. That is, we combine all constraints, and then project over
the variables in con. In this way we get the constraint over con which is “induced”
by the entire SCSP.

For example, the solution of the fuzzy CSP of Figure 1 associates a semiring
element to every domain value of variable x. Such an element is obtained by first
combining all the constraints together. For instance, for the tuple 〈a, a〉 (that
is, x = y = a), we have to compute the minimum between 0.9 (which is the value
assigned to x = a in constraint c1), 0.8 (which is the value assigned to 〈x = a, y = a〉
in c2) and 0.9 (which is the value for y = a in c3). Hence, the resulting value for
this tuple is 0.8. We can do the same work for tuple 〈a, b〉 → 0.2, 〈b, a〉 → 0 and
〈b, b〉 → 0. The obtained tuples are then projected over variable x, obtaining the
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solution 〈a〉 → 0.8 and 〈b〉 → 0.
Sometimes it may be useful to find only a semiring value representing the least

upper bound among the values yielded by the solutions. This is called the best level
of consistency of an SCSP problem P and it is defined by blevel(P ) = Sol(P ) ⇓∅

(for instance, the fuzzy CSP of Figure 1 has best level of consistency 0.8). Notice
that blevel(P ) = 〈∅ → α, ∅〉 is a constraint with empty con (that is, no variable
is involved) and the function def is simply a constant represented by the semiring
value α. We also say that: P is α-consistent if blevel(P ) = α; P is consistent
iff there exists α > 0 such that P is α-consistent; P is inconsistent if it is not
consistent.

3. CONCURRENT CONSTRAINT PROGRAMMING OVER SOFT CONSTRAINTS

Given a semiring S = 〈A,+,×,0,1〉 and an ordered set of variables V over a
domain D, we will now show how soft constraints over S with a suitable pair of
operators form a semiring, and then, we highlight the properties needed to map soft
constraints over constraint systems “a la Saraswat” (as recalled in Section 2.1).

We start by giving the definition of the carrier set of the semiring.

Definition 3.1 (functional constraints). We define C = (V → D) → A as the set
of all possible constraints that can be built starting from S = 〈A,+,×,0,1〉, D and
V .

A generic function describing the assignment of domain elements to variables will
be denoted in the following by η : V → D. Thus a constraint is a function which,
given an assignment η of the variables, returns a value of the semiring.

Note that in this functional formulation, each constraint is a function and not a
pair representing the variable involved and its definition. Such a function involves
all the variables in V , but it depends on the assignment of only a finite subset of
them. We call this subset the support of the constraint. For computational reasons
we require each support to be finite.

Definition 3.2 (constraint support). Consider a constraint c ∈ C. We define his
support as supp(c) = {v ∈ V | ∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the association v := d1

(that is the operator [ ] has precedence over application).

Definition 3.3 (functional mapping). Given any soft constraint
〈def, {v1, . . . , vn}〉 ∈ C, we can define its corresponding function c ∈ C s.t.
cη[v1 := d1] . . . [vn := dn] = def(d1, . . . , dn). Clearly supp(c) ⊆ {v1, . . . , vn}.

Definition 3.4 (Combination and Sum). Given the set C, we can define the com-
bination and sum functions ⊗,⊕ : C × C → C as follows:

(c1 ⊗ c2)η = c1η ×S c2η and (c1 ⊕ c2)η = c1η +S c2η.

Notice that function ⊗ has the same meaning of the already defined ⊗ operator
(see Section 2.2) while function ⊕ models a sort of disjunction.
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By using the ⊕S operator we can easily extend the partial order ≤S over C by
defining c1 ⊑S c2 ⇐⇒ c1 ⊕S c2 = c2. In the following, when the semiring will be
clear from the context, we will use ⊑.

We can also define a unary operator that will be useful to represent the unit
elements of the two operations ⊕ and ⊗. To do that, we need the definition of
constant functions over a given set of variables.

Definition 3.5 (constant function). We define function ā as the function that
returns the semiring value a for all assignments η, that is, āη = a. We will usually
write ā simply as a.

An example of constants that will be useful later are 0̄ and 1̄ that represent respec-
tively the constraint associating 0 and 1 to all the assignment of domain values.

It is easy to verify that each constant has an empty support. More generally we
can prove the following:

Proposition 3.6. The support of a constraint c ⇓I is always a subset of I(that
is supp(c ⇓I) ⊆ I).

Proof. By definition of ⇓I , for any variable x 6∈ I we have c ⇓I η[x = a] = c ⇓I
η[x = b] for any a and b. So, by definition of support x 6∈ supp(c ⇓I).

Theorem 3.7 (Higher-order semiring). The structure SC = 〈C,⊕,⊗,0,1〉
where

—C : (V → D) → A is the set of all the possible constraints that can be built
starting from S, D and V as defined in Definition 3.1,

—⊗ and ⊕ are the functions defined in Definition 3.4, and

—0 and 1 are constant functions defined following Definition 3.5,

is a c-semiring.

Proof. To prove the theorem it is enough to check all the properties with the
fact that the same properties hold for semiring S. We give here only a hint, by
showing the commutativity of the ⊗ operator:
(c1 ⊗ c2)η = (by definition of ⊗)
c1η × c2η = (by commutativity of ×)
c2η × c1η = (by definition of ⊗)
(c2 ⊗ c1)η.
All the other properties can be proved similarly.

The next step is to look for a notion of token and of entailment relation. We define
as tokens the functional constraints in C and we introduce a relation ⊢ that is an
entailment relation when the multiplicative operator of the semiring is idempotent.

Definition 3.8 (⊢ relation). Consider the higher-order semiring carrier set C and
the partial order ⊑. We define the relation ⊢⊆ ℘(C)×C s.t. for each C ∈ ℘(C) and
c ∈ C, we have C ⊢ c ⇐⇒

⊗

C ⊑ c.

The next theorem shows that, when the multiplicative operator of the semiring
is idempotent, the ⊢ relation satisfies all the properties needed by an entailment.
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Theorem 3.9 (⊢, with idempotent ×, is an entailment relation).
Consider the higher-order semiring carrier set C and the partial order ⊑. Consider
also the relation ⊢ of Definition 3.8. Then, if the multiplicative operation of the
semiring is idempotent, ⊢ is an entailment relation.

Proof. Is enough to check that for any c ∈ C, and for any C1, C2 and C3 subsets
of C we have

(1) C ⊢ c when c ∈ C: We need to show that
⊗

C ⊑ c when c ∈ C. This follows
from the intensivity of ×.

(2) if C1 ⊢ C2 and C2 ⊢ C3 then C1 ⊢ C3: To prove this we use the extended
version of the relation ⊢ able to deal with subsets of C : ℘(C) × ℘(C) s.t.
C1 ⊢ C2 ⇐⇒ C1 ⊢

⊗

C2. Note that when × is idempotent we have that,
∀c2 ∈ C2, C1 ⊢ c2 ⇐⇒ C1 ⊢

⊗

C2. In this case to prove the item we have
to prove that if

⊗

C1 ⊑
⊗

C2 and
⊗

C2 ⊑
⊗

C3, then
⊗

C1 ⊑
⊗

C3. This
comes from the transitivity of ⊑.

Note that in this setting the notion of token (constraint) and of set of tokens (set
of constraints) closed under entailment is used indifferently. In fact, given a set
of constraint functions C1, its closure w.r.t. entailment is a set C̄1 that contains
all the constraints greater than

⊗

C1. This set is univocally representable by the
constraint function

⊗

C1.
The definition of the entailment operator ⊢ on top of the higher-order semiring

SC = 〈C,⊕,⊗,0,1〉 and of the ⊑ relation leads to the notion of soft constraint
system. It is also important to notice that in [Saraswat 1993] it is claimed that
a constraint system is a complete algebraic lattice. Here we do not ask for the
algebricity, since the algebraic nature of the structure C strictly depends on the
properties of the semiring.

Notice that we do not aim at computing the closure of the entailment relation,
but only to use the entailment relation to establish if a constraint is entailed by the
current store, and this can be established even if the lattice is not algebraic.

If the constraint system is defined on top of a non-idempotent multiplicative
operator, we cannot obtain a ⊢ relation satisfying all the properties of an entail-
ment. Nevertheless, we can give a denotational semantics to the constraint store,
as described in Section 4, using the operations of the higher-order semiring.

To treat the hiding operator of the language, a general notion of existential
quantifier has to be introduced by using notions similar to those used in cylindric
algebras. Note however that cylindric algebras are first of all boolean algebras.
This could be possible in our framework only when the × operator is idempotent.

Definition 3.10 (hiding). Consider a set of variables V with domain D and the
corresponding soft constraint system C. We define for each x ∈ V the hiding
function (∃xc)η =

∑

di∈D
cη[x := di].

To make the hiding operator computationally tractable, we require that the number
of domain elements in D having semiring value different from 0 is finite. In this way,
to compute the sum needed for (∃xc)η in the above definition, we can consider just
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a finite number of elements (those different from 0) since 0 is the unit element of
the sum. The same result can also be achieved by imposing some other restriction
on the constraints.

By using the hiding function we can represent the ⇓ operator defined in Sec-
tion 2.2.

Proposition 3.11. Consider a semiring S = 〈A,+,×,0,1〉, a domain of the
variables D, an ordered set of variables V , the corresponding structure C and the
class of hiding functions ∃x : C → C as defined in Definition 3.10. Then, for any
constraint c and any variable x ⊆ V , c ⇓V−x= ∃xc.

Proof. Is enough to apply the definition of ⇓V−x and ∃x and check that both
are equal to

∑

di∈D
cη[x := di].

Notice that by the previous theorem x does not belong to the support of ∃xc.
We now show how the hiding function so defined satisfies the properties of cylin-

dric algebras.

Theorem 3.12. Consider a semiring S = 〈A,+,×,0,1〉, a domain of the vari-
ables D, an ordered set of variables V , the corresponding structure C and the class
of hiding functions ∃x : C → C as defined in Definition 3.10. Then C is a cylindric
algebra satisfying:

(1 ) c ⊢ ∃xc

(2 ) c1 ⊢ c2 implies ∃xc1 ⊢ ∃xc2

(3 ) ∃x(c1 ⊗ ∃xc2) ≈ ∃xc1 ⊗ ∃xc2,

(4 ) ∃x∃yc ≈ ∃y∃xc

Proof. Let us consider all the items:

(1) It follows from the intensivity of +;

(2) It follows from the monotonicity of +;

(3) ∃x(c1 ⊗ ∃xc2) =
(c1 ⊗ ∃xc2) ⇓V−x=
(c1 ⊗ c2 ⇓V−x) ⇓V−x (since con(c2 ⇓V−x) = V − x, and V − x ∩ x = ∅, from
Theorem 19 of [Bistarelli et al. 1997] this is equivalent to)
c1 ⇓V−x ⊗c2 ⇓V−x=
∃xc1 ⊗ ∃xc2;

(4) It follows from commutativity and associativity of +.

To model parameter passing we need also to define what diagonal elements are.

Definition 3.13 (diagonal elements). Consider an ordered set of variables V and
the corresponding soft constraint system C. Let us define for each x, y ∈ V a
constraint dxy ∈ C s.t., dxyη[x := a, y := b] = 1 if a = b and dxyη[x := a, y := b] = 0

if a 6= b. Notice that supp(dxy) = {x, y}.

We can prove that the constraints just defined are diagonal elements.

ACM Transactions on Computational Logic, Vol. V, No. N, June 2004.



12 · Stefano Bistarelli et al.

Theorem 3.14. Consider a semiring S = 〈A,+,×,0,1〉, a domain of the vari-
ables D, an ordered set of variables V , and the corresponding structure C. The
constraints dxy defined in Definition 3.13 represent diagonal elements, that is

(1 ) dxx = 1,

(2 ) if z 6= x, y then dxy = ∃z(dxz ⊗ dzy),

(3 ) if x 6= y then dxy ⊗ ∃x(c⊗ dxy) ⊢ c.

Proof. (1) It follows from the definition of the 1 constant and of the diagonal
constraint;

(2) The constraint dxz ⊗ dzy is equal to 1 when x = y = z, and is equal to 0 in all
the other cases. If we project this constraint over z, we obtain the constraint
∃z(dxz ⊗ dzy) that is equal to 1 only when x = y;

(3) The constraint (c⊗ dxy)η has value 0 whenever η(x) 6= η(y) and cη elsewhere.
Now, (∃x(c⊗dxy))η is by definition equal to cη[x := y]. Thus (dxy⊗∃x(c⊗dxy))η
is equal to cη when η(x) = η(y) and 0 elsewhere. So, since for any c, 0 ⊢ c and
c ⊢ c, we easily have the claim of the theorem.

3.1 Using cc on Top of a Soft Constraint System

When using a soft constraint system in a cc language, the notion of consistency
should be generalised. In fact, SCSPs with best level of consistency equal to 0 can
be interpreted as inconsistent, and those with level greater than 0 as consistent,
but we can also be more general: we can define a suitable function α that, given
the best level of the current store, maps such a level over the classical notion of
consistency/inconsistency.

More precisely, given a semiring S = 〈A,+,×,0,1〉, we can define a function
α : A → {false, true}. Function α has to be at least monotone, but functions with
a richer set of properties could be used. Whenever we need to check the consistency
of the store, we will first compute the best level and then we will map such a value
by using function α over true or false.

It is important to notice that changing the α function (that is, by mapping in
a different way the set of values A over the boolean elements true and false), the
same cc agent yields different results: by using a high cut level, the cc agent will
either finish with a failure or succeed with a high final best level of consistency of
the store. On the other hand, by using a low level, more programs will end in a
success state.

4. SOFT CONCURRENT CONSTRAINT PROGRAMMING

The next step in our work is now to extend the syntax of the language in order to
directly handle the cut level. This means that the syntax and semantics of the tell
and ask agents have to be enriched with a threshold to specify when tell/ask agents
have to fail, succeed or suspend.

Given a soft constraint system 〈S,D, V 〉, the corresponding structure C, and any
constraint φ ∈ C, the syntax of agents in soft concurrent constraint programming is
given in Table II. The main difference w.r.t. the original cc syntax is the presence
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Table II. scc syntax

P :: = F.A

F :: = p(X) :: A | F.F

A :: = success | fail | tell(c) →φ A | tell(c) →a A | E | A‖A | ∃X.A | p(X)

E :: = ask(c) →φ A | ask(c) →a A | E + E

of a semiring element a and of a constraint φ to be checked whenever an ask or tell
operation is performed. More precisely, the level a (resp., φ) will be used as a cut
level to prune computations that are not good enough.

Notice also the we add the fail state but the failure Semantics will be considered
in Section 6.2.

We present here a structured operational semantics for scc programs, in the SOS
style, which consists of defining the semantics of the programming language by
specifying a set of configurations Γ, which define the states during execution, a
relation → ⊆ Γ × Γ which describes the transition relation between the configura-
tions, and a set T of terminal configurations. To give an operational semantics to
our language, we need to describe an appropriate transition system.

Definition 4.1 (transition system). A transition system is a triple 〈Γ, T,→〉
where Γ is a set of possible configurations, T ⊆ Γ is the set of terminal config-
urations and →⊆ Γ × Γ is a binary relation between configurations.

The set of configurations represent the evolutions of the agents and the mod-
ifications in the constraint store. We define the transition system of soft cc as
follows:

Definition 4.2 (configurations). The set of configurations for a soft cc system is
the set Γ = {〈A, σ〉}}, where σ ∈ C. The set of terminal configurations is the
set T = {〈success, σ〉} and the transition rule for the scc language are defined in
Table III.

Here is a brief description of the transition rules:

Valued-tell. The valued-tell rule checks for the α-consistency of the SCSP defined
by the store σ ⊗ c. The rule can be applied only if the store σ ⊗ c is b-consistent
with b 6< a3. In this case the agent evolves to the new agent A over the store
σ ⊗ c. Note that different choices of the cut level a could possibly lead to different
computations.

Tell. The tell action is a finer check of the store. In this case, a pointwise com-
parison between the store σ ⊗ c and the constraint φ is performed. The idea is to
perform an overall check of the store and to continue the computation only if there
is the possibility to compute a solution not worse than φ. Notice that this notion
of tell could be also applied to the classical cc framework. In this case the tell
operation would succeed when the set of tuples satisfying constraint φ is a subset
of the set of tuples allowed by σ ∩ c.4

3Notice that we use b 6< a instead of b ≥ a because we can possibly deal with partial orders. The

same happens also in other transition rules with 6⊏ instead of ⊒.
4notice that the ⊗ operator in the crisp case reduces to set intersection.
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Table III. Transition rules for scc

(σ ⊗ c) ⇓∅ 6< a

〈tell(c) →a A, σ〉 −→ 〈A, σ ⊗ c〉
(Valued-tell)

σ ⊗ c 6⊏ φ

〈tell(c) →φ A, σ〉 −→ 〈A, σ ⊗ c〉
(Tell)

σ ⊢ c, σ ⇓∅ 6< a

〈ask(c) →a A, σ〉 −→ 〈A, σ〉
(Valued-ask)

σ ⊢ c, σ 6⊏ φ

〈ask(c) →φ A, σ〉 −→ 〈A, σ〉
(Ask)

〈A1, σ〉 −→ 〈A′
1, σ′〉

〈A1‖A2, σ〉 −→ 〈A′
1‖A2, σ′〉

〈A2‖A1, σ〉 −→ 〈A2‖A′
1, σ′〉

〈A1, σ〉 −→ 〈success, σ′〉

〈A1‖A2, σ〉 −→ 〈A2, σ′〉
〈A2‖A1, σ〉 −→ 〈A2, σ′〉

(Parallelism)

〈E1, σ〉 −→ 〈A1, σ′〉

〈E1 + E2, σ〉 −→ 〈A1, σ′〉
〈E2 + E1, σ〉 −→ 〈A1, σ′〉

(Nondeterminism)

〈A[y/x], σ〉 −→ 〈A′, σ′〉

〈∃xA, σ〉 −→ 〈A′, σ′〉
with y fresh (Hidden variables)

〈p(y), σ〉 −→ 〈A[y/x], σ〉 when p(x) :: A (Procedure call)

Valued-ask. The semantics of the valued-ask is extended in a way similar to what
we have done for the valued-tell action. This means that, to apply the rule, we need
to check if the store σ entails the constraint c and also if the store is “consistent
enough” w.r.t. the threshold a set by the programmer.

Ask. Similar to the tell rule, here a finer (pointwise) threshold φ is compared to
the store σ. Notice that we need to check σ 6⊏ φ because previous tells could have
a different threshold φ′ and could not guarantee the consistency of the resulting
store.

Nondeterminism and parallelism. The composition operators + and ‖ are not
modified w.r.t. the classical ones: a parallel agent will succeed if all the agents
succeeds; a nondeterministic rule chooses any agent whose guard succeeds.

Hidden variables. The semantics of the existential quantifier is similar to that
described in [Saraswat 1993] by using the notion of freshness of the new variable
added to the store.

Procedure calls. The semantics of the procedure call is not modified w.r.t. the
classical one: as usual, we use the notion of diagonal constraints (as defined in
Definition 3.13) to model parameter passing.

4.1 Eventual Tell/Ask

We recall that both ask and tell operations in cc could be either atomic (that is,
if the corresponding check is not satisfied, the agent does not evolve) or eventual
(that is, the agent evolves regardless of the result of the check). It is interesting to
notice that the transition rules defined in Table III could be used to provide both
interpretations of the ask and tell operations. In fact, while the generic tell/ask
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rule represents an atomic behaviour, by setting φ = 0 or a = 0 we obtain their
eventual version:

〈tell(c) → A, σ〉 −→ 〈A, σ ⊗ c〉 (Eventual tell)

σ ⊢ c

〈ask(c) → A, σ〉 −→ 〈A, σ〉
(Eventual ask)

Notice that, by using an eventual interpretation, the transition rules of the scc
become the same as those of cc (with an eventual interpretation too). This happens
since, in the eventual version, the tell/ask agent never checks for consistency and
so the soft notion of α-consistency does not play any role.

5. A SIMPLE EXAMPLE

In this section we will show the behaviour of some of the rules of our transition sys-
tem. We consider in this example a soft constraint system over the fuzzy semiring.
Consider the fuzzy constraints

c : {x, y} → R
2 → [0, 1] s.t. c(x, y) =

1

1 + |x− y|
and

c′ : {x} → R → [0, 1] s.t. c′(x) =

{

1 if x ≤ 10,

0 otherwise.

Notice that the domain of both variables x and y is in this example any integer (or
real) number. As any fuzzy CSP, the codomain of the constraints is instead in the
interval [0, 1]5.

Let’s now evaluate the agent

〈tell(c) →0.4 ask(c′) →0.8 success, 1〉

in the empty starting store 1. Note that also here the empty store 1 is just the store
containing the constraint 〈∅ → 1, ∅〉 with empty support and that assign always the
semiring level 1 to any assignment.

By applying the Valued-tell rule we need to check (1⊗c) ⇓∅ 6< 0.4. Since 1⊗c = c
and c ⇓∅= 1, the agent can perform the step, and it reaches the state

〈ask(c′) →0.8 success, c〉.

Now we need to check (by following the rule of Valued-ask) if c ⊢ c′ and c ⇓∅ 6< 0.8.
While the second relation easily holds, the first one does not hold (in fact, for x = 11
and y = 10 we have c′(x) = 0 and c(x, y) = 0.5).

If instead we consider the constraint c′′(x, y) = 1
1+2×|x−y| in place of c′, then we

have

〈ask(c′′) →0.8 success, c〉.

5In this case the number of domain elements in D having semiring value different from 0 is not

finite; however, since we do not use the hiding operator we have no computational tractability
problem.
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Here the condition c ⊢ c′′ easily holds and the agent ask(c′′) →0.8 success can
perform its last step, reaching the success state:

〈success, c⊗ c′′〉.

6. OBSERVABLES AND CUTS

Sometimes one could desire to see an agent, and a corresponding program, execute
with a cut level which is different from the one originally given. We will therefore
define cutψ(A) the agent A where all the occurrences of any cut level, say φ, in any
subagent of A or in any clause of the program, are replaced by ψ if φ ⊑ ψ. This
means that the cut level of each subagent and clause becomes at least ψ, or is left
to the original level. Informally, using the cut ψ we want to obtain (if possible) a
solution not lower than ψ, so, all the ask/tell checks have to be increased in order
to cut away computation with a store not better than ψ. Similar cuts can be also
done using semiring levels a instead of constraints ψ.

Definition 6.1 (cut function). Consider an scc agent A; we define the functions
cutψ : A→ A and cuta : A→ A that transforms ask and tell subagents as follows:

cutψ(ask/tell(c) →φ) =

{

ask/tell(c) →ψ if φ ⊏ ψ,

ask/tell(c) →φ otherwise.

cuta(ask/tell(c) →a′) =

{

ask/tell(c) →a if a′ ≤ a,

ask/tell(c) →a′ otherwise.

By definition, it is easy to see that cut0(A) = cut0(A) = A.
We can then prove the following Lemma (some of them will be useful later):

Lemma 6.2 (tell and ask cut). Consider the Tell and Ask rules of Table III,
and the constraints σ and c as defined in such rules. Then:

—If the Tell rule can be applied to agent A, then the rule can be applied also to
cutψ(A) when ψ ⊑ σ ⊗ c.

—If the Ask rule can be applied to agent A, then the rule can be applied also to
cutψ(A) when ψ ⊑ σ.

—If the Valued-tell rule can be applied to agent A, then the rule can be applied also
to cuta(A) when a ≤ (σ ⊗ c) ⇓∅.

—If the Valued-ask rule can be applied to agent A, then the rule can be applied also
to cuta(A) when a ≤ σ ⇓∅.

Proof. We will prove only the first item; the others can be easily proved by
using the same ideas. By the definition of the tell transition rules of Table III, if
we can apply the rule it means that A ::= tell(c) →φ A

′ and if σ is the store we
have σ ⊗ c 6⊏ φ. Now, by definition of cutψ, we can have

—cutψ(A) ::= tell(c) →ψ cutψ(A′) when φ ⊏ ψ,

—cutψ(A) ::= tell(c) →φ cutψ(A′) when φ 6⊏ ψ.
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In the first case, by hypothesis we have σ ⊗ c 6⊏ φ, which together with φ ⊏ ψ
implies σ ⊗ c 6⊏ φ, which is the required condition for the application of the Tell
rule. In the second case, the statement directly holds by the hypothesis over A that
σ ⊗ c 6⊏ φ.

It is now interesting to notice that the thresholds appearing in the program are
related to the final computed stores:

Theorem 6.3 (thresholds). Consider an scc computation

〈A,1〉 → 〈A1, σ1〉 → . . . 〈An, σn〉 → 〈success, σ〉

for a program P , and let a = σ ⇓∅. Then, also

〈cutσ(A),1〉 → 〈cutσ(A1), σ1〉 → . . . 〈cutσ(An), σn〉 → 〈success, σ〉 (1)

and

〈cuta(A),1〉 → 〈cuta(A1), σ1〉 → . . . 〈cuta(An), σn〉 → 〈success, σ〉 (2)

are scc computations for program P .

Proof. First of all, notice that during the computation an agent can only add
constraints to the store. So, since × is intensive, the store can only monotonically
decrease starting from the initial store 1 and ending in the final store σ. So we
have

1 ⊒ σ1 . . . ⊒ σn ⊒ σ.

Notice also that we have

1 ≤ σ1 ⇓∅ . . . ≤ σn ⇓∅≤ σ ⇓∅= a.

We will prove (1) ((2) can be proven in the same way). The statement follows by
applying at each step the results of Lemma 6.2. In fact, at each step the hypothesis
of the lemma hold:

—the cut σ is always lower than the current store (σ ⊑ σi ⊗ c);

—the ask and tell operations can be applied (moving from agent Ai to agent Ai+1).

6.1 Capturing Success Computations

Given the transition system as defined in the previous section, we now define what
we want to observe of the program behaviour as described by the transitions. To
do this, we define for each agent A the set of constraints

SA = {σ ⇓var(A)| 〈A,1〉 →
∗ 〈success, σ〉}

that collects the results of the successful computations that the agent can perform.
Notice that the computed store σ is projected over the variables of the agent A to
discard any fresh variable introduced in the store by the ∃ operator.

The observable SA could be refined by considering, instead of the set of suc-
cessful computations starting from 〈A,1〉, only a subset of them. For example,
one could be interested in considering only the best computations: in this case,
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all the computations leading to a store worse than one already collected are dis-
regarded. With a pessimistic view, the representative subset could instead collect
all the worst computations (that is, all the computations better than others are
disregarded). Finally, also a set containing both the best and the worst compu-
tations could be considered. These options are reminiscent of Hoare, Smith and
Egli-Milner powerdomains respectively [Plotkin 1981].

At this stage, the difference between don’t know and don’t care nondeterminism
arises only in the way the observables are interpreted: in a don’t care approach,
agent A can commit to one of the final stores σ ⇓var(A), while, in a don’t know
approach, in classical cc programming it is enough that one of the final stores is
consistent. Since existential quantification corresponds to the sum in our semiring-
based approach, for us a don’t know approach leads to the sum (that is, the lub)
of all final stores:

S
dk
A =

⊕

σ∈SA

σ.

It is now interesting to notice that the thresholds appearing in the program are
related also to the observable sets:

Proposition 6.4 (Thresholds and SA (1)). For each ψ, we have SA ⊇
Scutψ(A).

Proof. By definition of cuts (Definition 6.1), we can modify the agents only by
changing the thresholds with a new level, greater than the previous one. So, easily,
we can only cut away some computations.

Corollary 6.5 (Thresholds and SdkA (1)). For each ψ, we have SdkA ⊇
Sdk
cutψ(A).

Proof. It follows from the definition of SdkA and from Proposition 6.4.

Theorem 6.6 (Thresholds and SA (2)). Let ψ ⊑ glb{σ ∈ SA}. Then SA =
Scutψ(A).

Proof. By Proposition 6.4, we have SA ⊇ Scutψ(A). Moreover, since ψ is lower
than all σ in SA, by Theorem 6.3 we have that all the computations are also in
Scutψ(A). So, the statement follows.

Notice that, thanks to Theorem 6.6 and to Proposition 6.4, whenever we have
a lower bound ψ of the glb of the final solutions, we can use ψ as a threshold to
eliminate some computations. Moreover, we can prove the following theorem:

Theorem 6.7. Let σ ∈ SA and σ 6∈ Scutψ(A). Then we have σ ⊏ ψ.

Proof. If σ ∈ SA and σ 6∈ Scutψ(A), it means that the cut eliminates some
computations. So, at some step we have changed the threshold of some tell or ask
agent. In particular, since we know by Theorem 6.3 that when ψ ⊑ σ we do not
modify the computation, we need ψ 6⊑ σ. Moreover, since the tell and ask rules fail
only if σ ⊏ ψ, we easily have the statement of the theorem.

The following theorem relates thresholds and SdkA .
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Theorem 6.8 (Thresholds and SdkA (2)). Let ΨA = {σ ∈ SA | ∄σ′ ∈
SA with σ′

⊐ σ} (that is, ΨA is the set of “greatest” elements of SA). Let also
ψ ⊑ glb{σ ∈ ΨA}. Then SdkA = Sdk

cutψ(A).

Proof. Since we have a + b = b ⇐⇒ a ≤ b, we easily have
⊕

σ∈SA
σ =

⊕

σ∈ΨA
σ. Now, by following a reasoning similar to Theorem 6.6, by applying a

cut with a threshold ψ ⊑ glb{σ ∈ ΨA} we do not eliminate any computation. So
we obtain SdkA =

⊕

σ∈SA
σ =

⊕

σ∈ΨA
σ = Sdk

cutψ(A).

Lemma 6.9. Given any constraint ψ, we have:

S
dk
A ⊑ ψ ⊕ S

dk
cutψ(A).

Proof. SdkA = lub(SA) and Sdk
cutψ(A) = lub(Scutψ(A)). Easily to see, Scutψ(A) ⊆

SA. The solutions that have been eliminated by the cut ψ (that is, all the σ ∈
SA − Scutψ(A)) are all lower than ψ by Theorem 6.7. So, it easily follows that

SdkA ⊑ ψ ⊕ Sdk
cutψ(A).

Theorem 6.10. Given any constraint ψ, we have:

S
dk
cutψ(A) ⊑ S

dk
A ⊑ ψ ⊕ S

dk
cutψ(A).

Proof. From Corollary 6.5, we have Sdk
cutψ(A) ⊑ SdkA . From Lemma 6.9 we have

instead SdkA ⊑ ψ ⊕ Sdk
cutψ(A).

This theorem suggests a way to cut useless computations while generating the
observable SdkA of an scc program P starting from agent A. A very naive way to
obtain such an observable would be to first generate all final states, of the form
〈success, σi〉, and then compute their lub. An alternative, smarter way to compute
this same observable would be to do the following. First we start executing the
program as it is, and find a first solution, say σ1. Then we restart the execution
applying the cut level σ1.

By Theorem 6.8, this new cut level cannot eliminate solutions which influence
the computation of the observable: the only solutions it will cut are those that are
lower than the one we already found, thus useless in terms of the computation of
SdkA .

In general, after having found solutions σ1, . . . , σk, we restart execution with cut
level ψ = σ1⊕ . . .⊕σk. Again, this will not cut crucial solutions but only some that
are lower than the sum of those already found. When the execution of the program
terminates with no solution we can be sure that the cut level just used (which is
the sum of all solutions found) is the desired observable (in fact, by Theorem 6.10
when Sdk

cutψ(A) = ψ we necessarily have Sdk
cutψ(A) = SdkA = ψ).

In a way, such an execution method, that we will call algorithm A1, resembles
a branch & bound strategy, where the cut levels have the role of the bounds.
Notice also that since classical crisp constraints can be represented in the soft CSP
framework using a suitable semiring, all the branch & bound results could easily
be extended also to the original cc.

The following corollary is important to show the correctness of this approach.
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Corollary 6.11. Given any constraint ψ ⊑ SdkA , we have:

S
dk
A = ψ ⊕ S

dk
cutψ(A).

Proof. It easily comes from Theorem 6.10.

Let us now use this corollary to prove the correctness of the whole procedure
above.

First, we start by considering a similar algorithm, that we call A2. At the first
step, it executes agent A and computes σ1. At step i+1, it executes agent cutσi(A),
where σi is the solution computed at step i. When no more solutions are found,
the algorithm terminates by collecting the set of all solutions found in the set Ψ′

A.
We will now prove that this algorithm is correct, that is,

⊕

σ∈Ψ′

A
σ = SdkA .

If the algorithm stops after one step, what we have to prove is SdkA = σ1⊕Sdk
cutσ1 (A).

Since σ1 is for sure lower than SdkA , this is true by Corollary 6.11.
Let us now assume that the algorithm stops after k steps and collects a set of

solutions Ψ′
A = {σ1, . . . , σk}. We recall that SdkA =

⊕

σ∈ΨA
σ where ΨA = {σ ∈

SA |6 ∃σ′ ∈ SA with σ′
⊐ σ}. Easily to see, Ψ′

A is a superset of ΨA, since we could
collect a final state σi before computing a final state σj ⊒ σi; in this case both will
be present in Ψ′

A but only σj will be present in ΨA. However, even if Ψ′
A contains

more elements than ΨA, we have
⊕

σ∈Ψ′

A
=

⊕

σ∈ΨA
, since + is idempotent and it

is the least upper bound of the lattice.
We now notice that the only difference between algorithms A2 and A1 is that,

at each step, A1 performs a cut by using the sum of all the previously computed
final states. This means that, at each step, A1 can eliminate more computations,
but, by the results of Theorem 6.7, the eliminated computations do not change the
final result. So, since we proved A2 to be correct, A1 is correct too.

6.2 Failure

The transition system we have defined considers only successful computations. If
this could be a reasonable choice in a don’t know interpretation of the language it
will lead to an insufficient analysis of the behaviour in a pessimistic interpretation
of the indeterminism. To capture agents’ failure, we add the transition rules of
Table IV to those of Table III.

(Valued)tell1/ask1. The failing rule for ask and tell simply checks if the
added/checked constraint c is inconsistent with the store σ and in this case stops
the computation and gives fail as a result. Note that since we use soft constraints
we enriched this operator with a threshold (a or φ). This is used also to compute
failure. If the level of consistency of the resulting store is lower than the threshold
level, then this is considered a failure.

Nondeterminism1. The computation fails only when all the branches fail.

Parallelism1. In this case the computation fails as soon as one of the branches
ails.

The observables of each agent can now be enlarged by using the function

FA = {fail | 〈A,1V 〉 →
∗ fail}

that computes a failure if at least a computation of agent A fails.
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Table IV. Failure in the scc language

σ ⊗ c ⊏ φ

〈tell(c) →φ A, σ〉 −→ fail
(Tell1)

(σ ⊗ c) ⇓∅< a

〈tell(c) →a A, σ〉 −→ fail
(Valued-tell1)

σ ⊏ φ

〈ask(c) →φ A, σ〉 −→ fail
(Ask1)

σ ⇓∅< a

〈ask(c) →a A, σ〉 −→ fail
(Valued-ask1)

〈E1, σ〉 −→ fail

〈E1 + E2, σ〉 −→ 〈E2, σ〉

〈E2 + E1, σ〉 −→ 〈E2, σ〉

(Nondeterminism1)

〈A1, σ〉 −→ fail

〈A1‖A2, σ〉 −→ fail

〈A2‖A1, σ〉 −→ fail

(Parallelism1)

By considering also the failing computations, the difference between don’t know
and don’t care becomes finer. In fact, in situations where we have SA = SdkA ,
the failing computations could make the difference: in the don’t care approach the
notion of failure is existential and in the don’t know one becomes universal [de Boer
and Palamidessi 1994]:

F
dk
A = {fail | all computations of A lead to fail}.

This means that in the don’t know nondeterminism we are interested in observing
a failure only if all the branches fail. In this way, given an agent A with an empty
SdkA and a non-empty FdkA , we cannot say for sure that the semantics of this agent is
fail. In fact, the transition rules we have defined do not consider hang and infinite
computations. Similar semi-decibility results for soft constraint logic programming
are proven in [Bistarelli et al. 2001].

7. AN EXAMPLE FROM THE NETWORK SCENARIO

We consider in this section a simple network problem, involving a set of processes
running on distinct locations and sharing some variables, over which they need to
synchronize, and we show how to model and solve such a problem in scc.

Each process is connected to a set of variables, shared with other processes, and
it can perform several moves. Each of such moves involves performing an action
over some or all the variables connected to the process. An action over a variable
consists of giving a certain value to that variable. A special value “idle” models the
fact that a process does not perform any action over a variable. Each process has
also the possibility of not moving at all: in this case, all its variables are given the
idle value.

The set of possible moves a process can perform is represented by a constraint.
The constraint assigns to each possible move a semiring element representing the
cost of that particular move.
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Fig. 2. The SCSP describing part of a process network

The desired behavior of a network of such processes is that, at each move of the
entire network:

(1) processes sharing a variable perform the same action over it;

(2) all processes try to perform a non-idle move.

To describe a network of processes with these features, we use an SCSP where
each variable models a shared variable, and each constraint models a process and
connects the variables corresponding to the shared variables of that process. The
domain of each variable in this SCSP is the set of all possible actions, including the
idle one. Each way of satisfying a constraint is therefore a tuple of actions that a
process can perform on the corresponding shared variables.

In this scenario, softness can be introduced both in the domains and in the
constraints. In particular, since we prefer to have as many moving processes as
possible, we can associate a penalty to both the idle element in the domains, and
to tuples containing the idle action in the constraints. As for the other domain
elements and constraint tuples, we can assign them suitable preference values to
model how much we like that action or that process move.

For example, we can use the semiring S = 〈[−∞, 0],max,+,−∞, 0〉, where 0 is
the best preference level (or, said dually, the weakest penalty), −∞ is the worst
level, and preferences (or penalties) are combined by summing them. According
to this semiring, we can assign value −∞ to the idle action or move, and suitable
other preference levels to the other values and moves.

This semiring allows us to model the optimization criterion described above.
However, it is also possible to add other optimization criteria, via the pairing of the
above semiring with a different one (see section 2.2.2. For example if want to also
assign a level of importance to each move, and to maximize the minimum level of
importance, we can pair the above semiring with the fuzzy one.
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Figure 2 gives the details of a part of a network and it shows eight processes
(that is, c1, . . . , c8) sharing a total of six variables. In this example, we assume that
processes c1, c2 and c3 are located on site a, processes c5 and c6 are located on
site b, and c4 is located on site c. Processes c7 and c8 are located on site d. Site e
connects this part of the network to the rest. Therefore, for example, variables xd,
yd and zd are shared between processes located in distinct locations.

As desired, finding the best solution for the SCSP representing the current state
of the process network means finding a move for all the processes such that they
perform the same action on the shared variables, the overall cost of the moves is
minimized, and there is no idle process. However, since the problem is inherently
distributed, it does not make sense, and it might not even be possible, to cen-
tralize all the information and give it to a single soft constraint solver. On the
contrary, it may be more reasonable to use several soft constraint solvers, one for
each network location, which will take care of handling only the constraints present
in that location. Then, the interaction between processes in different locations, and
the necessary agreement to solve the entire problem, will be modelled via the scc
framework, where each agent will represent the behaviour of the processes in one
location.

More precisely, each scc agent (and underlying soft constraint solver) will be in
charge of receiving the necessary information from the other agents (via suitable
asks) and using it to achieve the synchronization of the processes in its location.
For this protocol to work, that is, for obtaining a global optimal solution without
a centralization of the work, the SCSP describing the network of processes has to
have a tree-like shape, where each node of the tree contains all the processes in a
location, and the agents have to communicate from the bottom of the tree to its
root. In fact, the proposed protocol uses a sort of Dynamic Programming technique
to distribute the computation between the locations. In this case the use of a tree
shape allows us to work, at each step of the algorithm, only locally to one of the
locations. In fact, a non tree shape would lead to the construction of non-local
constraints and thus require computations which involve more than one location at
a time. This avoids backtracking. In fact, in a tree-like net structure, as the one of
this example, there is no need to backtrack: if pieces are solved bottom-up, there is
no failure. Therefore, this solution scheme is an instance of dynamic programming
where the small subproblems consist of the constraints in the single sites. Solving
the subproblems and combining their solution (using agent Ad) is enough to obtain
the global optimal solution.

In our example, the tree structure we will use is the one shown in Figure 3(a),
which also shows the direction of the child-parent relation links (via arrows). Fig-
ure 3(b) describes instead the partition of the SCSP over the four involved locations.
The gray connections represent the synchronization to be assured between distinct
locations. Notice that, w.r.t. Figure 2, we have duplicated the variables represent-
ing variables shared between distinct locations, because of our desire to first perform
a local work and then to communicate the results to the other locations. It is im-
portant to highlight that we do not need to perform any backtracking steps for the
synchronization of the several local computations. The computation is performed
independently in each locations. Only later the resulting constraint stores are com-
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(a) A possible tree structure for our net-
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(b) The SCSP partitioned over the four locations.

Fig. 3. The ordered process network

bined giving raise to the final store. The final store represent the combination of
all the requirement imposed in a distributive fashion over the locations.

The scc agents (one for each location plus the parallel composition of all of them)
are therefore defined as follows:

Aa : ∃ua(tell(c1(xa, ua) ∧ c2(ua, ya) ∧ c3(xa, ya)) →φ1
tell(enda = true) → success)

Ab : ∃vb(tell(c5(yb, vb) ∧ c6(zb, vb)) →φ2
tell(endb = true) → success)

Ac : ∃wc(tell(c4(xc, wc, zc)) →φ3
tell(endc = true) → success)

Ad : ask(enda = true ∧ endb = true ∧ endc = true∧) →φ

tell(c7(xd, yd) ∧ c8(xd, yd, zd) ∧ xa = xd = xc ∧ ya = yd = yb ∧ zb = zd = zc)

→ success)

A : Aa | Ab | Ac | Ad

Agents Aa,Ab,Ac and Ad represent the processes running respectively in the
location a, b, c and d. Note that, at each ask or tell, the underlying soft constraint
solver will only check (for a level of consistency or entailment) a part of the current
set of constraints: those local to one location. Due to the tree structure chosen for
this example, where agents Aa, Ab, and Ac correspond to leaf locations, only agent
Ad shows all the actions of a generic process: first it needs to collect the results
computed separately by the other agents (via the ask); then it performs its own
constraint solving (via a tell), and finally it can set its end flag, that will be used by
a parent agent (in this case the agent corresponding to location e, which we have
not modelled here).

The thresholds φi of the first three agents are used to stop the computation
locally if the best way to assign values to the local variables is not good enough (at

ACM Transactions on Computational Logic, Vol. V, No. N, June 2004.



Soft Concurrent Constraint Programming · 25

least φi). In this way, the synchronization among sites is not perfomed if a local
agent discovers that there is no satisfactory scenario. If all local agents pass their
threshold check, then the last agent (Ad) can perform the syncronization. However,
it can use a threshold as well (φ) to avoid the syncronization because of its own
satisfactory notion. Notice that the four agents can have different thresholds, since
they run on different sites with possibly different policies. For example, different
administrative domains over the Internet (which would be represented by sites
a,b,c,d in this example) can have different regulations over quality of services.

8. CONCLUSIONS AND FUTURE WORK

We started our work by realizing the need for handling preferences in Web-related
scenarios. To address this need, we have defined soft cc, where soft constraints can
be used both at the solver level, to make the notion of consistency more tolerant,
and at the language level, to provide an explicit way to deal with approximations
and satisfaction levels.

We see soft cc as a first step towards the possibility of using high level declarative
languages for Web programming. Of course there are many more aspects to consider
to make the language rich enough to be practically usable. However, soft constraints
have already shown their usefulness in describing security protocols (see [Bella
and Bistarelli 2001; 2002]) and integrity policies (see [Bistarelli and Foley 2003a;
2003b]). We are already considering the introdution of some other features in the
language. For instance we could extend the Semantics of the language by observing
only the semiring levels associated to the blevel of the final stores. We could observe
all the reachable semiring levels (in a fashion similar to the set SA), or only the best
one (in a fashion similar to the set SdkA ). We plan also to investigate the possibility
to use techniques similar to those described in section 6.1 to cut computations
which are useless w.r.t. this new observables.

We are also considering the possibility of adding soft cc primitives inside other
concurrent frameworks, such as Klaim [Nicola et al. 1998] or KAOS [De Nicola et al.
2003] where soft constraints, combined with name unification, are already used for
defining access rights and costs in routing.
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