
Symmetry Breaking in Soft CSPs

Stefano Bistarelli

Istituto di Informatica e Telematica, CNR, Pisa, Italy

Dipartimento di Scienze

Universitá degli Studi “G. D’annunzio”, Pescara, Italy

Jerome Kelleher and Barry O’Sullivan

Cork Constraint Computation Centre

Department of Computer Science

University College Cork, Ireland

Abstract

Exploiting symmetry in constraint satisfaction problems has become

a very popular topic of research in recent times. The existence of sym-

metry in a problem has the effect of artificially increasing the size of the

search space that is explored by search algorithms. Another significant

topic of research has been approaches to reasoning about preferences. As

constraint processing applications are becoming more widespread in areas

such as electronic commerce, configuration, etc., it is becoming increas-

ingly important that we can reason about preferences as efficiently as

possible. We present an approach to dealing with symmetry in the semi-

ring framework for soft constraints. We demonstrate that breaking sym-

metries in soft constraint satisfaction problems improves the efficiency

of search. The paper contributes to the state-of-the-art in symmetry

breaking, as well as in reasoning about preferences.

1 Introduction

Exploiting symmetry in constraint satisfaction problems has become a very
popular topic of research in recent times [1, 2, 13, 17, 19, 22]. The existence
of symmetry in a problem has the effect of artificially increasing the size of the
search space that is explored by search algorithms. Therefore, a typical ap-
proach is to break the symmetries in the problem so that only unique solutions
are returned (i.e. that only one exemplar of each symmetric equivalence class of
solutions is returned). The complete set of solutions can be trivially computed
using the symmetry in the problem. The significant advantage is that not only
do we return fewer solutions, but we also reduce the search effort required to
find these solutions by eliminating symmetric branches of the search tree.

Another significant topic of research in the constraint processing commu-
nity is the ability to reason about preferences [3, 18]. It has been shown how
preferences can be modeled as constraints [4, 11]. As constraint processing ap-
plications are becoming more widespread in areas such as electronic commerce,
configuration, etc., it is becoming increasingly important that we can reason

about preferences in as efficient a manner as possible. For example, a typical
problem in e-commerce systems requires that we satisfy a set of user-specified
preference constraints to a maximal degree. The user would typically wish to
see a set of alternative solutions to their preferences, but would like to have
diversity amongst the set presented to him. This is a well studied issue in the
case-based reasoning community [23], but is less well studied in the constraint
processing community. One obvious avenue to be explored here are notions of
symmetry in preferences. Diversity in this case might be interpreted as the
presentation of a set of solutions which are members of different symmetric
equivalence classes. This is a potential application of the work presented in
this paper.

The work reported is focused on symmetry breaking in soft constraint sat-
isfaction problems. We present an approach to dealing with symmetry in the
semiring framework for soft constraints [4, 6]. We first give definitions of sym-
metry, extending the work of Benhamou [2], and then relax them using the
notion of degradation. The theoretical results are enforced by some empirical
tests, showing that breaking symmetries in soft constraint satisfaction problems
improves the efficiency of search.

The remainder of the paper is structured as follows. Section 2 presents a
review of soft constraints and and overview of the state-of-the-art in the area
of symmetry-breaking. We present the theoretical aspects of our approach
to symmetry breaking in soft CSPs in Section 3 and give some examples in
Section 4. Some empirical results are presented in Section 5. Some concluding
remarks are made in Section 6.

2 Background

Before presenting an approach to dealing with symmetry in soft CSPs, we will
first present a review of the background to this work. In Section 2.1 a brief
state-of-the-art review of symmetry breaking in CSPs will be presented. In
Section 2.2 the semiring-based approach to soft CSPs will be recapitulated for
the convenience of the reader.

2.1 Symmetry Breaking

There is significant interest within the constraint programming community in
exploiting symmetry when solving constraint satisfaction problems. As a con-
sequence, a growing number of techniques are being reported in the literature.
Benhamou [2] presented an early analysis of symmetry-breaking and placed it
in the context of Freuder’s work on interchangeability, a special case of sym-
metry [15].

A common approach to symmetry breaking involves carefully modeling the
problem so that symmetries have been removed. For example, Crawford et
al. [10] have demonstrated how constraints can be added to the model in order
to break symmetries. Puget [21] has presented a formal approach to symmetry

breaking that involves the addition of ordering constraints to break symmetries.
Flener et al. [13] adopt a similar approach by adding ordering constraints to
break symmetries in matrix models. Flener et al. [13] also remind us that sym-
metry detection is graph-isomorphism complete in the general case, pointing
to the work of Crawford [9].

Brown et al. [8] have presented a modified backtracking algorithm that
breaks symmetry by pruning branches of the search tree dynamically. This is
done by ensuring that only one solution from each symmetric equivalence class
is computed. Similarly, a general method for eliminating symmetries, known
as symmetry breaking during search (SBDS), has been proposed by Gent and
Smith [17]. The SBDS approach is based on earlier work by Backofen and
Will [1]. Both of these methods can be regarded as examples of a class of ap-
proaches to handling symmetries that involve the addition of constraints during
search to avoid symmetrical states in the search space. An implementation of
SDBS based on the GAP computational abstract algebra system has been pre-
sented by Gent et al. [16].

Meseguer and Torras [20] have reported the use of search ordering heuristics
to avoid symmetries during search. However, the method is less general than
SBDS [17].

The notion of partial symmetry breaking has been explored by McDonald
and Smith [19]. They show that there is a break-even point to be considered
when breaking symmetries during search; there is a point where the benefit
in reducing search from removing more symmetries is outweighed by the ex-
tra overhead incurred. By breaking a subset of the possible symmetries in a
problem, rather than breaking all of them, significant savings in runtime can
be accomplished.

Finally, symmetry breaking based on no-good recording methods have been
presented by Fahle et al. [12] and Focacci and Milano [14]. The approach pre-
sented by the former is known as symmetry-breaking via dominance detection
(SBDD) and it has been shown to compare well with SBDS; the latter approach
is known as the global cut framework. Puget has presented an improvement on
these approaches by using an auxiliary CSP for performing dominance checks
based on no-good recording [22].

It should be noted that all of the approaches to dealing with symmetry
presented above are defined for crisp constraints. In this paper we present,
for the first time, a theoretical framework for exploiting symmetries in soft
CSPs, and demonstrate the utility of the approach empirically using an SBDS-
like approach. SBDS is chosen since it is a very flexible approach to breaking
symmetries and is readily applicable to symmetry breaking in soft CSPs.

2.2 Soft CSPs

Soft constraints associate a qualitative or quantitative value either to the entire
constraint or to each assignment of its variables. More precisely, they are
based on a semiring structure S = 〈A,+,×,0,1〉 and a set of variables V
with domain D. In particular the semiring operation × is used to combine

constraints together, and the + operator for projection.
Technically, a constraint is a function which, given an assignment η : V → D

of the variables, returns a value of the semiring. So C = η → A is the set of
all possible constraints that can be built starting from S, D and V (values in
A are interpreted as level of preference, importance or cost). Using the levels
of preference, we can order constraints: to say that c1 is better then c2 we will
write c1 w c2.

When using soft constraints it is necessary to specify, via suitable combina-
tion operators, how the level of preference of a global solution is obtained from
the preferences in the constraints. The combined weight of a set of constraints
is computed using the operator ⊗ : C×C → C defined as (c1⊗c2)η = c1η×S c2η.
Moreover, given a constraint c ∈ C and a variable v ∈ V , the projection of c over
V − {v}, written c ⇓(V −{v}), is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d].

3 Symmetry in Soft CSPs

Using an approach similar to [2], we can define two notions of Semantic sym-
metry.

Definition 1 (Symmetry for satisfiability) Consider two domain values b
and a for a variable v and the set of constraints C; we say that b and a are
symmetrical for satisfiability (a ≈ b) if and only if

∀α,∃η, η′ :
⊗

Cη[v := a] = α ⇐⇒
⊗

Cη′[v := b] = α

Informally, two domain values a and b are symmetrical for satisfiability if when-
ever the assignment v := a (v := b) leads to a solution with semiring value α,
then, we can also obtain a solution with the same value α using the assignment
v := b (v := a).

Definition 2 (Symmetry for all solutions) Consider two domain values b
and a for a variable v and the set of constraints C; we say that b and a are
symmetrical (w.r.t. the constraints C) (a ' b) if and only if

∃φ, η′, η′′ : ∀η : φ(η[v := a]) = η′[v := b], and φ(η[v := b]) = η′′[v := a],∧
⊗

Cη[v := a] =
⊗

Cφ(η[v := a]) ∧
⊗

Cη[v := b] =
⊗

Cφ(η[v := b]).

Informally, two domain values a and b are symmetrical (w.r.t. the con-
straints C) if whenever we have the assignment η[v := a] with semiring value
α, there is also an assignment η′[v := b] with the same semiring value, where
η′[v := b] = φ(η[v := a]) (for some bijective mapping φ), and vice versa.

Clearly symmetry for all solutions implies symmetry for satisfiability.

Theorem 1 Symmetry for all solutions implies symmetry for satisfiability.

Since finding the mapping φ is one of the most important steps when looking
for symmetry, it could be useful to reformulate the definition of symmetry for
all solutions using equivalent propositions.

Proposition 1 The following propositions describing the notion of symmetry
for all solutions (a ' b) are equivalent:

∃φ, η′, η′′ : ∀η : φ(η[v := a]) = η′[v := b], and φ(η[v := b]) = η′′[v := a],∧

(1)
⊗

Cη[v := a] =
⊗

Cφ(η[v := a]) ∧
⊗

Cη[v := b] =
⊗

Cφ(η[v := b]);

∃φ,∀η :
⊗

Cη[v := a] =
⊗

Cφ(η[v := a])[v := b] ∧ (2)
⊗

Cη[v := b] =
⊗

Cφ(η[v := b])[v := a];

∃φ,∀η :
⊗

Cη[v := a] =
⊗

Cφ(η)[v := b] ∧ (3)
⊗

Cη[v := b] =
⊗

Cφ(η)[v := a];

It also important to notice that, similar to the crisp case, the notion of In-
terchangeability for Soft CSPs [7] is a specific type of symmetry for all solutions
obtained using as φ the identity function.

Theorem 2 Consider two domain values b and a, for a variable v and the set
of constraints C. If b is fully interchangeable with a on v (FI v(a/b)) (that is,
for all assignments η, we have

⊗
Cη[v := a] =

⊗
Cη[v := b] [7]) then a and b

are symmetrical (w.r.t. the constraints C) (a ' b). In particular, the symmetry
hold using as φ the identity function.

Symmetries in SCSPs are rarer than in classical CSPs. For this reason using
a notion of threshold (similar to that defined by Bistarelli et al. [7]) is useful.

Definition 3 (Threshold symmetry for satisfiability) Consider two do-
main values b and a for a variable v, the set of constraints C and a threshold
ᾱ; we say that b and a are ᾱsymmetrical for satisfiability (a ≈ᾱ b) if and only
if

∀α ≥ ᾱ,∃η, η′ :
⊗

Cη[v := a] = α ⇐⇒
⊗

Cη′[v := b] = α

Informally, two domain values a and b are αsymmetrical for satisfiability if
whenever the assignment v := a (v := b) leads to a solution with value α ≥ ᾱ,
then, there is also a way to obtain a solution with the same value α using the
assignment v := b (v := a).

Definition 4 (Threshold symmetry for all solutions) Consider two do-
main values b and a for a variable v, the set of constraints C and a threshold
ᾱ; we say that b and a are ᾱsymmetrical for all solutions (a 'ᾱ b) if and only
if

∃φ, η′, η′′, α, α′ ≥ ᾱ : ∀η :φ(η[v := a]) = η′[v := b], and φ(η[v := b]) = η′′[v := a],

∧
⊗

Cη[v := a] = α ∧
⊗

Cφ(η[v := a]) = α

∧
⊗

Cη[v := b] = α′ ∧
⊗

Cφ(η[v := b]) = α′.

Informally, two domain values a and b are ᾱsymmetrical for all solutions if
whenever the assignment η[v := a] leads to a solution whose semiring value is
α ≥ ᾱ, then there is also a solution η′[v := b] with the same semiring value,
where η′[v := b] = φ(η[v := a]) (for some bijective mapping φ), and vice versa.

We can prove that the number of symmetries increases when we increase
the threshold level.

Theorem 3 Given two domain elements a and b and two thresholds α1 ≤ α2.
Then,

• if a ≈α1
b, then a ≈α2

b;
• if a 'α1

b, then a 'α2
b.

4 Examples

The example problem that will be studied here is based on the soft n-queens
problem [5]. The example is a generalization of the usual n-queens problem,
which can be found in [24]. The classical formulation requires that n queens
are placed on a n × n chess-board in such a way that they do not attack
each other. In this formulation, we may allow attacking queens, but we give
a higher preference to solutions where queens attacking each other are farther
apart. In order to formulate this problem as a constraint satisfaction problem,
the location of the queens can be given by variables, and the “do not attack
each other” requirement can be expressed in terms of a number of constraints.
A simple way to do this is to assign a variable to each queen1.

As the n queens must be placed in n different columns, we can identify each
queen by its column, and represent its position by a variable which indicates
the row of the queen in question. Let vi stand for the row of the queen in the
i-th column. The domain of each of the variables v1, . . . , vn is {1, 2, . . . , n}.
For any two different variables, vi and vj , the following two constraints must
hold, expressing that the queens should be in different rows and on different
diagonals:

vi 6= vj and |vi − vj | 6= |i − j|

If we want to use soft constraints, the previous crisp constraints have to be
assigned an element of the semiring. So, whenever vi = vj , instead of giving
the boolean value false we assign the fuzzy value |i − j|/n. This means that
the farther apart the two queens are, the higher this value will be. The same
reasoning also holds for the two diagonals; in this case, when |vi − vj | = |i− j|
we assign the value |i − j|/n.

Notice that each solution of this generalized n-queens problem has a se-
miring value which is obtained by minimizing the semiring values of all its
constraints. This comes from the choice of the fuzzy semiring, where the mul-
tiplicative operation is the min. Therefore, if a solution contains three pairs
of attacking queens, each of the pairs will have a semiring value given by one
of the constraints, and the value of this solution will be the minimum of these

1Note that this choice already eliminates some possible symmetries.

three values. Different solutions are then ordered using the other semiring op-
eration, which in this case is the max. Note that the same problem can be
solved also with a different semiring, obtaining a different way to compute a
solution and a different ordering. For example, we could have chosen the se-
miring {R ∪+∞,min,+,+∞, 0}, where the value of each solution would have
been obtained by summing the values of each attacking pair, and solutions
would have been compared using the min operator.

Let’s now fix n = 4 and illustrate the definitions of the previous section
using this example. Clearly we can see that, as in the crisp case, for any
vi with i = 1, . . . , 4, we have 1 ' 4 and 2 ' 3. We have, in fact, for any
configuration η,

⊗
Cη[v1 := 1] =

⊗
Cφv(η)[v1 := 4] ∧

⊗
Cη[v1 := 4] =

⊗
Cφv(η)[v1 := 1];

where φv({v1 := a1, v2 := a2, v3 := a3, v4 := a4}) = {v1 := 4 − a1 + 1, v2 :=
4−a2+1, v3 := 4−a3+1, v4 := 4−a4+1}. The same happens for the variables
v2, . . . , v4 and for the pair 2 ' 3. In Figure 1 some mappings are presented.

����
� �
� �
� �

� �
� ��
� �
���

(a) A solution η with level 1

4
and its symmet-

ric equivalent (1 ' 4 for v1).
����
� �
� �

� �

� �
����
� �
� �

(b) A solution η with level 1

2
and its symmet-

ric equivalent (1 ' 4 for v1).

���
� �
� �
���

� �
� ��
�� �
� �

(c) A solution η with level 1 and its symmetric
equivalent (2 ' 3 for v1).

Figure 1: Some mappings showing 1 ' 4 and 2 ' 3 for v1.

Let’s now consider the notion of αsymmetry. For n = 4 we have many
configurations with semiring value 1

4 . We only present in Figure 3 the con-
figurations whose semiring value is greater or equal than 1

2 . All the config-
urations with levels 1

2 and 1 can be obtained by applying the two geometric
symmetries: 1. vertical symmetry φv({v1 := a1, . . . , vi := ai, . . . , vn := an}) =
{v1 := n − a1 + 1, . . . , vi := n − ai + 1, . . . , vn := n − an + 1} 2. horizontal
symmetry φh({v1 := a1, . . . , vi := ai, . . . , vn := an}) = {v1 := an, . . . , vi :=
an−i+1, . . . , vn := a1}. Notice also that in the soft 4-queen problem there are
solutions with semiring value 3

4 (see Figure 2) but these are excluded from our
model, since we represent one queen in each column.

We want to show that when using a threshold ᾱ, more symmetries can be
found. Suppose we fix ᾱ = 1

2 . By using Definition 4, looking for ᾱsymmetry

�� �
� �
� �
� ��

Figure 2: A solution with level 3
4 not permitted in our model.

����
� �
� �

� �

����
� �
� �
� ��

����
� �
� �
���

����
� �
� �
����

(a) Solutions with level 1

2
.

���
� �
� �
���

(b) Solution with level
1.

Figure 3: Solutions for n = 4.

means that we need to check if there exists a mapping φ s.t. a ' b, but only
when a and b are involved in a solution greater than the threshold ᾱ. Since in
our example we want look for 1

2

symmetries, it is sufficient to focus attention
upon the configurations depicted in Figure 3.

We claim that 1 ' 1

2

3 and 2 ' 1

2

4 for variable v2. To prove this, we need to

give a mapping φ s.t. for any configuration η s.t.
⊗

Cη[v2 := 1] ≥ 1
2 we have⊗

Cη[v2 := 1] =
⊗

Cφ(η)[v2 := 3] and the opposite case (the same happens
for 2 ' 1

2

4). Let’s consider the mapping φ similar to φv, s.t.

• φ(2, 4, 1, 3) = (3, 1, 2, 4), and φ(3, 1, 4, 2) = (2, 4, 1, 3),
• when restricted to variable v1, v3, and v4 (φ↓{v1,v3,v4} = φv

↓{v1,v3,v4}
), and

• when restricted to v2 (φ↓{v2}(1) = 3, φ↓{v2}(2) = 4, φ↓{v2}(3) =
1, φ↓{v2}(4) = 2.

The mapping just defined satisfies the condition of symmetry for all solu-
tions greater than 1

2 . Figure 4 illustrates the mappings. Obviously the semiring
value associated with a solution and its transformed equivalent is the same.

Obviously, we can check that the mapping maintains the same solution
level, so 1 ' 1

2

3 and 2 ' 1

2

4. Similarly, we also have 1 '1 3 and 2 '1 4 (see

Theorem 3).

5 Experiments

In this section we present some empirical results supporting the theoretical
framework presented in Section 3. In particular, Section 5.1 demonstrates that

����
� �
� �

� �

� �
� ��
� �

� �

(a) The mapping of the first solution with

level 1

2
.

����
� �
� �
� ��

� �
� �
� �
� �

(b) The mapping of the second solution

with level 1

2
.

����
� �
� �

���

� �
����
� �
� �

(c) The mapping of the third solution with

level 1

2
.

����
� �
� �
����

� �
���
� �
� �

(d) The mapping of the fourth solution with

level 1

2
.

���
� �
� �
���

� �
� ��
�� �
� �

(e) The mapping of the solution with level 1.

Figure 4: The mappings of the solutions with level ≥ 1
2 .

if values a and b for variable v are α1 threshold symmetric, they are also α2

threshold symmetric, where α1 ≤ α2 (see Theorem 3), and that the number of
mappings φ satisfying the definition for threshold symmetry for all solutions
(Definition 4), increases with larger threshold value ᾱ.

In Section 5.2 we present results from an implementation of a Symmetry
Breaking During Search algorithm that utilizes soft symmetries to reduce search
effort and the number of solutions produced. Experimental results confirm the
improvement in the search performance, and show a significant reduction in
the number of distinct solutions found.

5.1 Counting Soft Symmetries

In crisp CSPs, the only mappings which can be used to find symmetrical values
in the n-queens problem are the geometric mappings, for example, φv and φh,
the vertical and horizontal axial symmetries, respectively. In the soft CSP
framework, we can utilize the notion of threshold symmetry to find many more
mappings, and hence more symmetrical values, which allow symmetry breaking
methods to break more symmetries at each step.

In our experimental evaluations, we use a small subset of all possible map-
pings φ to test for threshold symmetry between two values a and b for a variable
v. In particular, we chose to systematically generate the subset of all possible
mappings for the soft queens problem in which domain values are mapped di-
rectly to other domain values irrespective of what variable they are assigned
to. We computed this subset by generating n! permutations of the domain

values and mapping directly between values in the original domain and the
corresponding position in the permuted one. This set of mappings is a very
small subset of all the possible mappings φ among chess-board configurations;
for the sake of computational tractability we chose to use this subset to enable
us to find useful mappings. This subset allowed us to find a significant number
of non-geometric mappings, and provides us with useful results. Many other
methods for the generation of a manageable subset of mappings are possible.
Using a larger set of mappings would potentially give rise to more symmetries,
which is one possible avenue for future work.

In Table 1 we show the symmetrical values found for v1 using this set of
mappings for various values of threshold ᾱ in the 5-Queens problem; we present
results for values 1 and 3 as examples. We can see that at lower levels of ᾱ, we
identify, for example, values 1 and 5 as symmetrical with 1 for v1. At all levels
of ᾱ greater than this, we also identify these values as symmetrical, supporting
Theorem 3.

Table 1: Table of symmetrical values for a = 1 and a = 3 for v1 in 5-Queens
problem at various values of threshold ᾱ.

ᾱ (v1 := a) symmetric values

0.2–0.4 1 {1, 5}
3 {3}

0.6–1.0 1 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5}

Table 2 presents results attained by systematically evaluating the threshold
symmetry for all solutions (Definition 4) for all (v, a, b, φ) combinations, using
the set of mappings we generated as discussed above. Results shown in the table
indicate the number of mappings that satisfy the definition for the specified
value of ᾱ. The results clearly show that the number of mappings which give
rise to symmetries is much larger at higher thresholds, a useful property when
using symmetrical values to guide search in soft CSPs.

5.2 Exploiting Soft Symmetries during Search

To demonstrate the utility of the ideas developed in this paper we implemented
an algorithm to break αsymmetries in soft CSPs. In this algorithm we attempt
to break symmetry in the search space to avoid searching for solutions which
are symmetrical to solutions of the same (or higher) consistency which we have
already found. Our implementation is based on the Symmetry Breaking During
Search (SBDS) approach [17].

We implemented this search algorithm by augmenting a simple backtracker
to break symmetry during search by avoiding sections of the search space which
are symmetrical to those we have already successfully explored. In this way

Table 2: Number of times threshold symmetry for all solutions definition is
satisfied with threshold ᾱ = 1

n
and ᾱ = 1 when iterating through all (v, a, b, φ)

combinations for soft queens problems of various sizes.

n ᾱ = 1
n

ᾱ = 1
2 6 6
3 15 27
4 24 68
5 40 100
6 54 1620

we can significantly reduce the search effort required to find a set of solutions
and reduce the number of distinct solutions produced by providing a set of
representative solutions instead of an exhaustive list of all possible solutions of
the required consistency.

To enable us to prune symmetric states, we maintain a value exclusion set
for each level of the search tree. Each time that we find a solution of the
required consistency α, we update these exclusion sets with values αsymmetric
to the relevant value from that solution. To ensure that symmetries act locally,
we empty value exclusion sets for subsequent levels of the search tree each time
we backtrack to a choice point.

This approach does not improve on the effort required to find one solution to
a soft CSP. However, in soft CSPs our goal is usually to find the best solution(s).
Therefore, if we find a solution with a high level of consistency, we do not need to
search for states which are symmetrical to this solution, significantly reducing
search effort. Furthermore, we also reduce the effort involved in finding all
solutions to a soft CSP.

The set of symmetrical values used for this algorithm is pre-computed by
following an approach similar to that outlined above for computing the results
in Table 2. In this case, we evaluate the threshold symmetry for all solutions
definition for all (v, a, b, φ, ᾱ) combinations possible in the relevant instance
of the soft queens problem. We then store each (v, a, b) triple which is found
to be αsymmetric, thus avoiding the significant overhead of searching through
a large set of mappings each time we wish to add to our value exclusion sets.
Since we lack an efficient way to identify useful non-geometric mappings, we see
this approach as a reasonable compromise between the added search efficiency
gained by utilizing αsymmetries and the off-line overhead of computing them.

The set of solutions produced by this algorithm can be seen as a representa-
tive subset of all possible solutions of the required consistency, which is a useful
method of producing diverse solutions to a loosely constrained problem.

Results achieved using this approach are encouraging: we significantly re-
duce the number of distinct solutions found and the number of backtracks
required to find those solutions. In Table 3 we present results demonstrating

Table 3: Results for our Soft SBDS Backtracker

Soft SBDS Backtracker
n α #bts #sols #bts #sols

2 1 2 0 2 0
2 0.5 2 1 4 4
3 1 4 0 4 0
3 0.667 3 1 5 2
3 0.333 14 8 27 27
4 1 10 1 13 2
4 0.75 10 1 13 2
4 0.5 11 6 26 16
4 0.25 30 16 256 256
5 1 4 1 43 10
5 0.8 4 1 43 10
5 0.6 4 1 43 10
5 0.4 103 66 233 184
5 0.2 363 243 3125 3125
6 1 87 2 131 4
6 0.833 50 6 155 32
6 0.667 67 20 197 70
6 0.5 124 61 358 198
6 0.333 485 304 3019 2642
6 0.167 1092 729 46656 46656

the utility of our approach to breaking soft symmetries, particularly in loosely
constrained problems. For example, if we examine the results for n = 6 and
α = 1

6 we can see that a very large reduction in the number of backtracks
is attained to find a small representative subset of a large number of possible
solutions.

6 Conclusions

Exploiting symmetry in constraint satisfaction problems has become a very
popular topic of research in recent times. The existence of symmetry in a prob-
lem has the effect of artificially increasing the size of the search space that is
explored by search algorithms. Another significant topic of research has been
approaches to reasoning about preferences. As constraint processing appli-
cations are becoming more widespread in areas such as electronic commerce,
configuration, etc., it is becoming increasingly important that we can reason
about preferences as efficiently as possible.

We have presented an approach to dealing with symmetry in the semiring
framework for soft constraints. We demonstrate that breaking symmetries in

soft constraint satisfaction problems improves the efficiency of search. The
paper contributes to the state-of-the-art in symmetry breaking, as well as in
reasoning about preferences.

Acknowledgment

This work has received support from Enterprise Ireland under their Basic Re-
search Grant Scheme (Grant Number SC/02/289) and their International Col-
laboration Programme (Grant Number IC/2003/88).

References

[1] R. Backofen and S. Will. Excluding symmetries in concurrent constraint
programming. In Proceedings of CP-99, LNCS 1520, pages 72–86, 1999.

[2] Belaid Benhamou. Study of symmetry in constraint satisfaction problems.
In Proceedings of CP-94, 1994.

[3] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Ver-
faillie. Semiring-based CSPs and Valued CSPs: Frameworks, properties,
and comparison. Constraints, 4(3), 1999.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solv-
ing and Optimization. Journal of the ACM, 44(2):201–236, Mar 1997.

[5] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Logic
Programming: Syntax and Semantics. ACM Transactions on Program-
ming Languages and System (TOPLAS), 23:1–29, 2001.

[6] S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint pro-
gramming. In Proc. ESOP, April 6 - 14, 2002, Grenoble, France, LNCS,
pages 53–67, Heidelberg, Germany, 2002. Springer-Verlag.

[7] Stefano Bistarelli, Boi Faltings, and Nicoleta Neagu. A definition of in-
terchangeability for soft csps. In Recent Advances in Constraints, LNAI
2627. Springer, 2003.

[8] C.A. Brown, L. Finkelstein, and P.W. Purdon Jr. Backtrack searching in
the presence of symmetry. In T. Mora, editor, Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, volume 357 of LNCS, pages 99–
110. Springer-Verlag, 1988.

[9] J. Crawford. A theoretical analysis of reasoning by symmetry in first-order
logic. In Proceedings of the AAAI-92 Workshop on Tractable Reasoning,
1992.

[10] J. Crawford, G. Luks, M. Ginsberg, and A. Roy. Symmetry breaking
predicates for search problems. In Proceedings of the Fifth International
Conference on Knowledge Representation and Reasoning – KR-96, pages
148–159, 1996.

[11] C. Domshlak, F. Rossi, B. Venable, and T. Walsh. Reasoning about soft
constraints and conditional preferences: complexity results and approxi-
mation techniques. In Proceedings of IJCAI-2003, August 2003.

[12] T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In
Proceedings of CP-01, LNCS 2239, pages 93–107, 2001.

[13] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh. Breaking row and column symmetries in matrix models. In
Proceedings of CP-02, LNCS 2470, pages 462–476, 2002.

[14] F. Focacci and M. Milano. Global cut framework for removing symmetries.
In Proceedings of CP-01, LNCS 2239, pages 75–92, 2001.

[15] E.C. Freuder. Eliminating interchangeable values in constraint satisfaction
problems. In Proceedings of the AAAI, pages 227–233, 1991.

[16] I.P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry
breaking during search. In Proceedings of CP-02, LNCS 2470, pages 415–
430, 2002.

[17] I.P. Gent and B.M. Smith. Symmetry breaking in constraint programming.
In W. Horn, editor, Proceedings of ECAI-2000, pages 599–603. IOS Press,
2000.

[18] U. Junker. Preference programming for configuration. In Proceedings of
the 4th International Workshop on Configuration (IJCAI-01), pages 50–
56, August 2001.

[19] I. McDonald and B. Smith. Partial symmetry breaking. In Proceedings of
CP-02, LNCS 2470, pages 431–445, 2002.

[20] Pedro Meseguer and Carme Torras. Exploiting symmetries within con-
straint satisfaction search. Artificial Intelligence, 129(1–2):133–163, 2001.

[21] J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction
problems. In Proceedings of ISMIS-93, LNAI 689, pages 350–361, 1993.

[22] J.-F. Puget. Symmetry breaking revisited. In Proceedings of CP-02, LNCS
2470, pages 446–461, 2002.

[23] B. Smyth and P. McClave. Similarity vs. diversity. In Proceedings ICCBR-
2001, LNCS 2080, pages 347–361, 2001.

[24] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, MA, USA, 1989.

