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Abstract. Exploiting symmetry in constraint satisfaction problems has become
a very popular topic of research in recent times. The existence of symmetry in a
problem has the effect of artificially increasing the size of the search space that
is explored by search algorithms. Another significant topic of researchhas been
approaches to reasoning about preferences. As constraint processing applications
are becoming more widespread in areas such as electronic commerce,configu-
ration, etc., it is becoming increasingly important that we can reason about pref-
erences as efficiently as possible. We present an approach to dealing with sym-
metry in the semiring framework for soft constraints. We demonstrate that break-
ing symmetries in soft constraint satisfaction problems improves the efficiency
of search. The paper contributes to the state-of-the-art in symmetry breaking, as
well as in reasoning about preferences.

1 Introduction
Exploiting symmetry in constraint satisfaction problems has become a very popular
topic of research in recent times [1, 2, 16, 20, 22, 25]. The existence of symmetry in a
problem has the effect of artificially increasing the size ofthe search space that is ex-
plored by search algorithms. Therefore, a typical approachis to break the symmetries
in the problem so that only unique solutions are returned (i.e. that only one exemplar
of each symmetric equivalence class of solutions is returned). The complete set of so-
lutions can be trivially computed using the symmetry in the problem. The significant
advantage is that not only do we return fewer solutions, but we also reduce the search
effort required to find these solutions by eliminating symmetric branches of the search
tree.

Another significant topic of research in the constraint processing community is the
ability to reason about preferences [4, 21]. It has been shown how preferences can
be modeled as constraints [6, 14]. As constraint processingapplications are becoming
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more widespread in areas such as electronic commerce, configuration, etc., it is be-
coming increasingly important that we can reason about preferences in as efficient a
manner as possible. For example, a typical problem in e-commerce systems requires
that we satisfy a set of user-specified preference constraints to a maximal degree. The
user would typically wish to see a set of alternative solutions to their preferences, but
would like to have diversity amongst the set presented to him. This is a well studied
issue in the case-based reasoning community [27], but is less well studied in the con-
straint processing community. One obvious avenue to be explored here are notions of
symmetry in preferences. Diversity in this case might be interpreted as the presentation
of a set of solutions which are members of different symmetric equivalence classes.
This is a potential application of the work presented in thispaper.

The work reported is focused on symmetry breaking in soft constraint satisfaction
problems. We present an approach to dealing with symmetry inthe semiring framework
for soft constraints [6, 8]. We first give definitions of symmetry, extending the work of
Benhamou [2], and then relax them using the notion of degradation. The theoretical
results are enforced by some empirical tests, showing that breaking symmetries in soft
constraint satisfaction problems improves the efficiency of search.

The remainder of the paper is structured as follows. Section2 presents a review
of soft constraints and and overview of the state-of-the-art in the area of symmetry-
breaking. We present the theoretical aspects of our approach to symmetry breaking in
soft CSPs in Section 3 and give some examples in Section 4. Some empirical results are
presented in Section 5. Some concluding remarks are made in Section 6.

2 Background
Before presenting an approach to dealing with symmetry in soft CSPs, we will first
present a review of the background to this work. In Section 2.1 a brief state-of-the-art
review of symmetry breaking in CSPs will be presented. In Section 2.2 the semiring-
based approach to soft CSPs will be recapitulated for the convenience of the reader.

2.1 Symmetry Breaking

There is significant interest within the constraint programming community in exploiting
symmetry when solving constraint satisfaction problems. As a consequence, a growing
number of techniques are being reported in the literature. Benhamou [2] presented an
early analysis of symmetry-breaking and placed it in the context of Freuder’s work on
interchangeability, a special case of symmetry [18].

A common approach to symmetry breaking involves carefully modeling the prob-
lem so that symmetries have been removed. For example, Crawford et al. [13] have
demonstrated how constraints can be added to the model in order to break symmetries.
Puget [24] has presented a formal approach to symmetry breaking that involves the ad-
dition of ordering constraints to break symmetries. Fleneret al. [16] adopt a similar
approach by adding ordering constraints to break symmetries in matrix models. Flener
et al. [16] also remind us that symmetry detection is graph-isomorphism complete in
the general case, pointing to the work of Crawford [12].

Brown et al. [11] have presented a modified backtracking algorithm that breaks
symmetry by pruning branches of the search tree dynamically. This is done by ensuring
that only one solution from each symmetric equivalence class is computed. Similarly, a



general method for eliminating symmetries, known as symmetry breaking during search
(SBDS), has been proposed by Gent and Smith [20]. The SBDS approach is based on
earlier work by Backofen and Will [1]. Both of these methods can be regarded as ex-
amples of a class of approaches to handling symmetries that involve the addition of
constraints during search to avoid symmetrical states in the search space. An imple-
mentation of SDBS based on the GAP computational abstract algebra system has been
presented by Gentet al. [19].

Meseguer and Torras [23] have reported the use of search ordering heuristics to
avoid symmetries during search. However, the method is lessgeneral that SBDS [20].

The notion of partial symmetry breaking has been explored byMcDonald and
Smith [22]. They show that there is a break-even point to be considered when breaking
symmetries during search; there is a point where the benefit in reducing search from
adding more symmetries it out-weighed by the extra overheadincurred. By breaking
a subset of the possible symmetries in a problem, rather thanbreaking all of them,
significant savings in runtime can be accomplished.

Finally, symmetry breaking based on no-good recording methods have been pre-
sented by Fahleet al. [15] and Focacci and Milano [17]. The approach presented by
the former is known as symmetry-breaking via dominance detection (SBDD) and been
shown to compare well with SBDS. The latter approach is knownas the global cut
framework. Puget has presented an improvement on these approaches by using an aux-
iliary CSP for performing dominance checks based on no-goodrecording [25].

It should be noted that all of the approaches to dealing with symmetry presented
above are defined for crisp constraints. In this paper we present, for the first time, a the-
oretical framework for exploiting symmetries in soft CSPs,and demonstrate the utility
of the approach empirically using an SBDS-like approach. SBDS is chosen since it is
a very flexible approach to breaking symmetries and is readily applicable to symmetry
breaking in soft CSPs.

2.2 Soft CSPs

Several formalizations of the concept ofsoft constraintsare currently available. In the
following, we refer to the one based on c-semirings [3, 5, 6, 8], which can be shown
to generalize and express many of the others [4]. A soft constraint may be seen as
a constraint where each instantiations of its variables hasan associated value from a
partially ordered set which can be interpreted as a set of preference values. Combining
constraints will then have to take into account such additional values, and thus the
formalism has also to provide suitable operations for combination (×) and comparison
(+) of tuples of values and constraints. This is why this formalization is based on the
concept of c-semiring, which is just a set plus two operations.

Semirings.A semiring is a tuple〈A,+,×,0,1〉 such that: 1.A is a set and0,1 ∈ A;
2.+ is commutative, associative and0 is its unit element; 3.× is associative, distributes
over+, 1 is its unit element and0 is its absorbing element. A c-semiring is a semiring
〈A,+,×,0,1〉 such that:+ is idempotent,1 is its absorbing element and× is commu-
tative. Let us consider the relation≤S overA such thata ≤S b iff a + b = b. Then it
is possible to prove that (see [6]): 1.≤S is a partial order; 2.+ and× are monotone on
≤S ; 3. 0 is its minimum and1 its maximum; 4.〈A,≤S〉 is a complete lattice and, for



all a, b ∈ A, a + b = lub(a, b) (wherelub is theleast upper bound). Moreover, if× is
idempotent, then:+ distributes over×; 〈A,≤S〉 is a complete distributive lattice and×
its glb (greatest lower bound). Informally, the relation≤S gives us a way to compare
semiring values and constraints. In fact, when we havea ≤S b, we will say thatb is
better than a. In the following, when the semiring will be clear from the context,a ≤S b
will be often indicated bya ≤ b.

Constraint Problems.Given a semiringS = 〈A,+,×,0,1〉 and an ordered set of vari-
ablesV over a finite domainD, a constraintis a function which, given an assignment
η : V → D of the variables, returns a value of the semiring. By using this notation we
defineC = η → A as the set of all possible constraints that can be built starting from
S, D andV .

Note that in thisfunctionalformulation, each constraint is a function (as defined in
[8]) and not a pair (as defined in [5, 6]). Such a function involves all the variables in
V , but it depends on the assignment of only a finite subset of them. So, for instance,
a binary constraintcx,y over variablesx andy, is a functioncx,y : V → D → A,
but it depends only on the assignment of variables{x, y} ⊆ V . We call this subset the
supportof the constraint. More formally, consider a constraintc ∈ C. We define its
support assupp(c) = {v ∈ V | ∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note thatcη[v := d1] meanscη′ whereη′ is η modified with the assignmentv :=
d1 (that is the operator[ ] has precedence over application). Note also thatcη is the
application of a constraint functionc : V → D → A to a functionη : D → A; what
we obtain, is a semiring valuecη = a.

A soft constraint satisfaction problemis a pair〈C, con〉 wherecon ⊆ V andC
is a set of constraints:con is the set of variables of interest for the constraint setC,
which however may concern also variables not incon. Note that a classical CSP is
a SCSP where the chosen c-semiring is:SCSP = 〈{false, true},∨,∧, false, true〉.
Fuzzy CSPs [10, 26] can instead be modeled in the SCSP framework by choosing the
c-semiringSFCSP = 〈[0, 1],max,min, 0, 1〉. Many other “soft” CSPs (Probabilis-
tic, weighted, . . . ) can be modeled by using a suitable semiring structure (Sprob =
〈[0, 1],max,×, 0, 1〉, Sweight = 〈R,min,+,+∞, 0〉, . . . ).

Fig. 1 shows the graph representation of a fuzzy CSP. Variables and constraints are
represented respectively by nodes and by undirected (unaryfor c1 andc3 and binary for
c2) arcs, and semiring values are written to the right of the corresponding tuples. The
variables of interest (that is the setcon) are represented with a double circle. Here we
assume that the domainD of the variables contains only elementsa andb and c.

Combining and projecting soft constraints.Given the setC, the combination function
⊗ : C × C → C is defined as(c1 ⊗ c2)η = c1η ×S c2η. Informally, combining two
constraints means building a new constraint whose support involves all the variables
of the original ones, and which associates with each tuple ofdomain values for such
variables a semiring element which is obtained by multiplying the elements associ-



X Y

〈a〉 → 0.9
〈a〉 → 0.9

〈b〉 → 0.1
〈b〉 → 0.5

〈c〉 → 0.9
〈c〉 → 0.5

〈a, a〉 → 0.8

〈a, b〉 → 0.2

〈c, a〉 → 0.8

〈c, b〉 → 0.2

〈b, a〉 → 0

〈b, b〉 → 0

〈a, c〉 → 0.2

〈b, c〉 → 0.1

〈c, c〉 → 0.2

c1

c2

c3

Fig. 1.A fuzzy CSP.

ated by the original constraints to the appropriate sub-tuples. It is easy to verify that
supp(c1 ⊗ c2) ⊆ supp(c1) ∪ supp(c2).

Given a constraintc ∈ C and a variablev ∈ V , theprojectionof c overV − {v},
written c ⇓(V −{v}) is the constraintc′ s.t. c′η =

∑

d∈D cη[v := d]. Informally, pro-
jecting means eliminating some variables from the support.This is done by associating
with each tuple over the remaining variables a semiring element which is the sum of the
elements associated by the original constraint to all the extensions of this tuple over the
eliminated variables. In short, combination is performed via the multiplicative operation
of the semiring, and projection via the additive one.

Solutions. A solution of an SCSPP = 〈C, con〉 is the constraintSol(P ) =
(
⊗

C) ⇓con. That is, we combine all constraints, and then project over the variables
in con. In this way we get the constraint with support (not greater than)con which is
“induced” by the entire SCSP. Note that when all the variables are of interest we do not
need to perform any projection.

For example, the solution of the fuzzy CSP of Fig. 1 associates a semiring element
to every domain value of variablex. Such an element is obtained by first combining
all the constraints together. For instance, for the tuple〈a, a〉 (that is,x = y = a),
we have to compute the minimum between0.9 (which is the value assigned tox = a
in constraintc1), 0.8 (which is the value assigned to〈x = a, y = a〉 in c2) and0.9
(which is the value fory = a in c3). Hence, the resulting value for this tuple is0.8. We
can do the same work for tuple〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0, 〈b, b〉 → 0,
〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and〈c, c〉 → 0.2. The obtained tuples are then
projected over variablex, obtaining the solution〈a〉 → 0.8, 〈b〉 → 0.1 and〈c〉 → 0.8.

3 Symmetry in Soft CSPs

Using an approach similar to [2], we can define two notions ofSemantic symmetry.

Definition 1 (Symmetry for satisfiability). Consider two domain valuesb anda for
a variable v and the set of constraintsC; we say thatb and a are symmetrical for
satisfiability (a ≈ b) if and only if

∀α,∃η, η′ :
⊗

Cη[v := a] = α ⇐⇒
⊗

Cη′[v := b] = α



Informally, two domain valuesa andb aresymmetrical for satisfiabilityif whenever the
assignmentv := a (v := b) leads to a solution with valueα, then, we can also obtain a
solution with the same valueα using the assignmentv := b (v := a).

Definition 2 (Symmetry for all solutions). Consider two domain valuesb anda for a
variablev and the set of constraintsC; we say thatb anda are symmetrical (w.r.t. the
constraintsC) (a ' b) if and only if

∃φ, η′, η′′ : ∀η : φ(η[v := a]) = η′[v := b], andφ(η[v := b]) = η′′[v := a],

∧
⊗

Cη[v := a] =
⊗

Cφ(η[v := a]) ∧
⊗

Cη[v := b] =
⊗

Cφ(η[v := b]).

Informally, two domain valuea andb aresymmetrical (w.r.t. the constraintsC) if
whenever the assignmentη[v := a] (η[v := b]) leads to a solution with valueα, then
there is also an assignmentφ(η[v := a]) (φ(η[v := b])) leading to the same semiring
valueα.

Clearly symmetry for all solutions implies symmetry for satisfiability.

Theorem 1. Symmetry for all solutions implies symmetry for satisfiability.

Since finding the mappingφ is one of the most important steps when looking for
symmetry, it could be useful to reformulate the definition ofsymmetry for all solutions
using equivalent propositions.

Proposition 1. The following propositions describing the notion of symmetry for all
solutions (a ' b) are equivalent:

∃φ, η′, η′′ : ∀η : φ(η[v := a]) = η′[v := b], andφ(η[v := b]) = η′′[v := a],

∧ (1)
⊗

Cη[v := a] =
⊗

Cφ(η[v := a]) ∧
⊗

Cη[v := b] =
⊗

Cφ(η[v := b]);

∃φ,∀η :
⊗

Cη[v := a] =
⊗

Cφ(η[v := a])[v := b]

∧ (2)
⊗

Cη[v := b] =
⊗

Cφ(η[v := b])[v := a];

∃φ,∀η :
⊗

Cη[v := a] =
⊗

Cφ(η)[v := b]

∧ (3)
⊗

Cη[v := b] =
⊗

Cφ(η)[v := a];

It also important to notice that, similar to the crisp case, the notion of Interchange-
ability for Soft CSPs [9] is a specific type of symmetry for allsolutions obtained using
asφ the identity function.



Theorem 2. Consider two domain valuesb anda, for a variablev and the set of con-
straintsC. If b is fully interchangeable witha on v (FI v(a/b)) (that is, for all assign-
mentsη, we have

⊗

Cη[v := a] =
⊗

Cη[v := b] [9]) then a andb are symmetrical
(w.r.t. the constraintsC) (a ' b). In particular, the symmetry hold using asφ the identity
function.

Symmetries in SCSPs are rarer than in classical CSPs. For this reason using a notion
of threshold (similar to that defined by Bistarelliet al. [9]) is useful.

Definition 3 (Threshold symmetry for satisfiability). Consider two domain valuesb
anda for a variablev, the set of constraintsC and a threshold̄α; we say thatb anda
are ᾱsymmetrical for satisfiability (a ≈ᾱ b) if and only if

∀α ≥ ᾱ,∃η, η′ :
⊗

Cη[v := a] = α ⇐⇒
⊗

Cη′[v := b] = α

Informally, two domain valuesa andb areαsymmetrical for satisfiability if whenever
the assignmentv := a (v := b) leads to a solution with valueα ≥ ᾱ, then, there is also
a way to obtain a solution with the same valueα using the assignmentv := b (v := a).

Definition 4 (Threshold symmetry for all solutions).Consider two domain valuesb
anda for a variablev, the set of constraintsC and a threshold̄α; we say thatb anda
are ᾱsymmetrical for all solutions (a 'ᾱ b) if and only if

∃φ, η′, η′′, α, α′ ≥ ᾱ : ∀η :φ(η[v := a]) = η′[v := b], andφ(η[v := b]) = η′′[v := a],

∧
⊗

Cη[v := a] = α ∧
⊗

Cφ(η[v := a]) = α

∧
⊗

Cη[v := b] = α′ ∧
⊗

Cφ(η[v := b]) = α′.

Informally, two domain valuesa andb areᾱsymmetrical for all solutionsif whenever
the assignmentη[v := a] (η[v := b]) leads to a solution whose semiring value isα ≥ ᾱ
(α′ ≥ ᾱ), then there is also a solutionη′ = φ(η[v := a]) (η′′ = φ(η[v := b])) that has
the same semiring valueα (α′).

We can prove that the number of symmetries increases when we increase the thresh-
old level.

Theorem 3. Given two domain elementa andb and two thresholdsα1 ≤ α2. Then,

– if a ≈α1
b, thena ≈α2

b;
– if a 'α1

b, thena 'α2
b.

4 Examples
The example problem that will be studied here is based on the soft n-queens prob-
lem [7]. The example is a generalization of the usualn-queens problem, which can be
found in [28]. The classical formulation requires thatn queens are placed on an × n
chess-board in such a way that they do not attack each other. In this formulation, we



may allow attacking queens, but we give a higher preference to solutions where queens
attacking each other are farther apart. In order to formulate this problem as a con-
straint satisfaction problem, the location of the queens can be given by variables, and
the “do not attack each other”requirement can be expressed in terms of a number of
constraints. A simple way to do this is to assign a variable toeach queen1.

As then queens must be placed inn different columns, we can identify each queen
by its column, and represent its position by a variable whichindicates the row of the
queen in question. Letvi stand for the row of the queen in thei-th column. The domain
of each of the variablesv1, . . . , vn is {1, 2, . . . , n}. For any two different variables the
following two constraints must hold, expressing that the queens should be in different
rows and on different diagonals:

vi 6= vj

vi − vj 6= i − j

If we want to use soft constraints, the previous crisp constraints must to be assigned
an element of the semiring. So, whenevervi = vj , instead of giving the boolean value
false we assign the fuzzy valuei–j/n. This means that the farther apart the two queens
are, the higher this value will be. The same reasoning also holds for the two diagonals;
in this case, whenvi–vj = i–j we assign the valuei–j/n.

Notice that each solution of this generalizedn-queens problem has a semiring value
which is obtained by minimizing the semiring values of all its constraints. This comes
from the choice of the fuzzy semiring, where the multiplicative operation is themin.
Therefore, if a solution contains three pairs of attacking queens, each of the pairs will
have a semiring value given by one of the constraints, and thevalue of this solution will
be the minimum of these three values. Different solutions are then ordered using the
other semiring operation, which in this case is themax. Note that this same problem
can be solved also with a different semiring, obtaining a different way to compute a
solution and a different ordering. For example, we could have chosen the semiring{R∪
+∞,min,+,+∞, 0}, where the value of each solution would have been obtained by
summing the values of each attacking pair, and solutions would have been compared
using the min operator.

Let’s now fix n = 4 and illustrate the definitions of the previous section usingthis
example. Clearly we can see that, as in the crisp case, for anyvi with i = 1, . . . , 4, we
have1 ' 4 and2 ' 3. We have, in fact, for any configurationη,

⊗

Cη[v1 := 1] =
⊗

Cφv(η)[v1 := 4]

∧
⊗

Cη[v1 := 4] =
⊗

Cφv(η)[v1 := 1];

whereφv({v1 := a1, v2 := a2, v3 := a3, v4 := a4}) = {v1 := 4 − a1 + 1, v2 :=
4 − a2 + 1, v3 := 4 − a3 + 1, v4 := 4 − a4 + 1}2. The same happens for the variables
v2, . . . , v4 and for the pair2 ' 3. In Fig. 2 some mappings are presented.

1 Note that this choice already eliminates some possible symmetries.
2 Notice also that this holds for any of the formulas in Proposition 1.
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(b) A solution η with level 1
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(c) A solution η with level 1 and its
symmetric equivalent (2 ' 3 for v1).

Fig. 2.Some mappings showing1 ' 4 and2 ' 3 for v1.

Let’s now consider the notion ofαsymmetry. Forn = 4 we have many config-
urations with semiring value14 . We only present in Fig. 4 the configurations whose
semiring value is greater or equal than1

2 . All the configurations with levels12 and1 can
be obtained by applying the two geometric symmetries:

1. vertical symmetryφv({v1 := a1, . . . , vi := ai, . . . , vn := an}) = {v1 := n −
a1 + 1, . . . , vi := n − ai + 1, . . . , vn := n − an + 1}

2. horizontal symmetryφh({v1 := a1, . . . , vi := ai, . . . , vn := an}) = {v1 :=
an, . . . , vi := an−i+1, . . . , vn := a1}

Notice also that in the soft4-queen problem there are solutions with semiring value3
4

(see Fig. 3) but these are excluded from our model (since we represent one queen in
each column in our model).

�� �
� �
� �
� ��

Fig. 3.A solution with level3
4

not permitted in our model.

We want to show that when using a thresholdᾱ, more symmetries can be found.
Suppose we fix̄α = 1

2 . By using Definition 4, looking for̄αsymmetry means that
we need to check if there exists a mappingφ s.t. a ' b, but only whena andb are
involved in a solution greater than the thresholdᾱ. Since in our example we want look
for 1

2

symmetries, it is enough to focus attention to the configurations depicted in Fig. 4.
We claim that1 ' 1

2

3 and2 ' 1

2

4 for variablev2. To prove this, we need to give a

mappingφ s.t. for any configurationη s.t.
⊗

Cη[v1 := 1] ≥ 1
2 we have

⊗

Cη[v1 :=
1] =

⊗

Cφ(η)[v1 := 3] and the opposite one (the same happens for2 ' 1

2

4). Let’s
consider the mappingφ similar toφv, s.t.
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(a) Solutions with level1
2
.
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(b) Solution with
level1.

Fig. 4.Solutions forn = 4.

– φ(2, 4, 1, 3) = (3, 1, 2, 4), andφ(3, 1, 4, 2) = (2, 4, 1, 3),

– when restricted to variablev1, v3, andv4 (φ↓{v1,v3,v4} = φv
↓{v1,v3,v4}

), and

– when restricted tov2 (φ↓{v2}(1) = 3, φ↓{v2}(2) = 4, φ↓{v2}(3) = 1, φ↓{v2}(4) =
2.

The mapping just defined, satisfies the condition of symmetryfor all solutions
greater than1

2 . Fig. 4 illustrates the mappings. Obviously the semiring value associ-
ated with a solution and its transformed equivalent is the same.
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(a) The mapping of the first solution
with level 1

2
.
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(b) The mapping of the second solu-
tion with level 1

2
.
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(c) The mapping of the third solution
with level 1

2
.
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(d) The mapping of the fourth solution
with level 1

2
.
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(e) The mapping of the solution with
level1.

Fig. 5.The mappings of the solutions with level≥ 1

2
.



Obviously, we can check that the mapping maintains the same solution level, so
1 ' 1

2

3 and2 ' 1

2

4. Similarly, we also have1 '1 3 and2 '1 4 as an example of
Theorem 3.

5 Experiments
In this section we present some empirical results supporting the theoretical framework
presented in Section 3. In particular, Section 5.1 demonstrates that if valuesa andb
for variablev areα1 threshold symmetric, they are alsoα2 threshold symmetric, where
α1 ≤ α2, and that the number of mappingsφ that satisfy the definition for threshold
symmetry for all solutions (Definition 4), increases with larger threshold valuēα.

In Section 5.2 we present results from an implementation of aSymmetry Breaking
During Search algorithm that utilizes soft symmetries to reduce search effort and the
number of solutions produced. Experimental results confirmthe improvement in the
search performance, and show a significant reduction in the number of distinct solutions
found.

5.1 Counting Soft Symmetries

In crisp CSPs, the only mappings which can be used to find symmetrical values in the
n-queens problem are the geometric mappings, for example,φv andφh, the vertical and
horizontal axial symmetries, respectively. In the soft CSPframework, we can utilize the
notion of threshold symmetry to find many more mappings, and hence more symmetri-
cal values, which allow symmetry breaking methods to break more symmetries at each
step.

In our experimental evaluations, we use a small subset of allpossible mappingsφ
to test for threshold symmetry between two valuesa andb for a variablev. In particu-
lar, we chose to systematically generate the subset of all possible mappings for the soft
queens problem in which domain values are mapped directly toother domain valuesir-
respectiveof what variable they are assigned to. We computed this subset by generating
n! permutations of the domain values and mapping directly between values in the origi-
nal domain and the corresponding position in the permuted one. This set of mappings is
a very small subset of all the possible mappingsφ among chess-board configurations;
for the sake of computational tractability we chose to use this subset to enable us to find
useful mappings. This subset allowed us to find a significant number of non-geometric
mappings, and provides us with useful results. Many other methods of generating a
manageable subset of mappings are possible. Using a larger set of mappings would
potentially give rise to more symmetries, which is one possible avenue for future work.

In Table 1 we show the symmetrical values found forv1 using this set of mappings
for various values of threshold̄α in the 5-Queens problem; we present results for values
1 and 3 as examples. We can see that at lower levels ofᾱ, we identify, for example,
values1 and5 as symmetrical to1 for v1. At all levels of ᾱ greater than this, we also
identify these values as symmetrical, supporting Theorem 3.

Table 2 presents results attained by systematically evaluating the threshold sym-
metry for all solutions (Definition 4) for all(v, a, b, φ) combinations, using the set of
mappings we generated as discussed above. Results shown in the table indicate the
number of mappings that satisfy the definition for the specified value ofᾱ. The results
clearly show that the number of mappings which give rise to symmetries is much larger



Table 1.Table of symmetrical values fora = 1 anda = 3 for v1 in 5-Queens problem at various
values of threshold̄α.

ᾱ (v1 := a) symmetric values

0.2 1 {1, 5}
3 {3}

0.4 1 {1, 5}
3 {3}

0.6 1 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5}

0.8 1 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5}

1.0 1 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5}

at higher thresholds, a useful property when using symmetrical values to guide search
in soft CSPs.

Table 2.Number of times threshold symmetry for all solutions definition is satisfied withthresh-
old ᾱ = 1

n
and ᾱ = 1 when iterating through all(v, a, b, φ) combinations for soft queens

problems of various sizes.

n ᾱ = 1

n
ᾱ = 1

2 6 6
3 15 27
4 24 68
5 40 100
6 54 1620

5.2 Exploiting Soft Symmetries during Search

To demonstrate the utility of the ideas developed in this paper we implemented an al-
gorithm to breakαsymmetries in soft CSPs. In this algorithm we attempt to break sym-
metry in the search space to avoid searching for solutions which are symmetrical to
solutions of the same (or higher) consistency which we have already found. Our imple-
mentation is based on the Symmetry Breaking During Search (SBDS) approach [20].

We implemented this search algorithm by augmenting a simplebacktracker to break
symmetry during search by avoiding sections of the search space which are symmet-
rical to those we have already successfully explored. In this way we can significantly
reduce the search effort required to find a set of solutions and reduce the number of
distinct solutions produced by providing a set of representative solutions instead of an
exhaustive list of all possible solutions of the required consistency.



Table 3.Results for our Soft SBDS Backtracker

Soft SBDS Backtracker
n α #bts #sols #bts #sols

2 1 2 0 2 0
2 0.5 2 1 4 4
3 1 4 0 4 0
3 0.667 3 1 5 2
3 0.333 14 8 27 27
4 1 10 1 13 2
4 0.75 10 1 13 2
4 0.5 11 6 26 16
4 0.25 30 16 256 256
5 1 4 1 43 10
5 0.8 4 1 43 10
5 0.6 4 1 43 10
5 0.4 103 66 233 184
5 0.2 363 243 3125 3125
6 1 87 2 131 4
6 0.833 50 6 155 32
6 0.667 67 20 197 70
6 0.5 124 61 358 198
6 0.333 485 304 3019 2642
6 0.167 1092 729 46656 46656

To enable us to prune symmetric states, we maintain a value exclusion set for each
level of the search tree. Each time that we find a solution of the required consistency
α, we update these exclusion sets with valuesαsymmetric to the relevant value from
that solution. To ensure that symmetries act locally, we empty value exclusion sets for
subsequent levels of the search tree each time we backtrack to a choice point.

This approach does not improve on the effort required to find one solution to a
soft CSP. However, in soft CSPs our goal is usually to find the best solution(s). There-
fore, if we find one solution of a high level of consistency we do not need to search
for states which are symmetrical to this solution, significantly reducing search effort.
Furthermore, we also reduce the effort involved in findingall solutions to a soft CSP.

The set of symmetrical values used for this algorithm is pre-computed by following
an approach similar to that outlined above for computing theresults in Table 2. In this
case, we evaluate the threshold symmetry for all solutions definition for all(v, a, b, φ, ᾱ)
combinations possible in the relevant instance of the soft queens problem. We then
store each(v, a, b) triple which is found to beαsymmetric, thus avoiding the significant
overhead of searching through a large set of mappings each time we wish to add to our
value exclusion sets. With the current lack of an efficient means of identifying useful
non-geometric mappings, we see this approach as a reasonable compromise between
the added search efficiency gained by utilizingαsymmetries and the off-line overhead
of computing these symmetries.



The set of the solutions produced by this algorithm can be seen as a representative
subset of all possible solutions of the required consistency, which is a useful method of
producing diverse solutions to a loosely constrained problem.

Results achieved using this approach are encouraging: we significantly reduce the
number of distinct solutions found and the number of backtracks required to find those
solutions. In Table 3 we present results demonstrating the utility of our approach to
breaking soft symmetries, particularly in loosely constrained problems. For example, if
we examine the results forn = 6 andα = 1

6 we can see that a very large reduction
in the number of backtracks is attained to find a small representative subset of a large
number of possible solutions.

6 Conclusions
Exploiting symmetry in constraint satisfaction problems has become a very popular
topic of research in recent times. The existence of symmetryin a problem has the effect
of artificially increasing the size of the search space that is explored by search algo-
rithms. Another significant topic of research has been approaches to reasoning about
preferences. As constraint processing applications are becoming more widespread in
areas such as electronic commerce, configuration, etc., it is becoming increasingly im-
portant that we can reason about preferences in as efficiently a manner as possible.

We have presented an approach to dealing with symmetry in thesemiring frame-
work for soft constraints. We demonstrate that breaking symmetries in soft constraint
satisfaction problems improves the efficiency of search. The paper contributes to the
state-of-the-art in symmetry breaking, as well as in reasoning about preferences.
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