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Abstract. Solving semiring-based constraint satisfaction problem (SCSP)
is a task of finding the best solution, which can be viewed as an opti-
mization problem. Current research of SCSP solution methods focus on
tree search algorithms, which is computationally intensive. In this paper,
we present an efficient local search framework for SCSPs, which adopts
problem transformation and soft constraint consistency techniques, and
E-GENET local search model as a foundation. Our framework is param-
eterized by the semiring structure S, resulting in a family of algorithms
for various kinds of soft constraint problems. We build a prototype solver
that is based on the proposed framework, and test it on both structured
and non-structured problems. The benchmarking results show that it is
feasible to tackle SCSPs in an efficient manner.

1 Introduction

Classical constraint satisfaction problem (CSP) [15, 16] is an expressive and nat-
ural formalism to specify many kinds of problems from scheduling, bin-packing
to resource allocation. In practice, however, many problems are over-constrained
and involve preferences, going outside the realm of class CSPs and calling for
the notion of soft constraints. Semiring-based Constraint Satisfaction Problems
(SCSP) is a general framework for specifying soft constraint problems, encom-
passing classical CSPs [15, 16], fuzzy CSPs [19], partial CSPs [9], probabilistic
CSPs [8], weighted CSPs [13], among others. Solving an SCSP amounts to find-
ing valuations that satisfy the soft constraints the “best”, where the goodness
measure depends on the semiring structures of the problem. Existing SCSP so-
lution methods are based on local consistency techniques and tree search [11,
18], and also dynamic programming [1], which are complete methods with likely
an exponential cost. Recently, Yan Georget and Philippe Codognet [11] devel-
oped a backtracking-based constraint logic programming system, clp(FD,S), for



solving SCSPs, which is an integration framework for their proposed semiring
kernel (SFD) and the constraint logic programming system clp(FD). Bistarelli et
al. [1] proposed a dynamic programming approach to solve SCSPs, which solves
a sub-problem (a subset of constraints) of the original problem repeatedly, and
replaces the sub-problem by a new generated constraint. Besides, local consis-
tency techniques [1, 2] are also useful for solving SCSPs, however, the × operator
of the semiring is restricted to be idempotent.

In this paper, we present a local search framework for tackling SCSP prob-
lems. Like the systematic search counterpart, our framework is parameterized
by the semiring structure S, resulting in a family of algorithms. Basically, our
framework consists of three main components: sinking, shrinking and local search
engine. The novelty of our approach is that, we do forward and backward trans-
formation between original SCSP and crisp CSP, and perform searching on the
solution space of the crisp problem repeatedly. Besides, shrinking techniques are
also applied to the search space to further improve the searching performance.
Our work is most related to the iterative abstraction method, proposed by Rossi
et. al. [18], which solves the abstract version of the original SCSP problem via
Conflex, and narrow the upper and lower bounds of the desired solution itera-
tively. The main difference between the two approaches is the searching strategy
and the bounds approximation. We use local search approach, while iterative
abstraction is based on branch-and-bound tree search. Our implementation is
based on that of E-GENET [14], which allows the problem transformation to
be done naturally with little overhead. Benchmarking results show that the ap-
proach is effective and efficient on tackling both structured and non-structured
problems.

The rest of this paper is organized as follows. In Section 2, we recall the idea
of semiring-based CSP solving. We present the components and the underlying
theory of our local search framework in Section 3 and its experimental results
in Section 4. Conclusions and perspectives for future work are addressed in the
Section 5.

2 Semiring-based Constraint Solving

A soft constraint may be seen as a constraint where each instantiations of its
variables has an associated value from a partially ordered set which can be
interpreted as a set of preference values. Combining constraints will then have
to take into account such additional values, and thus the formalism has also to
provide suitable operations for combination (×) and comparison (+) of tuples
of values and constraints.

Here we give the basic notions about constraint solving over semirings, the
details definitions and proofs of properties can be found in [4].

2.1 Semirings

A semiring is a tuple 〈A,+,×,0,1〉 such that:



– A is a set and 0,1 ∈ A;
– + is commutative, associative and 0 is its unit element;
– × is associative, distributes over +, 1 is its unit element and 0 is its absorbing

element.

A c-semiring is a semiring 〈A,+,×,0,1〉 such that: + is idempotent, 1 is its
absorbing element and × is commutative. Let us consider the relation ≤S over
A such that a ≤S b iff a+ b = b. Then it is possible to prove that (see [4]):

– ≤S is a partial order;
– + and × are monotone on ≤S ;
– 0 is its minimum and 1 its maximum;
– 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a + b = lub(a, b) (where
lub is the least upper bound).

Moreover, if × is idempotent, then: + distributes over ×; 〈A,≤S〉 is a complete
distributive lattice and × its glb (greatest lower bound). Informally, the relation
≤S gives us a way to compare semiring values and constraints. In fact, when
we have a ≤S b, we will say that b is better than a. In the following, when the
semiring S will be clear from the context, a ≤S b will be often indicated by
a ≤ b.

2.2 Constraint Problems

Given a semiring S = 〈A,+,×,0,1〉 and an ordered set of variables V over a
finite domain D, a constraint is a function which, given an assignment η : V → D
of the variables, returns a value of the semiring.

By using this notation we define C = η → A as the set of all possible con-
straints that can be built starting from S, D and V . In this functional formula-
tion, each constraint is a function (as defined in [5]) and not a pair (as defined
in [3, 4]). Such a function involves all the variables in V , but it depends on the
assignment of only a finite subset of them. More precisely, for each tuple of val-
ues for the involved variables, a corresponding element (semiring value) of the
set A is given, which can be interpreted as the tuples’ weight, cost, or degree of
satisfaction. For instance, a binary constraint cx,y over variables x and y, is a
function cx,y : V → D → A, but it depends only on the assignment of variables
{x, y} ⊆ V . We call this subset the support of the constraint.

More formally, consider a constraint c ∈ C. We define its support as supp(c) =
{v ∈ V | ∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{
d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the assignment
v := d1 (that is the operator [ ] has precedence over application). Note also that
cη is the application of a constraint function c : V → D → A to a function
η : D → A; what we obtain, is a semiring value cη = a.



A semiring constraint satisfaction problem is a pair 〈C, con〉 where con ⊆ V
and C is a set of constraints: con is the set of variables of interest for the
constraint set C, which, however, may concern also variables not in con.

Fig. 1 shows the graph representation of a fuzzy CSP. Variables and con-
straints are represented respectively by nodes and by undirected (unary for c1

and c3 and binary for c2) arcs, and fuzzy membership values are written to the
right of the corresponding tuples as semiring values. The variables of interest
(that is the set con) are represented with a double circle. Here we assume that
the domain D of the variables contains only elements a and b and c.

X Y
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Fig. 1. An example of Fuzzy CSP.

2.3 Combination and Projection of soft constraints

Given the set C, the combination function ⊗ : C×C→ C is defined as (c1⊗c2)η =
c1η × c2η.

In other words, combining two constraints means building a new constraint
whose support involves all the variables of the original ones, and which associates
with each tuple of domain values for such variables a semiring element which is
obtained by multiplying the elements associated by the original constraints to
the appropriate subtuples. It is easy to verify that supp(c1 ⊗ c2) ⊆ supp(c1) ∪
supp(c2). We can easily extend the partial order ≤S over C by defining c1 v
c2 ⇐⇒ c1η ≤ c2η.

Given a constraint c ∈ C and a variable v ∈ V , the projection of c over
V − {v}, written c ⇓(V−{v}) is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d]. The

projection operator can be easily extended to a set of variable I ⊆ V by defining
c ⇓(V−I)= c ⇓(V−{v})⇓(V−{I−{v}}). It is easy to verify that supp(c ⇓S) ⊆ S.

Informally, projecting means eliminating some variables from the support.
This is done by associating with each tuple over the remaining variables a semir-
ing element which is the sum of the elements associated by the original con-
straint to all the extensions of this tuple over the eliminated variables. In short,
combination is performed via the multiplicative operation of the semiring, and
projection via the additive one.



2.4 Solutions

The solution of an SCSP P = 〈C, con〉 is the constraint Sol(P ) = (
⊗
C) ⇓con.

That is, we combine all constraints, and then project over the variables in con.
In this way we get the constraint with support (not greater than) con which is
“induced” by the entire SCSP. Note that when all the variables are of interest
we do not need to perform any projection.

Example 1. The solution of the fuzzy CSP of Fig. 1 associates a semiring ele-
ment to every domain value of variable x. Such an element is obtained by first
combining all the constraints together. For instance, for the tuple 〈a, a〉 (that
is, x = y = a), we have to compute the minimum between 0.9 (which is the
value assigned to x = a in constraint c1), 0.8 (which is the value assigned to
〈x = a, y = a〉 in c2) and 0.9 (which is the value for y = a in c3). Hence, the re-
sulting value for this tuple is 0.8. We can do the same work for tuple 〈a, b〉 → 0.2,
〈a, c〉 → 0.2, 〈b, a〉 → 0, 〈b, b〉 → 0, 〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and
〈c, c〉 → 0.2. The obtained tuples are then projected over variable x, obtaining
the solution 〈a〉 → 0.8, 〈b〉 → 0.1 and 〈c〉 → 0.8.

Note that the solution of an SCSP is a constraint involving all variables in
con. Each tuple in the solution constraint is associated with a respective semiring
value. In practice, however, users are not interested in all tuples in the solution
constraint but only certain “good” ones. For the purpose of this paper, we define
a preferred solution assignment η ∈ Sol(P ) with semiring value α to be one such
that if η′ ∈ Sol(P ) has semiring value α′, then α 6≤ α′. Our local search solver
aims to compute preferred solution assignment of an SCSP.

2.5 Local Consistency

The idea of local consistency in classical CSPs is to choose some subproblems of
the original problem in which to eliminate local inconsistency, and then iterate
such elimination in all the chosen subproblems until stability. The most widely
known local consistency algorithms are node-consistency and arc-consistency
algorithm. As discussed in [4], local consistency properties also hold in SCSPs,
provided that the combination operator is idempotent and the set A of c-semiring
is finite.

More precisely, we say that the problem P = 〈C, con〉 is locally inconsistent
if there exist C ′ ⊆ C such that blevel(C ′) = 0, where blevel(C) is defined as best
level of consistency (i.e. the best semiring value it can produce). An SCSP is
said to be α-consistent, if there must be an assignment produces a semiring value
not less than α. Consider a set of constraints C and C ′ ⊆ C. If C is α-consistent
then C ′ is β-consistent with α ≤ β. As a consequence, if a problem is locally
inconsistent, then it is not consistent.

3 A Local Search Framework

A local search scheme for SCSPs is described in this section. Basically, it consists
of three main components: sinking, shrinking and local search engine. The sinking



procedure is used to filter out all the α-inconsistent tuples in the problem, which
are tuples with semiring values less than that of the current best solution, α.
The shrinking procedure is used to eliminate unwanted search space, which can
be achieved by local consistency algorithms or interchangeability algorithm [10].
The underlying searching strategy of this framework is based on a GENET style
model [20], which is a local search algorithm with min-conflict heuristics for
classical CSPs.

We give an abstract formalization of the local search framework similar to the
Lagrangian search scheme [6], and followed by the description of each functional
component in the framework.

3.1 An Abstract Scheme of the Local Search Framework

In this section, we show a transformation for converting SCSPs into an integer
constrained optimization problem. Let V = {x1, ..., xn}, D = {Dx1 , ..., Dxn}
and C = {c1, ..., cm} be the set of variables, domains, and constraints of the
problem to be solved respectively, where m ≤ |Dx1 | × ... × |Dxn |. Without loss
of generality and for the ease of presentation we assume that all constraints are
n-ary illegal constraints [20]. Therefore, a constraint ci ∈ C is always of the
following form:

ciη =

{
ai η = ηi

1 otherwise
(1)

where ηi ∈ Dx1 × ...×Dxn is an nogood, and a is a semiring value associated to
constraint ci with the assignment η.

The solution searching process can be expressed as the following minimization
problem,

minL(η,p, g) =
m∑

i=1

pigi(η) (2)

subject to

di ∈ Dxi , ∀xi ∈ V (3)

where the objective function L consists of three arguments: η is an assignment,
p is a penalty vector (..., pi, ...), and g is a constraint vector (..., gi, ...). Let
gi : Dx1 × ...×Dxn → {0, 1} be a function mapping from a complete assignment
to either 0 or 1. Intuitively, it returns 0 if the semiring value (α) of the best-so-far
solution is less than or equal to ciη, returns 1 otherwise.

The basic idea of our searching scheme is to descend in the original discrete
variable space of η and ascend in the penalty space of p, while the landscape
depicted by g is modified when the objective function L becomes 0. Therefore,
the search process can be described by formula 4 to 7.



η(k+1) = η(k) +∇(η(k),p(k)) (4)

p(k+1) = p(k) + g(k)(η(k)) (5)

Formula 4 is used to define the moving directions of the search process,
where ∇(η(k),p(k)) is a descent direction for updating the current assignment
η(k), and k is the iteration index. And the procedure for updating penalty vector
is governed by formula 5.

〈α(k+1), g(k+1)〉 =

{
〈α(k), g(k)〉 L(η(k),p(k), g(k)) > 0

〈⊗Cη(k), g′〉 otherwise
(6)

where g = 〈g1, ..., gk〉, so that each time we penalize a constraint, the penalty
can be an arbitrarily large integer, and

g′i = λη.

{
1 η = η(k) ∧ ciη(k) ≤S α(k)

g
(k)
i η otherwise

(7)

Formula 6 and 7 is used to facilitate the problem transformation from SCSP
to crisp CSP, which is called Sinking procedure. The detailed description of
sinking operation will be presented in the next section. In addition, the initial
setting for η(0), g(0), α(0) and p(0) are chosen as follows:

– η(0) is chosen randomly.

– g
(0)
i = λη.0 for all i.

– α(0) =
⊗
Cη(0).

– p(0) = 1, but p(0) can be a vector consisting of any positive integers.

There are several properties of this scheme. We define the execution between
the beginning of search process and the first time function L = 0 as phase 1, and
the execution between the first time L = 0 to the second time L = 0 as phase 2,
and so on. Theorem 1 states that a saddle point in the η−p space is reached at
the end of each phase.

Theorem 1. When L(η(k),p(k), g(k)) = 0, the search is at a saddle point of the
η − p space. That is,

L(η(k),p, g(k)) ≤ L(η(k+1),p(k), g(k)) ≤ L(η,p(k), g(k))

for all η that is a neighbor of η(k+1), and all possible p.

Theorem 2 shows that at the end of each phase, preferred solution assignment
will probably be found. And all the preferred solution assignment that have not
been found will be preserved.



Theorem 2. Denote S(k) = {η : L(η(k),p(k), g(k)) = 0} and M (k) = ub{S(k)}
be the upper bounds of S(k), then either M (k+1) = M (k) or M (k+1) = M (k) ∪
{η(k+1)}.

Theorem 3 shows that either all preferred solution assignment will be found
in a finite number of steps, or the algorithm will not terminate1.

Theorem 3. There exists a constant l0 such that S(l0) 6= ∅ and M (l0) 6= ∅, and
either for all l > l0, S(l) = ∅ and M (l) = ∅, or for all l > l0, S(l) = S(l0) and
M (l) = M (l0).

3.2 An Algorithmic Implementation

An implementation of the abstract scheme is described in this section. Basically,
the search scheme can be realized by two components: sinking and local search
engine. For the further enhancement, shrinking techniques can also be incorpo-
rated without violating the completeness of the search scheme. Algorithm 1 gives
the pseudo-code of the complete local search framework. Note that an assignment
will be collected in each iteration of the while-loop by the collect soution

function. It stores the preferred solution assignment in the partially order set S.

Algorithm 1 Local Search framework for SCSPs
Let P be a SCSP;
Let α be the current best semiring value;
Let S be a collection of solutions;

Generate a random assignment η;
while not in termination-condition do
α :=

⊗
Cη;

sinking(P , α);
shrinking(P );
η := local search engine(P );
collect solution(S, η);

end while

The Sinking Component Intuitively, equation 6 and 7 is realized as sinking
procedure. There is a property in the semiring framework that allows us to mod-
ify the discrete variable space η without changing the solution space of problem.
Given an SCSP 〈C, con〉 and an assignment η with the semiring value α =

⊗
Cη.

For each constraint c ∈ C, we have cη ≥ α, where cη denotes a semiring value
generated by a constraint c with the assignment η.

1 This is an intrinsic property of local search algorithm.



Theorem 4. [4] Given any c-semiring S = 〈A,+,×,0,1〉, consider the relation
≤S over A. Then × is intensive, that is, a, b ∈ A implies a× b ≤S a.

Thus, for any tuple of a constraint c ∈ C with semiring value a, such that
a ≤S α. It is known to be α-inconsistent, since any semiring value combine with
a will cause α-inconsistent (by Theorem 4). Therefore the semiring value a can
be simply set to 0 without changing the solution space. It is referred as sinking,
and we can say that the tuple is sunk. In other words, sinking is used to mark
all the α-inconsistent tuples by setting its semiring value to 0. The meaning
of this operation is the same as which described by equation 7, that changes
the function g′i(η) = 1 when the corresponding illegal constraint becomes α-
inconsistent. The sinking operation will not discard any solution, since we are
looking for a preferred solution and it sinks only the semiring value lower than
or equal to α. This approach is similar to the “fill” algorithm which is proposed
by Morris [17] and the “Great Deluge” algorithm by Dueck and Scheuer [7].

Note that the complexity of the sinking operation is linear in the size of the
problem. We do not need to scan through all the tuples in the problem. Instead,
a function si is attached to each constraint ci for semiring value retrieval. The
function is defined as follows,

si =

{
0 if cη ≤ α,
a otherwise.

(8)

where a is the semiring value associated to cη. And, equation 1 can be rewritten
as following,

ciη =

{
si if η = η′

1 otherwise
(9)

Example 2. Consider the Fuzzy CSP example in Fig. 1, we have an assignment 〈
X 7→ c, Y 7→ b〉 , and α =

⊗
Cη[X:=c,Y:=b] = 0.2. After executing the sinking

procedure, six tuples are sunk. The resulting problem is shown in Fig. 2.
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Fig. 2. Sinking with α = 0.2.



The Shrinking Component The sinking procedure will generate huge plateau
in the local search landscape, since a part of the original landscape will sink to be
a flat land. The aim of the shrinking procedure is to eliminate plateaus, which
can be done by removing inconsistent domain elements. With the properties
of semiring × operator, for any semiring value a ∈ A, a × 0 = 0 (since 0
is an absorbing element of × operator). Therefore, tuples with semiring value
0 can be discarded. The domain eliminating task can be efficiently done by
the node-consistency algorithm, which examines each domain element within all
unary constraints and removes it if the tuple has semiring value 0. The pseudo-
codes of node-consistency algorithm can be found in Algorithm 2. Note that
various levels of consistency algorithm can also be applied in this framework,
but experimental evident show that it is a trade-off between pruning power and
computation overhead. For instance, we have implemented an arc-consistency for
binary constraints, however, it does not show to be efficient in the n× (n− 1)-
queens problem.

Algorithm 2 Node-Consistency

for all v ∈ V do
Let C̄v = {c ∈ C : v ∈ var(c) ∧ |var(c)| = 1};
Let D̄v = {d ∈ Dv : c ∈ C̄v, cη[v := d] = 0};
Remove all d ∈ D̄v

end for

Example 3. Consider the Fuzzy example in Fig. 1, after applying sinking and
shrinking procedure, domain element b of variable X is removed and all tuples
of constraint c2 that involving X 7→ b will no longer exist. The resulting problem
is shown in Fig. 3.
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Fig. 3. An example of node consistency.

The Local Search Engine GENET is a neural network model for solving
binary CSPs, which has been shown to be efficient and effective in solving hard



and large classical CSPs. In particular, we demonstrate the feasibility of adopting
E-GENET [14] as the local search engine in the framework. E-GENET is an
extension of GENET algorithm that is able to solve non-binary CSPs. Basically,
E-GENET consists of two components: a network architecture and a convergence
procedure. We construct a network representation of a classical CSP and update
the network state by convergence procedure.

Fig. 4 shows the E-GENET network of the problem in Fig. 3. In our frame-
work, all the α-inconsistent tuples are transformed as inconsistent connections
of the network. Each connection is in the form of hyper-arc connection, which al-
lows modelling of n-ary constraint. In addition, a cluster of label node represents
a set of domain elements of the corresponding variable. Besides, each label node
is associated with an input value, which represents the cost of the domain ele-
ment. Therefore, the solution searching process can be referred as minimization
of total cost of the network. Note that higher cost of the network state implies
more conflicts among all variables of its assignment.

a

b

c

X Y

a

c

inconsistent connection

label node / domain element

Fig. 4. An example of E-GENET network.

We recall the E-GENET convergence procedure as following. The initial state
of the E-GENET network is randomly generated. In each convergence cycle,
variable assignments will be updated basing on the min-conflict heuristics. In
other words, it minimizes the conflicts among all variables. To avoid cycling, the
variables are updated asynchronously in parallel. After a number of cycles, the
network will settle in a stable state. If the valuation is conflict-free, a solution is
obtained. Otherwise, we penalize the network connections of the current state.
The convergence cycle keep going until a solution is found. Algorithm 3 outlines
the E-GENET convergence procedure. It is not difficult to see that, the variables
update step and penalization step is a realization of equation 4 and 5 respectively.

4 Experimental Results

We have built a SCSP Solver based on the proposed local search framework
with E-GENET implementation and test it on three different problems, they



Algorithm 3 Convergence Procedure of E-GENET

randomly assign a value for each variable;
repeat

update all variable nodes in parallel asynchronously until no repair has been done;
if no conflict with the current assignments then

terminate and returns solution;
else

penalizing inconsistent connections;
end if

until termination-condition;

are n× (n− 1)-queens problem, modified latin square problem and random gen-
erated problem. The first two problems are structured, while the latter is non-
structured. All these problems are modelled as fuzzy CSPs using the semiring
structure SFCSP = 〈[0, 1],max,min, 0, 1〉. The solver is implemented by using
C++ language and the benchmarkings are performed on a Sun Blade 1000 work-
station with Solaris 8 OS. All timing results presented are mean, and median in
brackets, of 50 runs. And all of each are in unit of millisecond.

4.1 The n× (n− 1)-queens Problem

In the n×(n−1)-queens problems [12], n queens are placed on an n×(n−1) chess-
board so that there exists at least one pair of queens attacking each other. We
define that it is better for any two queens attacking each other to be separated by
a greater vertical distance. Formally, the problem can be formulated as follows.
There are n variables {v1, ..., vn}, each with a domain of {1, ..., n − 1}. The
degree of satisfaction for the fuzzy constraint noattack(Qi1 , Qi2) that prohibits
two queens on row i1 and row i2 from attacking each other is 1 if these two queens

do not attack each other, and |i1−i2|−1
n−1 if they do. Therefore, when the vertical

distance between two queens increase, |i1− i2| and the degree of satisfaction also
increase.

A user-specified lower bound of the acceptable satisfaction degree, αo, is used
to determine the algorithm termination. It will be terminated when αo ≤ α,
where α is a semiring value of the latest solution. The timing results are shown
in Table 1.

4.2 Modified Latin Square Problem

A Latin Square Problem is a n × n matrix with aij ∈ {1, 2, ..., n} elements,
such that entries in each row and column are distinct. In order to convert the
original problem to be over-constrained, we modify the domain of each element
in the matrix to become {1, 2, ..., n−1}. Thus, at least a pair of elements in each
row and column are the same. The problem can be formulated as: n2 variables
{v1, ..., vn2}, each with a domain of {1, 2, ..., n−1}. The degree of satisfaction for
the row and column constraint can be modelled by AllDiff(v1, ..., vk) constraint,



αo
Problem 0.5 0.6 0.7 0.8 0.9

10×9-queens 1.67 (<10) 2.67 (<10) 3.67 (<10) 14.5 (<10) –
20×19-queens 7.33 (10) 10.67 (10) 13.83 (10) 41.67 (45) 148 (115)
30×29-queens 22.83 (20) 30.33 (30) 44.33 (40) 85.83 (80) 136 (110)
40×39-queens 62.67 (60) 74.83 (70) 95.17 (90) 135.17 (120) 243.5 (200)
50×49-queens 130 (130) 154.83 (150) 180.67 (180) 225.67 (215) 357.67 (315)
60×59-queens 232.33 (230) 281.83 (280) 336.83 (330) 372.33 (360) 541 (490)
70×69-queens 390.5 (390) 467.17 (460) 527.67 (530) 624.5 (620) 862.33 (785)
80×79-queens 647.83 (640) 771.5 (770) 870.67 (860) 1047 (1030) 1321.83 (1255)

Table 1. Results on n × (n− 1)-queens problems

which is defined by
|{(vi,vj)∈{v1,...,vk}:i6=j∧vi 6=vj}|
|{(vi,vj)∈{v1,...,vk}:i6=j}| . AllDiff is an n-ary constraint,

which determines the degree of satisfaction according to the number of variable
pairs are different. That is, more variable pairs are different, higher satisfaction
degree. The results are shown in Table 2.

αo
Problem 0.5 0.6 0.7 0.8 0.9

n = 10 <10 (<10) <10 (<10) <10 (<10) 0.6 (<10) 49.4 (30)
n = 20 0.2 (<10) 0.2 (<10) 0.2 (<10) <10 (<10) 1.8 (<10)
n = 30 0.6 (<10) 0.4 (<10) 0.8 (<10) 0.4 (<10) <10 (<10)
n = 40 1.6 (<10) 1.4 (<10) 1.2 (<10) 2.2 (<10) 1.4 (<10)
n = 50 2.4 (<10) 1.2 (<10) 2.4 (<10) 1.6 (<10) 3.4 (<10)
n = 60 3.4 (<10) 3.8 (<10) 4 (<10) 4 (<10) 4.6 (<10)
n = 70 6.8 (10) 6.2 (10) 6.6 (10) 6.4 (10) 4.8 (<10)
n = 80 9.2 (10) 9.4 (10) 8.4 (10) 7.6 (10) 9.2 (10)
n = 90 12.6 (10) 12 (10) 11.8 (10) 13.6 (10) 12.6 (10)
n = 100 11.8 (10) 17.6 (20) 16 (20) 17 (20) 17.2 (20)

Table 2. Results on the modified Latin Square Problems

4.3 Random Fuzzy CSPs

A set of randomly generated binary FCSPs will be used to test the solver. The
problem size varies from 10 to 30 with step 5, and each variable has domain
size 10. The network density of each random problem is 1.0 and all tuples has
semiring value greater than zero, that means no inconsistent tuple initially. In
addition, only one optimal solution exists in each problem, therefore there must
be one solution has a semiring value 1.0. The aims of this experiment is to
optimize the degree of satisfaction, instead of using αo. The results are shown
in Table 3.

Obviously, the results in Table 3 illustrate that our local search framework
is shown to be effective and efficient to obtain an optimal solution (a preferred



Number of Pruning Degree of satisfaction Runtime

10 variables 29 1.0 32.6 (30)

15 variables 42 1.0 43.6 (20)

20 variables 59 1.0 310.6 (230)

25 variables 50 1.0 1201.4 (745)

30 variables 65 1.0 9203.8 (3505)
Table 3. Results on Random FCSPs

solution assignment) in a reasonable computation time. Besides, the shrinking
procedure is able to prune certain amount of domain elements that can help to
improve the search performance.

5 Conclusion

A local search framework for SCSPs has been investigated. Our framework is
parameterized by the semiring structure S, resulting in a family of algorithms.
We formalize the local search framework in such a way similar to the Lagrangian
search scheme, and give an algorithmic implementation of the scheme. The nov-
elty of our approach transforms a problem forth and back between original SCSP
and crisp CSP, and perform searching on the solution space of the crisp problem
by a local search algorithm repeatedly. By applying the intensive property of
× operator in semiring, we define the sinking operation, which is used to fil-
ter out all the inconsistent tuples in the problem during search. Incorporating
the sinking operation and E-GENET model, problem transformation and so-
lution searching can be done naturally with little overhead. Besides, shrinking
technique is shown to be useful in our local search framework to enhance the
performance. We demonstrate that it can be achieved by node-consistency al-
gorithm effectively. Although it is an incomplete method, benchmarking results
show its efficiency and feasibility to tackle structured and non-structured, binary
and non-binary fuzzy CSPs.

The direction of our future work is two-fold. The first is to explore other
possibilities for the local search engine, such as population based local search
algorithm. It will be useful when looking for multiple solutions. The second is to
formulate the min-conflict heuristics in semiring framework.
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