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Abstract. We propose a timed and soft extension of Concurrent Con-
straint Programming. The time extension is based on the hypothesis of
bounded asynchrony: the computation takes a bounded period of time
and is measured by a discrete global clock. Action prefixing is then con-
sidered as the syntactic marker which distinguishes a time instant from
the next one. Supported by soft constraints instead of crisp ones, tell and
ask agents are now equipped with a preference (or consistency) thresh-
old which is used to determine their success or suspension. In the paper
we provide a language to describe the agents behavior, together with
its operational and denotational semantics, for which we also prove the
compositionality and correctness properties. Agents negotiating Quality
of Service can benefit from this new language, by coordinating among
themselves and mediating their preferences.

1 Introduction

Time is a particularly important aspect of cooperative environments. In many
“real-life” computer applications, the activities have a temporal duration (that
can be even interrupted) and the coordination of such activities has to take into
consideration this timeliness property. The interacting actors are mutually in-
fluenced by their actions, meaning that A reacts accordingly to the timeliness
and “quality” of B’s behavior and vice versa. In fact, these interactions can be
often related to quantities to be measured or minimized/maximized, in order
to take actions depending from this result: consider, for example, some generic
communicating-agents that need to negotiate a desired Quality of Service (QoS).
In this case, they both need to coordinate through time-dependent decisions and
to quantify and publish their respective requirements. These agents can be in-
stantiated to concrete instances, such as web services, internet QoS architectures
and mechanisms that provide QoS, workflows and, in general, software agents.
? The first and fourth authors are supported by the MIUR PRIN 2005-015491.



In [8] Timed Concurrent Constraint Programming (tccp), a timed extension
of the pure formalism of Concurrent Constraint Programming (ccp) [19], is in-
troduced. This extension is based on the hypothesis of bounded asynchrony (as
introduced in [20]): computation takes a bounded period of time rather than
being instantaneous as in the concurrent synchronous languages ESTEREL [1],
LUSTRE [12], SIGNAL [15] and Statecharts [13]. Time itself is measured by a dis-
crete global clock, i.e, the internal clock of the tccp process. In [8] they also
introduced timed reactive sequences which describe at each moment in time the
reaction of a tccp process to the input of the external environment. Formally,
such a reaction is a pair of constraints 〈c, d〉, where c is the input given by the
environment and d is the constraint produced by the process in response to c
(due to the monotonicity of ccp computations, c includes always the input).

Soft constraints [2, 3] extend classical constraints to represent multiple con-
sistency levels, and thus provide a way to express preferences, fuzziness, and un-
certainty. The ccp framework has been extended to work with soft constraints [4],
and the resulting framework is named Soft Concurrent Constraint Programming
(sccp). With respect to ccp, in sccp the tell and ask agents are equipped with a
preference (or consistency) threshold which is used to determine their success,
failure, or suspension, as well as to prune the search; these preferences should
preferably be satisfied but not necessarily (i.e. over-constrained problems).

In this paper we introduce a timed and soft extension of ccp that we call
Timed Soft Concurrent Constraint Programming (tsccp), inheriting from both
tccp and sccp at the same time. In tccp, action-prefixing is interpreted as the
next-time operator and the parallel execution of agents follows the scheduling
policy of maximal parallelism. Additionally, tccp includes a simple new primitive
which allows to specify timing constraints. We adopt soft constraints (and the
related sccp) instead of crisp ones, since we are sure that classic constraints
can show evident limitations if applied to entities interactions, mainly because
they do not appear to be very flexible when trying to represent real-life scenarios,
where the knowledge is not completely available nor crisp. The introduced Timed
Soft Concurrent Constraint (tscc) language, together with its semantics, results
in a formal framework where it is possible to solve QoS related problems.

The agents use the centralized constraint store in order to ensure their com-
munity acts in a coherent manner, where “coherence” refers to how well a system
of agents behaves as a unit. With tccp, the agent coordination is enriched with
both timed and quantitative/qualitative aspects at the same time; this represents
the most important expressivity improvement w.r.t. related works (see Sec. 8).
One of the most straightforward applications is represented by the modelling of
negotiation and management of resources, since both time and preference are
naturally part of the problem. In Sec. 7 we show an example where we model an
auction process, which can be seen as a particular instance of negotiation.

In Sec. 2 we sum up the most important background notions and frame-
works from which tsccp derives, i.e. tccp and sccp. In Sec. 3 the tscc language
is presented for the first time. Then, Sec. 4 and Sec. 5 respectively describe the
operational and denotational semantics of the tscc agents. Section 6 outlines the



proof of the denotational model correctness with the aid of connected reactive
sequences. At last, Sec. 7 shows an application example of the language and
Sec. 8 concludes by discussing related work and indicating future research.

2 Background

2.1 Soft Concurrent Constraint System

A semiring is a tuple 〈A, +,×,0,1〉 such that: i) A is a set and 0,1 ∈ A; ii)
+ is commutative, associative and 0 is its unit element; iii) × is associative,
distributes over +, 1 is its unit element and 0 is its absorbing element. A c-
semiring is a semiring 〈A, +,×,0,1〉 such that: + is idempotent, 1 is its absorbing
element and × is commutative. Let us consider the relation ≤S over A such that
a ≤S b iff a + b = b. Then it is possible to prove that (see [3]): i) ≤S is a
partial order; ii) + and × are monotone on ≤S ; iii) 0 is its minimum and 1 its
maximum; iv) 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a+ b = lub(a, b)
(where lub is the least upper bound). 〈A,≤S〉 is a complete distributive lattice
and × its glb (greatest lower bound). Informally, the relation ≤S gives us a way
to compare semiring values and constraints: when we have a ≤S b, we will say
that b is better than a. In the following, when the semiring will be clear from the
context, a ≤S b will be often indicated by a ≤ b.

A soft constraint [2, 3] may be seen as a constraint where each instantiation
of its variables has an associated preference. Given a semiring S = 〈A, +,×,0,1〉
and a set of variables V over a finite domain D, a soft constraint is a function
which, given an assignment η : V → D of the variables, returns a value of the
semiring. Using this notation C = η → A is the set of all possible constraints
that can be built starting from S, D and V .

Any function in C involves all the variables in V , but we impose that it
depends on the assignment of only a finite subset of them. So, for instance, a
binary constraint cx,y over variables x and y, is a function cx,y : V → D → A,
but it depends only on the assignment of variables {x, y} ⊆ V (the support of
the constraint, or scope). Note that cη[v := d1] means cη′ where η′ is η modified
with the assignment v := d1. The partial order ≤ over A can be easily extended
among constraints by defining c1 v c2 ⇐⇒ c1η ≤ c2η.

Given the set C, the combination function ⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η × c2η (see also [2–4]). Informally, performing the ⊗ between
two constraints means building a new constraint whose support involves all the
variables of the original ones, and which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying the
elements associated by the original constraints to the appropriate sub-tuples.

Given a constraint c ∈ C and a variable v ∈ V , the projection [2–4] of c
over V − {v}, written c ⇓(V−{v}) is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d].

Informally, projecting means eliminating some variables from the support. This
is done by associating with each tuple over the remaining variables a semiring
element which is the sum of the elements associated by the original constraint
to all the extensions of this tuple over the eliminated variables.



To treat the hiding operator of the language, a general notion of existential
quantifier is introduced by using notions similar to those used in cylindric alge-
bras. Consider a set of variables V with domain D and the corresponding soft
constraint system C. For each x ∈ V the hiding function [2, 4] is the function
(∃xc)η =

∑
di∈D cη[x := di].

To model parameter passing, for each x, y ∈ V a diagonal constraint [2, 4]
is defined as dxy ∈ C s.t., dxyη[x := a, y := b] = 1 if a = b and dxyη[x :=
a, y := b] = 0 if a 6= b. Now it is possible to define a constraint systems “a la
Saraswat” [4]. Consider the set C and the partial order v. Then an entailment
relation `⊆ ℘(C) × C is defined s.t. for each C ∈ ℘(C) and c ∈ C, we have
C ` c ⇐⇒ ⊗

C v c (see also [2, 4]). Notice that in sccp, algebricity is not
required, since the algebraic nature of the structure C strictly depends on the
properties of the semiring [4].

If we consider a semiring S = 〈A, +,×,0,1〉, a domain of the variables D, a
set of variables V , the corresponding structure C, then SC = 〈C,⊗, 0̄, 1̄,∃x, dxy〉5
is a cylindric constraint system [4].

2.2 Timed Concurrent Constraint Programming

When querying the store for some information which is not present (yet), a (s)ccp
agent will simply suspend until the required information has arrived. In timed
applications however often one cannot wait indefinitely for an event. Consider
for example the case of a connection to a web service providing some on-line
banking facility. In case the connection cannot be established, after a reasonable
amount of time an appropriate time-out message has to be communicated to
the user. A timed language should then allow us to specify that, in case a given
time bound is exceeded (i.e. a time-out occurs), the wait is interrupted and an
alternative action is taken.

In order to be able to specify this kind of timing constraints, in [20] and [8] the
authors introduced a different timed extension of ccp (the differences between
these two languages are explained in [8]). In particular, the timed ccp (tccp)
language defined in [8] introduces a discrete global clock and assumes that ask
and tell actions take one time-unit. Computation evolves in steps of one time-
unit, so called clock-cycles, which are syntactically separated by action prefixing.
Moreover maximal parallelism is assumed, that is at each moment every enabled
agent of the system is activated (this implies that parallel processes are executed
on different processors). Finally in tccp it is introduced a primitive construct of
the form now c then A else B which can be interpreted as follows: if the
constraint c is entailed by the store at the current time t then the above agent
behaves as A at time t, otherwise it behaves as B at time t. By using the now
construct one can express time-out, preemption and other timed programming
idioms. For example, the agent now c then A else ask(true) → (now c then
A else B) waits at most two time unit for the satisfaction of the guard c: If the

5 0̄ and 1̄ that represent respectively the constraints associating 0 and 1 to all the
assignment of domain values.



guard is satisfied (in two time units) then the agent behaves as A, otherwise as
B. By using an inductive definition it is easy to define in terms of the now the
more general time-out agent (Σn

i=1ask(ci) −→ Ai) timeout(m)B which allows
to wait at most m time units for the satisfaction of one of the guards (see [8]).

3 Timed Soft Concurrent Constraint Programming

In this section we present the tscc language, which originates from both tccp
and sccp. To obtain tscc we extend the cc language by introducing constructs to
handle the cut level and constructs to handle temporal aspects. More precisely,
we inherit from sccp the tell and ask constructs enriched by a threshold, which
allows to specify when the agents have to succeed or to suspend. Moreover we de-
rive from tccp the timing construct now c then A else B previously mentioned.
However, differently from the case of tccp, the now operator here is modified by
using thresholds, analogously to the case of tell and ask.

Definition 1 (tscc Language). Given a soft constraint system 〈S,D, V 〉, the
corresponding structure C, any semiring value a and any constraint φ ∈ C, the
syntax of the tscc language is given by the following grammar:

P ::= F.A
F ::= p(x) :: A
A ::= success | tell(c) →Φ A | tell(c) →a A | E | A ‖ A | ∃xA | p(x) |

Σn
i=1Ei | nowΦ c then A else B | nowa c then A else B

E ::= ask(c) →Φ A | ask(c) →a A

where, as usual, P is the class of processes, F is the class of sequences of proce-
dure declarations (or clauses), A is the class of agents. The c is supposed to be a
soft constraint in C. A tsccp process P is then an object of the form F.A, where
F is a set of procedure declarations of the form p(x) :: A and A is an agent.

In the following, given an agent A, we denote by Fv(A) the set of the free
variables of A (namely, the variables which do not appear in the scope of the
∃ quantifier). As previously mentioned, differently from the original cc syntax
in tsccp we have a semiring element a and constraint φ to be checked whenever
an ask or tell operation is performed. Intuitively the level a (resp., φ) will be
used as a cut level to prune computations that are not good enough. These
levels, with an analogous meaning, are present also in the now c then A else
B construct, differently from all the previous cc like languages. The remaining
of the syntax is standard: Action prefixing is denoted by →, Σ denotes guarded
choice, ‖ indicates parallel composition and a notion of locality is introduced by
the agent ∃xA which behaves like A with x considered local to A, thus hiding
the information on x provided by the external environment. In the following we
also assume guarded recursion, that is we assume that each procedure call is in
the scope of either an ask or a tell construct.



4 An Operational Semantics for tsccp Agents

The operational model of tscc agents can be formally described by a transition
system T = (Conf ,−→) where we assume that each transition step takes exactly
one time-unit. Configurations (in) Conf are pairs consisting of a process and a
constraint in C representing the common store. The transition relation −→⊆
Conf × Conf is the least relation satisfying the rules R1-R17 in Fig. 1 and
characterizes the (temporal) evolution of the system. So, 〈A, γ〉 −→ 〈B, δ〉 means
that if at time t we have the process A and the store γ then at time t + 1 we
have the process B and the store δ. Let us now briefly discuss the rules in Fig. 1.

R1
(σ ⊗ c) ⇓∅ 6< a

〈tell(c) →a A, σ〉 −→ 〈A, σ ⊗ c〉 V-tell

R2
σ ⊗ c 6@ φ

〈tell(c) →φ A, σ〉 −→ 〈A, σ ⊗ c〉 Tell

R3
σ ` c σ ⇓∅ 6< a

〈ask(c) →a A, σ〉 −→ 〈A, σ〉 V-ask

R4
σ ` c σ 6@ φ

〈ask(c) →φ A, σ〉 −→ 〈A, σ〉 Ask

R5
〈A, σ〉 −→ 〈A′, σ ⊗ δ〉 〈B, σ〉 −→ 〈B′, σ ⊗ δ′〉

〈A ‖ B, σ〉 −→ 〈A′ ‖ B′, σ ⊗ δ ⊗ δ′〉 Parall1

R6
〈A, σ〉 −→ 〈A′, σ′〉 〈B, σ〉 6−→
〈A ‖ B, σ〉 −→ 〈A′ ‖ B, σ′〉
〈B ‖ A, σ〉 −→ 〈B ‖ A′, σ′〉

Parall2

R7
〈Ej , σ〉 −→ 〈Aj , σ

′〉 j ∈ [1, n]
〈Σn

i=1Ei, σ〉 −→ 〈Aj , σ
′〉 Nondet

R8
〈A, σ〉 −→ 〈A′, σ′〉 σ ` c σ ⇓∅ 6< a
〈nowa c then A else B, σ〉 −→ 〈A′, σ′〉 V-now1

R9
〈A, σ〉 6−→ σ ` c σ ⇓∅ 6< a

〈nowa c then A else B, σ〉 −→ 〈A, σ〉 V-now2

R10
〈B, σ〉 −→ 〈B′, σ′〉 (σ 6` c or σ ⇓∅< a)
〈nowa c then A else B, σ〉 −→ 〈B′, σ′〉 V-now3

R11
〈B, σ〉 6−→ (σ 6` c or σ ⇓∅< a)
〈nowa c then A else B, σ〉 −→ 〈B, σ〉 V-now4

R12
〈A, σ〉 −→ 〈A′, σ′〉 σ ` c σ 6@ φ

〈nowφ c then A else B, σ〉 −→ 〈A′, σ′〉 Now1

R13
〈A, σ〉 6−→ σ ` c σ 6@ φ

〈nowφ c then A else B, σ〉 −→ 〈A, σ〉 Now2

R14
〈B, σ〉 −→ 〈B′, σ′〉 (σ 6` c or σ @ φ)
〈nowφ c then A else B, σ〉 −→ 〈B′, σ′〉 Now3

R15
〈B, σ〉 6−→ (σ 6` c or σ @ φ)

〈nowφ c then A else B, σ〉 −→ 〈B, σ〉 Now4

R16
〈A[x/y], σ〉 −→ 〈B, σ′〉
〈∃xA, σ〉 −→ 〈B, σ′〉 Hide

R17
〈A, σ〉 −→ 〈B, σ′〉
〈p(x), σ〉 −→ 〈B, σ′〉 p(x ) :: A ∈ F P-call

Fig. 1. The transition system for tsccp.

Valued-tell The valued-tell rule checks for the a-consistency of the Soft Con-
straint Satisfaction Problem [2] (SCSP) defined by the store σ ⊗ c. A SCSP
P is a-consistent if blevel(P ) = a, where blevel(P ) = Sol(P ) ⇓∅, i.e. the best
level of consistency of the problem P is a semiring value representing the
least upper bound among the values yielded by the solutions. Rule R1 can
be applied only if the store σ⊗ c is b-consistent with b 6< a6. In this case the
agent evolves to the new agent A over the store σ ⊗ c. Note that different
choices of the cut level a could possibly lead to different computations. Fi-
nally note that the updated store σ⊗ c will be visible only starting from the
next time instant since each transition step involves exactly one time-unit.

6 Notice that we use b 6< a instead of b ≥ a because we can possibly deal with partial
orders. The same happens also in other transition rules with 6@ instead of w.



Tell The tell action is a finer check of the store. In this case, a pointwise com-
parison between the store σ⊗ c and the constraint φ is performed. The idea
is to perform an overall check of the store and to continue the computation
only if there is the possibility to compute a solution not worse than φ. As for
the valued tell, the updated store will be visible from the next time instant.

Valued-ask The semantics of the valued-ask is extended in a way similar to
what we have done for the valued-tell action. This means that, to apply the
rule, we need to check if the store σ entails the constraint c and also if the
store is “consistent enough” w.r.t. the threshold a set by the programmer.

Ask Similar to the tell rule, here a finer (pointwise) threshold φ is compared to
the store σ. Notice that we need to check σ 6@ φ because previous tells could
have a different threshold φ′ and could not guarantee the consistency of the
resulting store.

Nondeterminism According to rule R7 the guarded choice operator gives rise
to global non-determinism: the external environment can affect the choice
since ask(cj) is enabled at time t (and Aj is started at time t + 1) if and
only if the store σ entails cj (and is compatible with the threshold), and σ
can be modified by other agents.

Parallelism Rules R5 and R6 model the parallel composition operator in terms
of maximal parallelism: the agent A ‖ B executes in one time-unit all the
initial enabled actions of A and B. Considering rule R5, notice that the
ordering of the operands in σ⊗δ⊗δ′ is not relevant, since ⊗ is commutative
and associative. Moreover, for the same two properties, if σ⊗ δ = σ⊗ γ and
σ⊗ δ′ = σ⊗ γ′, we have that σ⊗ δ⊗ δ′ = σ⊗ γ⊗ γ′. Therefore the resulting
store σ⊗ δ⊗ δ′ is independent from the choice of the constraint δ such that
〈A, σ〉 −→ 〈A′, σ′〉 and σ′ = σ ⊗ δ (analogously for δ′).

Hidden variables The agent ∃xA behaves like A, with x considered local to
A. This is obtained by substituting the variable x for a variable y which we
assume to be new and not used by any other process (standard renaming
techniques can be used to ensure this); here A[x/y] denotes the process
obtained from A by replacing the variable x for the variable y.

Procedure calls Rule R17 treats the case of a procedure call when the actual
parameter equals the formal parameter. We do not need more rules since,
for the sake of simplicity, here and in the following we assume that the set
F of procedure declarations is closed w.r.t. parameter names: that is, for
every procedure call p(y) appearing in a process F.A we assume that if the
original declaration for p in F is p(x) :: A then F contains also the declaration
p(y) :: ∃x(tell(dxy) ‖ A)7. Moreover, we assume that if p(x) :: A ∈ F then
Fv(A) ⊆ x.

Valued-Now The rules R8-R11 show that the agent nowa c then A else B
behaves as A if c is entailed by the store and the store is “consistent enough”
w.r.t. the threshold a, and behaves as B otherwise. Note that, differently
from the case of the ask here the evaluation of the guard is instantaneous:

7 Here the (original) formal parameter is identified as a local alias of the actual pa-
rameter.



if 〈A, σ〉 (〈B, σ〉) can make a transition at time t and the condition on the
store and the cut level are satisfied then the agent now c then A else B
can make the same transition at time t (and analogously for B). Moreover
observe that, due to rules R9 and R11, in any case the control is passed
either to A (if the conditions are satisfied) or to B (if not), also if A and B
cannot make any transition at the current time instant.

Now The rules R12-R15 are similar to rules R8-R11 described before, with
the exception that here a finer (pointwise) threshold φ is compared to the
store σ, analogously to what happens with the Tell and Ask agents.

Using the transition system described by (the rules in) Fig. 1 we can now
define our notion of observables, which considers for each tsccp process P = F.A,
the results of successful terminating computations that the agent A can perform.

Definition 2 (Observables). Let P = F.A be a tsccp process. We define

Oio(P ) = {γ ⇓Fv(A)| 〈A, 1̄〉 −→∗ 〈Success, γ〉},

where Success is any agent which contains only occurrences of the agent success
and of the operator ‖.

5 The Denotational Model

In this section we define a denotational characterization of the operational se-
mantics obtained by following the construction in [8] and using timed reactive
sequences to represent tsccp computations. These sequences are similar to those
used in the semantics of dataflow languages [14], imperative languages [7] and
(timed) ccp [10, 8].

The denotational model associates with a process a set of timed reactive se-
quences of the form 〈σ1, γ1〉 · · · 〈σn, γn〉〈σ, σ〉 where a pair of constraints 〈σi, γi〉
represents a reaction of the given process at time i: intuitively, the process trans-
forms the global store from σi to γi or, in other words, σi is the assumption
on the external environment while γi is the contribution of the process itself
(which entails always the assumption). The last pair denotes a “stuttering step”
in which the agent Success has been reached. Since the basic actions of tsccp
are monotonic and we can also model a new input of the external environ-
ment by a corresponding tell operation, it is natural to assume that reactive
sequences are monotonic. So in the following we will assume that each timed re-
active sequence 〈σ1, γ1〉 · · · 〈σn−1, γn−1〉〈σn, σn〉 satisfies the following condition:
γi ` σi and σj ` γj−1, for any i ∈ [1, n− 1] and j ∈ [2, n].

The set of all reactive sequences is denoted by S and its typical elements by
s, s1 . . ., while sets of reactive sequences are denoted by S, S1 . . . and ε indicates
the empty reactive sequence. Furthermore, · denotes the operator that concate-
nates sequences. In the following, Process denotes the set of tsccp processes.

Formally the definition of the semantics is as follows.



Definition 3 (Processes Semantics). The semantics R ∈ Process → P(S)
is defined as the least fixed-point of the operator Φ ∈ (Process → P(S)) →
Process → P(S) defined by

Φ(I)(F .A) = {〈σ, δ〉 · w ∈ S | 〈A, σ〉 → 〈B , δ〉 and w ∈ I(F .B)}
∪
{〈σ, σ〉 · w ∈ S | 〈A, σ〉 6→ and either A 6= Success and w ∈ I(F.A)

or A = Success and w ∈ I(F.A) ∪ {ε}}.
The ordering on Process → P(S) is that of (point-wise extended) set-inclusion
and since it is straightforward to check that Φ is continuous, standard results
ensure that the least fixpoint exists (and it is equal to tn≥0Φ

n(⊥)).
Note that R(F.A) is the union of the set of all successful reactive sequences

which start with a reaction of P and the set of all successful reactive sequences
which start with a stuttering step of P . In fact, when an agent is blocked, i.e.
it cannot react to the input of the environment, a stuttering step is generated.
After such a stuttering step the computation can either continue with the further
evaluation of A (possibly generating more stuttering steps) or it can terminate,
if A is the Success agent. Note also that, since the Success agent used in
the transition system cannot make any move, an arbitrary (finite) sequence of
stuttering steps is always appended to each reactive sequence.

5.1 Compositionality of the Denotational Semantics for tsccp
Processes

In order to prove the compositionality of the denotational semantics we now
introduce a semantics [[F.A]](e) which is compositional by definition and where,
for technical reasons, we represent explicitly the environment e which associates
a denotation to each procedure identifier. More precisely, assuming that Pvar de-
notes the set of procedure identifier, Env = Pvar → P(S), with typical element
e, is the set of environments. Given e ∈ Env, p ∈ Pvar and f ∈ P(S), we denote
by e′ = e{f/p} the new environment such that e′(p) = f and e′(p′) = e(p′) for
each procedure identifier p′ 6= p.

Given a process F.A, the denotational semantics [[F.A]] : Env → P(S) is
defined by the equations in Fig. 2, where µ denotes the least fixpoint w.r.t. subset
inclusion of elements of P(S). The semantic operators appearing in Fig. 2 are
formally defined as follows. Intuitively they reflect, in terms of reactive sequences,
the operational behavior of their syntactic counterparts8.

We first need the following definition. Let σ, φ and c be constraints in C and
let a ∈ A. We say that

– σ→̃a c, if (σ ` c and σ ⇓∅ 6< a) while σ→̃φ c, if (σ ` c and σ 6@ φ).

Definition 4 (Semantic operators). Let S, Si be sets of reactive sequences,
c, ci be constraints and let →̃i be either of the form →̃ai or →̃φi . Then we define
the operators ˜tell,

∑̃
, ‖̃, ˜now and ∃̃x as follows:

8 In Fig. 2 the syntactic operator →i is either of the form →ai or →φi .



The (valued) tell operator

˜tell
a
(c, S) = {s ∈ S | s = 〈σ, σ ⊗ c〉 · s′, σ ⊗ c ⇓∅ 6< a and s′ ∈ S }.

˜tellφ(c, S) = {s ∈ S | s = 〈σ, σ ⊗ c〉 · s′, σ ⊗ c 6@ φ and s′ ∈ S }.
The guarded choice

∑̃n

i=1
ci→̃i Si = {s · s′ ∈ S | s = 〈σ1, σ1〉 · · · 〈σm, σm〉, σj 6→̃i ci

for each j ∈ [1, m-1], i ∈ [1, n],
σm→̃h ch and s′ ∈ Sh for an h ∈ [1, n] }

The parallel composition Let ‖̃ ∈ S × S → S be the (commutative and
associative) partial operator defined as follows:

〈σ1, σ1 ⊗ γ1〉 · · · 〈σn, σn ⊗ γn〉〈σ, σ〉 ‖̃ 〈σ1, σ1 ⊗ δ1〉 · · · 〈σn, σn ⊗ δn〉〈σ, σ〉 =
〈σ1, σ1 ⊗ γ1 ⊗ δ1〉 · · · 〈σn, σn ⊗ γn ⊗ δn〉〈σ, σ〉.

We define S1‖̃S2 as the point-wise extension of the above operator to sets.
The (valued) now operator

˜nowa(c, S1, S2) = {s ∈ S | s = 〈σ, σ′〉 · s′ and either σ→̃ac and s ∈ S1

or σ→̃ac does not hold and s ∈ S2 }.

˜nowφ(c, S1, S2) = {s ∈ S | s = 〈σ, σ′〉 · s′ and either σ→̃φ c and s ∈ S1

or σ→̃φ c does not hold and s ∈ S2 }.
The hiding operator The semantic hiding operator can be defined as follows:

∃̃xS = {s ∈ S | there exists s′ ∈ S such that s = s′[x/y] with y new }

where s′[x/y] denotes the sequence obtained from s′ by replacing the variable x
for the variable y that we assume to be new9.

A few explanations are in order here. The semantic (valued) tell operator
reflects in the obvious way the operational behavior of the syntactic (valued) tell.
Concerning the semantic choice operator, a sequence in

∑̃n

i=1ci→̃i Si consists of
an initial period of waiting for a store which satisfies one of the guards. During
this waiting period only the environment is active by producing the constraints
σj while the process itself generates the stuttering steps 〈σj , σj〉. When the
store is strong enough to satisfy a guard, that is to entail a ch and to satisfy the
condition on the cut level the resulting sequence is obtained by adding s′ ∈ Sh to
the initial waiting period. In the semantic parallel operator defined on sequences
we require that the two arguments of the operator agree at each point of time
9 To be more precise, we assume that each time that we consider a new applications of

the operator ∃̃ we use a new, different y. As in the case of the operational semantics,
this can be ensured by a suitable renaming mechanism.



E1 [[F .success]](e) = {〈σ1, σ1〉〈σ2, σ2〉 · · · 〈σn, σn〉 ∈ S | n ≥ 1}

E2 [[F .tell(c) →a A]](e) = ˜tell
a
(c, [[F .A]](e))

E3 [[F .tell(c) →φ A]](e) = ˜tellφ(c, [[F .A]](e))

E4 [[F .
∑n

i=1ask(ci) →i Ai ]](e) =
∑̃n

i=1ci→̃i [[F .Ai ]](e)

E5 [[F .nowa c then A else B ]](e) = ˜nowa(c, [[F .A]](e), [[F .B ]](e))

E6 [[F .nowφ c then A else B ]](e) = ˜nowφ(c, [[F .A]](e), [[F .B ]](e))

E7 [[F .A ‖ B ]](e) = [[F .A]](e) ‖̃ [[G.B ]](e)

E8 [[F .∃xA]](e) = ∃̃x[[F .A]](e)

E9 [[F .p(x )]](e) = µΨ where Ψ(f) = [[F \ {p}.A]](e{f/p}), p(x) :: A ∈ F

Fig. 2. The semantics [[F.A]](e).

with respect to the contribution of the environment (the σi’s) and that they
have the same length (in all other cases the parallel composition is assumed
being undefined).

If F.A is a closed process, that is if all the procedure names occurring in A
are defined in F , then [[F.A]](e) does not depend on e and will be indicated as
[[F.A]]. Environments in general allow us to define the semantics also of processes
which are not closed. The following result shows the correspondence between the
two semantics we have introduced and therefore the compositionality of R(F.A).

Theorem 1 (Compositionality). If F.A is closed then R(F.A) = [[F.A]] holds.

The proof of Theo. 1 is similar to the one proposed in [8] for the composi-
tionality property of the tccp denotational semantics.

6 Correctness

The observables Oio(P ) describing the input/output pairs of successful compu-
tations can be obtained from R(P ) by considering suitable sequences, namely
those sequences which do not perform assumptions on the store. In fact, notice
that some reactive sequences do not correspond to real computations: Clearly,
when considering a real computation no further contribution from the environ-
ment is possible. This means that, at each step, the assumption on the current
store must be equal to the store produced by the previous step. In other words,
for any two consecutive steps 〈σi, σ

′
i〉〈σi+1, σ

′
i+1〉 we must have σ′i = σi+1. So we

are led to the following.

Definition 5 (Connected Sequences). Let s = 〈σ1, σ
′
1〉〈σ2, σ

′
2〉 · · · 〈σn, σn〉 be

a reactive sequence. We say that s is connected if σ1 = 1̄ and σi = σ′i−1 for each
i, 2 ≤ i ≤ n.



According to the previous definition, a sequence is connected if all the infor-
mation assumed on the store is produced by the process itself, apart from the
initial input. To be defined as connected, a sequence must also have 1̄ as the
initial constraint. A connected sequence represents a tsccp computation, as it
will be proved by the following theorem.

Theorem 2 (Correctness). For any process P = F.A we have

Oio(P ) = {σn ⇓Fv(A)| there exists a connected sequence s ∈ R(P ) such that
s = 〈σ1, σ2〉〈σ2, σ3〉 · · · 〈σn, σn〉}.

The proof of Theo. 2 is similar to the one proposed in [8] for the correctness
property of the tccp language.

7 Programming Idioms and an Auction Example

We can consider the primitives in Fig. 1 to derive the soft version of the pro-
gramming idioms in [8], which are typical of reactive programming.

Delay. The delay constructs tell(c) t−→φ A or ask(c) t−→φ A are used to delay
the execution of agent A after the execution of tell(c) or ask(c); t is the
number of the time-units of delay. Therefore, in addiction to a constraint
φ, in tsccp the transition arrow can have also a number of delay slots. This
idiom can be defined by induction: the base case is 0−→φ A ≡−→φ A and
the inductive step is n+1−→φ A ≡−→φ tell(1̄) n−→φ A. The valued version can
be defined in an analogous way.

Timeout. The timed guarded choice agent (Σn
i=1ask(ci) −→i Ai) timeout(m) B

waits at most m time-units (m ≥ 0) for the satisfaction of one of the guards;
notice that all the ask actions have a “soft” transition arrow, i.e. −→i is
either of the form −→φi or −→ai , as in Fig. 1. Before this time-out, the
process behaves just like the guarded choice: as soon as there exist enabled
guards, one of them (and the corresponding branch) is nondeterministically
selected. After waiting for m time-units, if no guard is enabled, the timed
choice agent behaves as B.

Watchdog. Watchdogs are used to interrupt the activity of a process on a signal
from a specific event. The idiom do (A ) watching(c) else (B ) behaves as
A, as long as c is not entailed by the store; when c is entailed, the process A
is immediately aborted. The reaction is instantaneous, in the sense that A
is aborted at the same time instant of the detection of the entailment of c.

Both Timeout and Watchdogs constructs can be assembled through the com-
position of several nowΦ c then A else B or nowa c then A else B prim-
itives, exactly as sketched in Section 2.2 and explained in detail in [8] (in
the soft version of the timeout, the else ask(true) in Sec. 2.2 must be re-
placed with else ask(1̄)). For example, do ( tell(c1) ) watching(c2) else B ≡
now c2 then B else tell(c1), where the now can be valued or not. Clearly, in



tsccp all the constraints (e.g. c1 and c2) are soft. With this small set of idioms,
we have now enough expressiveness to describe complex interactions.

In Fig. 3 we model the negotiation and the management of a generic service
offered with a sort of auction: auctions, as other forms of negotiation, naturally
need both timed and qualitative/quantitative means to describe the interactions
among agents. The auctioneer (i.e. AUCTIONEER in Fig. 3) begins by offering
a service described with the soft constraint cA1 . We suppose that the cost asso-
ciated to the soft constraint is expressed in terms of computational capabilities
needed to support the execution: c1 v c2 means that the service described by c1

needs more computational resources than c2. By choosing the proper semiring,
this load can be expressed as a percentage of the CPU use, or in terms of money,
for example. We suppose that a constraint can be defined over three domains of
QoS features: availability, reliability and execution time. For instance, cA1 could
be availability > 95% ∧ reliability > 99% ∧ execution time < 3sec. Clearly,
providing a higher availability or reliability, and a lower execution time implies
raising the computational resources, thus worsening the preference of the store.

AUCTIONEER ::
INIT A −→
tell(cA1)

tsell−→ (Σn
i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)

tell(cA2)
tsell−→ (Σn

i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)

tell(cA3)
tsell−→ (Σn

i=1ask(bidderi = i) −→aA tell(winner = i) −→ CHECK) timeout(waitauct)
−→ success

CHECK ::
do ( (ask(service = end) −→ success) timeout(waitcheck ) tell(service = interrupt) )

watching(ccheck ) else (tell(service = interrupt) −→ STOPc)

BIDDERi ::
INIT Bi −→
do ( TASKi ) watching(cBi) else ask(1̄)

tbuyi−→ tell(bidderi = i) −→
( (ask(winner = i) −→ USEi) + (ask(winner 6= i) −→ success) )

USEi ::
do ( USE SERV ICEi −→ tell(service = end) −→ success )

watching(service = interrupt) else (STOPi)

AUCTION&SUPERV ISE :: AUCTIONEER || BIDER1 || BIDDER2 || . . . ||BIDDERn

Fig. 3. An “auction and management” example for a generic service

After the offer, the auctioneer gives time to the bidders (each of them de-
scribed with a possibly different BIDDERi agent in Fig. 3) to make their offer,
since the choice of the winner is delayed by tsell time-units (as in many real-
world auction schemes). A level aA is used to effectively check that the global
consistency of the store is enough good, i.e. the computational power would not
be already consumed under the given threshold. After the winner is nondeter-
ministically chosen among all the bidders asking for the service, the auctioneer
becomes a supervisor of the used resource by executing the CHECK agent. Oth-
erwise, if no offer is received within waitauct time-units, a timeout interrupts the



wait and the auctioneer improves the offered service by adding a new constraint:
for example, in tell(cA2), cA2 could be equivalent to execution time < 1sec,
thus reducing the latency of the service (from 3 to 1 seconds) and consequently
raising, at the same time, its computational cost (i.e. cA2 ⊗ σ v σ, we worsen
the consistency level of the store). The same offer/wait process is repeated three
times in Fig. 3. Each of the bidders in Fig. 3 is executing its own task (i.e.
TASKi), but as soon as the offered resource meets its demand of computational
power (i.e. cBi

is satisfied by the store: σ v cBi
), the bidder is interrupted and

then asks to use the service. The time needed to react and make an offer is
modeled with tbuyi

: fast bidders will have more chances to win the auction, if
their request arrives before the choice of the auctioneer. If one bidder wins, then
it becomes a user of the resource, by executing USEi.

The USEi agent uses the service (with the USE SERV ICEi agent, left
generic in Fig. 3), but it stops (STOPi agent, left generic in Fig. 3) as soon as
the service is interrupted, i.e. as the store satisfies service = interrupt . On the
other side, the CHECK agent waits for the use termination, but it interrupts
the user if the computation takes too long (more than waitcheck time-units), or
if the user absorbs the computational capabilities beyond a given threshold, i.e.
as soon as the ccheck becomes implied by the store (i.e. σ v ccheck): in fact,
USE SERV ICEi could be allowed to ask for more power by “telling” some
more constraints to the store. To interrupt the service use, the CHECK agent
performs a tell(service = interrupt). All the INIT agents, left generic in Fig. 3,
can be used to initialize the computation.

In order to avoid a heavy notation in Fig. 3, we do not show the prefer-
ence associated to constraints and the consistency check label on the transition
arrows, when they are not significative for the example description.

Many other real-life automated tasks can be modeled with the tscc language,
for example a quality-driven composition of web services: the agents that repre-
sent different web services can add to the store their functionalities (represented
by soft constraints) with tell actions; the final store models their composition.
The consistency level of the store sums up to a value the (for example) total
cost of the single obtained service, or a value representing the consistency of
the integrated functionalities: the reason is that when we compose the services
offered by different providers, we could not be sure how much they are compati-
ble. Then, a client wishing to use the composed service can perform an ask with
threshold that prevents it from paying a high price or have an unreliable ser-
vice. Softness is useful also to model incomplete service specifications that may
evolve incrementally and, in general, non-functional aspects. Time sensitiveness
is clearly needed too: all the most important orchestration/choreography lan-
guages of today (e.g. BPEL4WS and WSCI) support timeouts, the raising of
events and delay activities [18].



8 Related and Future Work

We have introduced the tscc language in order to join together the expressive
capabilities of soft constraints and timing mechanisms in a new programming
framework. The agents modeled with this language are now able to deal with
time and preference dependent decisions that can often be found during complex
interactions: an example can be represented by entities that need to negotiate a
satisfying QoS and manage generic resources. Mechanisms as timeout and inter-
rupt can be very useful when waiting for pending conditions or when triggering
some new necessary actions. All the tsccp rules have been formally described by
a transition system and then also with a denotational characterization of the
operational semantics obtained with the use of timed reactive sequences. The
resulting semantics has been proved to be compositional and correct.

Other timed extension of concurrent constraint programming have been pro-
posed in [16, 17, 20], however these languages, differently from tsccp, do not take
into account quantitative aspects; therefore, this achievement represents a very
important expressivity improvement w.r.t. related works. These have been con-
sidered by Di Pierro and Wiklicky who have extensively studied probabilistic
ccp (see for example [11]). This language provides a construct for probabilistic
choice which allows one to express randomness in a program, without assum-
ing any additional structure on the underlying constraint system. This approach
is therefore deeply different from ours. Recently stochastic ccp has been intro-
duced in [6] to model biological systems. This language is obtained by adding a
stochastic duration to the ask and tell primitives, thus differs from ours.

A first improvement of tsccp can be the inclusion of a fail agent in the syn-
tax given in Definition 1. The transition system we have defined considers only
successful computations. If this could be a reasonable choice in a don’t know in-
terpretation of the language it will lead to an insufficient analysis of the behavior
in a pessimistic interpretation of the indeterminism. A second extension for this
framework could be represented by considering interleaving (as in the classical
ccp) instead of maximal parallelism, which is the scheduling policy followed in
this paper when observing the parallel execution of agents. According to this
policy, at each moment every enabled agent of the system is activated, while in
the first paradigm an agent could not be assigned to a “free” processor.

Clearly, since we have dynamic process creation, a maximal parallelism ap-
proach has the disadvantage that in general it implies the existence of an un-
bound number of processes. On the other hand a naif interleaving semantic could
be problematic form the time viewpoint, as in principle the time does not pass
for enabled agent which are not scheduled. A possible solution, analogous to that
one adopted in [9], could be to assume that the parallel operator is interpreted
in terms of interleaving, as usual, however we must assume maximal parallelism
for actions depending on time. In other words, time passes for all the parallel
processes involved in a computation. To summarize, we could adopt maximal
parallelism for time elapsing (i.e. for evaluating a (valued) now agent) and an
interleaving model for basic computation steps (i.e. (valued) ask and (valued)
tell actions).



At last, we would like to consider other time management strategies (as the
one proposed in [21]) and to study how timing and non-monotonic constructs [5]
can be integrated together.
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