
Constraint Symmetry for the Soft CSP

Barbara M. Smith1, Stefano Bistarelli2,3, and Barry O’Sullivan1

1 Cork Constraint Computation Centre, University College Cork, Ireland
{b.smith|b.osullivan}@4c.ucc.ie

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
stefano.bistarelli@iit.cnr.it

3 Dipartimento di Scienze, Universitá degli Studi “G. d’Annunzio”, Pescara, Italy
bista@sci.unich.it

Abstract. We introduce a definition of constraint symmetry for soft CSPs, based
on the definition of constraint symmetry for classical CSPs. We show that the
constraint symmetry group of a soft CSP is a subgroup of that of an associated
classical CSP instance. Where it is smaller, we can successfully exploit the ad-
ditional symmetries using conditional symmetry breaking. We demonstrate, in
a case-study of graph colouring, that eliminating the symmetry of the soft CSP
combined with conditional symmetry breaking can lead to huge reductions in the
search effort to find an optimal solution to the soft CSP.

1 Introduction

The importance of exploiting symmetry in combinatorial search problems is well known.
In this paper we focus on symmetries in soft constraint satisfaction problems (CSPs).
The paper follows previous work [5, 7], but introduces a definition of constraint sym-
metry for soft CSPs based on the definition of constraint symmetry for classical CSPs
[8]. We show that the constraint symmetry group of a soft CSP is a subgroup of the
constraint symmetry group of the associated classical CSP instance, in which all the
soft constraints are treated as hard constraints, and that in practice, the soft symme-
try group may be smaller. We can successfully exploit the additional symmetries using
conditional symmetry breaking [12]. If the optimal solution to the soft CSP is also a
solution to the classical CSP, or close to such a solution, All the symmetries of the
classical CSP can be expressed as conditional symmetries, and this will reduce search
effort if either the optimal solution is also a solution to the classical CSP, or the proof of
optimality requires proving that there is no such solution. Furthermore, the additional
symmetries can in some cases be expressed as conditional symmetries that will become
active earlier in the search; these are similar to the α-symmetries introduced in [5, 7].
We demonstrate the usefulness of these ideas in a case-study of graph colouring.

2 Semiring-based Soft Constraints

In this section, we outline the semiring framework for soft constraints, which is defined
and discussed in more detail in [6, 15]. We first define a classical CSP.

Definition 1 (Constraint Satisfaction Problem). A CSP instance P is a triple 〈V, D, C〉
where V is a set of variables, D is a universal domain, specifying the possible values
for those variables, and C is a set of constraints. Each constraint c i ∈ C is a pair
〈σi, ρi〉 where σi, the constraint scope, is a list of variables from V and ρi is a |σi|-ary
relation over D, called the constraint relation. A solution to P is a mapping from V
into D whose restriction to each constraint scope is in the corresponding constraint
relation, i.e. is allowed by the constraint.

Soft constraints associate a qualitative or quantitative value either to the entire con-
straint or to each assignment of its variables [6]. In this paper, we use the framework
of semiring-based constraints [2]. A semiring structure S is a 5-tuple 〈A, +,×,0,1〉;
as with a classical CSP, we also have a set of variables V with domain D. A is a set
of values, representing the levels of preference (or importance or cost) associated with
constraints or assignments; 0 and 1 are elements of A corresponding to complete unac-
ceptability and complete satisfaction respectively. A classical CSP fits into this frame-
work: the assignments allowed by a constraint have value 1 and those it forbids have
value 0. In general, in the semiring framework, a constraint c i is a function: given an
assignment to the variables in its scope, it returns a value in A.

The operator + is used to compare the levels of preference in A. A partial order
≤S is defined over A such that a ≤S b iff a + b = b; in that case, b is preferred to a.
Within the preference ordering, 1 is the best element of A and 0 is the worst. The fact
that ≤S can be a partial order allows for different criteria to be used which may not
be comparable. Of course, total orders are also allowed within the framework, if that is
more appropriate to the problem.

The operator × is used to combine preference levels, for instance to compute the
preference level of a complete assignment from the preference levels of the individ-
ual constraints. When combining a completely violated constraint, with semiring value
0, with any other preference level, the result is 0; on the other hand, combining any
preference a ∈ A with 1 gives a.

An optimal solution to a semiring-based soft CSP 〈V, D, C, S〉 is a complete as-
signment whose preference level is at least as great as, or incomparable with, any other
complete assignment. In the examples in this paper, ≤s is a total order and incompara-
ble preferences do not occur; however, the results also apply to soft CSPs in which ≤ s

is a partial order.

3 Constraint Symmetry

We adopt the approach to defining symmetries in [8]. A constraint symmetry of a CSP
instance is defined as an automorphism of a graph that represents the constraints, the
microstructure complement; an automorphism of a graph or hypergraph is a bijective
mapping of the vertices that preserves the edges.

For any CSP instance P = 〈V, D, C〉, the microstructure complement of P is a
graph with set of vertices V ×D. A set of vertices E is a hyperedge of the microstructure
complement if it represents an assignment disallowed by a constraint, or else consists
of a pair of incompatible assignments for the same variable. In other words, a set of
vertices {〈v1, a1〉, 〈v2, a2〉, . . . , 〈vk, ak〉} is a hyperedge if and only if:

– {v1, v2, . . . , vk} is the set of variables in the scope of some constraint, but the
constraint disallows the assignment {〈v1, a1〉, 〈v2, a2〉, . . . , 〈vk, ak〉}; or

– k = 2, v1 = v2 and a1 �= a2.

We can similarly define a graphical representation of the constraints of a semiring-
based soft CSP that is analogous to the microstructure complement.

Definition 2 (Microstructure Complement of a Semiring-based CSP Instance). For
any semiring-based CSP instance P = 〈V, D, C, S〉, the microstructure complement of
P is an edge-labelled graph with the set of vertices V ×D. For every assignment whose
semiring value �= 1, there is a hyperedge joining the vertices of the associated tuple,
labelled with the semiring value. There is also an edge, labelled with semiring value 0,
joining any pair of nodes representing different values for the same variable.

The difference between this definition of the microstructure complement and the
definition of the microstructure of a soft CSP instance given in [15] is only that we
require an edge between each pair of nodes representing two values of the same vari-
able; the edge corresponds to an invalid assignment that cannot be allowed whatever
the value given to other assignments by the soft constraints. Because of this difference,
it is worthwhile to give a separate definition; moreover, our definition is so close to the
definition of the microstructure complement of a classical CSP that is seems sensible to
give them the same name.

We can now give a definition of constraint symmetry in soft CSPs that is analogous
to the definition of constraint symmetry in classical CSPs in [8].

Definition 3 (Soft Constraint Symmetry). For any soft CSP instance, a constraint
symmetry is an automorphism of its microstructure complement that preserves the edge
labels.

In what follows, when we refer to an automorphism of the microstructure complement
of a soft CSP instance, we shall mean one that preserves the edge labels. This is a more
restrictive definition of symmetry in soft CSPs than those given in [5, 7]. In those pa-
pers, the definitions of symmetry are analogous to solution symmetry as defined in [8].
Although the constraint symmetry group of a classical CSP instance is a subgroup of
the solution symmetry group, and can in practice be much smaller, the difficulty of iden-
tifying solution symmetries without solving the instance makes constraint symmetry a
more practically useful idea; the same applies to soft CSPs.

In constructing the microstructure complement, the semiring operators × and + are
not needed, but only the elements of A and the constraints mapping assignments in V ×
D to values in A. In fact, the specific values in A, other than 0 and 1, do not affect the
automorphisms of the microstructure complement: it is the partitions of the hyperedges
into sets with the same label that determine the symmetries, not the specific labels.
Hence, the symmetries of a soft CSP do not depend on how complete assignments are
valued, but only on which sets of assignments are given the same preference values by
the constraints.

It is useful to consider the relationship between the constraint symmetry group of
a soft CSP instance and an associated classical CSP instance. Suppose that a soft CSP

instance Ps is derived from a classical CSP instance Ph, in which the soft constraints
of Ps become hard constraints. Ps might be designed to allow solutions to be produced
even if Ph is over-constrained, by associating a semiring value with each nogood in
Ph, and thereby allowing solutions to Ps that do not satisfy all the constraints of Ph.
In this case, the semiring value represents the ‘cost’ of violating the constraint. Let
Gh, Gs be the microstructure complement of Ph and Ps respectively. Since they have
the same vertex set, an automorphism of Gs corresponds to a bijective mapping on
the vertices of Gh. Every hyperedge in Gs is a hyperedge in Gh, and any mapping
of Gs that maps hyperedges to hyperedges with the same label must translate into a
mapping of hyperedges to hyperedges in Gh. Hence, any automorphism of Gs must be
an automorphism of Gh and the constraint symmetry group of Ps is a subgroup of that
of Ph.

Alternatively, suppose that Pc is a classical CSP instance that has solutions, but we
want to differentiate between them by creating a soft CSP instance Ps that expresses
preferences. We would keep all the nogoods of Pc, each with a semiring value 0, and
add further nogoods with a different semiring value, representing solution characteris-
tics that we should prefer to avoid. Every hyperedge in G c becomes a hyperedge in Gs,
with label 0, and no other hyperedge in Gs has this label. Any automorphism of Gs

must map the hyperedges with label 0 to each other, and hence is an automorphism of
Gc. In this instance, there is also the classical CSP instance Ph, in which all the soft
constraints of Ps must be satisfied. As before, any automorphism of Gs is also an auto-
morphism of Gh. However, the automorphisms of Gc and Gh are incomparable, since
the hyperedges of Gh are a superset of those of Gc. Hence, the constraint symmetries of
Ps are a subgroup of the constraint symmetries of Pc and of the constraint symmetries
of Ph, but Pc may have more or less symmetry than Ph .

Given the classical CSP instance Ph derived from a soft CSP instance Ps by setting
to 0 all the preference levels that are �= 1, we have shown that the symmetries of P s

are a subgroup of the symmetries of Ph. More generally, any abstraction mapping as
defined in [3, 4] can be used to derive a new (soft or classical) CSP instance Pa from
Ps: the preference levels in A in Ps are mapped into a smaller set A′. In terms of the
microstructure complements Gs and Ga respectively, this merges sets of hyperedges
with different labels in Gs into a set with a single label in Ga. Hence, by similar argu-
ments to those given earlier, abstraction creates a CSP instance with at least as much
symmetry as the original.

4 The Symmetries of the Soft n-Queens Problem

As an example of constraint symmetry in soft CSPs, we consider a soft version of the
n-queens problem, where we allow solutions that do not satisfy all the constraints. As
usual, we are given an n × n chessboard and want to place n queens on squares of the
board in such a way that no two queens are in the same row, column or diagonal. Sup-
pose that the CSP model of the problem is the usual one where the variables represent
the rows of the chessboard, and the values represent the columns. The microstructure
complement of the 4-queens instance of this CSP is shown in Figure 1. The nodes of the
graph correspond to the squares of the chessboard, and Figure 1 is drawn so that each

node is in the position of its corresponding square. The automorphisms of the graph,
and so the constraint symmetries of this problem, are the eight symmetries of the chess-
board: reflections in the horizontal and vertical axes; rotations through 90 ◦, 180◦ and
270◦; reflections in the two main diagonals; and the identity symmetry. We can denote
these by x, y, r90, r180, r270, d1, d2, i respectively.

Suppose that in the soft CSP, we assign to the constraint vi �= vj the value |i −
j|/n, so that |i − j|/n becomes the label on the edge joining the vertices 〈v i, k〉 and
〈vj , k〉, for k = 1, 2, ..., n. Similarly, when |vi − vj | = |i − j|, we assign the value
|i − j|/n. If the constraint is satisfied, the value is 1. Hence the set of values A, when
n = 4, is {0, 1

4 , 1
2 , 3

4 ,1}. The microstructure complement of the soft 4-queens problem
is shown in Figure 1 (right). Rather than showing the label of each edge, edges with
different labels are drawn differently: the solid lines are the edges labelled 0 and the
various dashed lines are edges with labels 1

4 , 1
2 , or 3

4 . Note that the rows of the board
are now distinguished from the columns, because the only edges labelled 0 join nodes
corresponding to squares in the same row.

Fig. 1. The microstructure complement of the classical 4-queens CSP (left) and the microstructure
complement of a soft CSP based on the same problem (right).

Not all of the eight chessboard symmetries are symmetries of the soft CSP. Sup-
pose that a solution to the soft CSP has two queens in the first column. Rotating this
solution through 90◦ gives a layout with two queens in the first row; since this requires
assigning two values to the same variable, it is not a valid assignment. In terms of the
microstructure complement, the rotation through 90 ◦ maps edges with labels 1

4 , 1
2 and

3
4 to edges with label 0, and so is not an automorphism. However, the chessboard sym-
metries that map rows into rows translate into automorphisms of the soft microstructure
complement, and hence the symmetry group of the soft CSP is the subgroup consisting
of x, y, r180 and i.

This section demonstrates how the symmetry group of a soft CSP relates to its mi-
crostructure complement; however, as in the classical CSP case, constraint symmetries
can often be identified by inspection.

5 Symmetries Conditional on Solution Value

In solving a CSP, whether a classical CSP or a soft CSP, it is important to eliminate as
much of the symmetry as possible; any remaining symmetry in the problem may cause
wasted effort during search, in exploring subtrees that are symmetrically equivalent to
subtrees already explored. As in classical CSPs, there is a variety of methods avail-
able to eliminate symmetry; we can for instance add further constraints (with semiring
value 0) to the CSP that ideally can be satisfied by exactly one solution in each symme-
try equivalence class [9, 14]; or we can use a dynamic symmetry breaking method, as
explored in [5, 7].

The example of soft n-queens shows that a soft CSP instance Ps may have fewer
symmetries than its classical counterpart Ph in which all the soft constraints become
hard constraints. In that case, we cannot, of course, eliminate the symmetries of P h

in solving Ps, because this would risk losing solutions (including possibly the optimal
solution). However, in solving the soft CSP we may need to search for solutions that
are also solutions to Ph, either because the optimal solution to Ps is a solution of Ph,
or in proving optimality. In that case, eliminating the symmetries of P s, but not those
of Ph, may lead to wasted search effort.

As an example, we consider a graph colouring problem. Colouring the nodes of a
graph so that no adjacent nodes have the same colour can easily be represented as a
classical CSP, with variables v1, v2, ..., vn corresponding to the nodes in the graph. The
domain of each variable is {0, 1, ..., k − 1} where k is the number of colours allowed,
For each edge (i, j) in the graph there is a constraint in the CSP that v i �= vj . The
symmetries of the CSP are that the colours are interchangeable; hence, the size of the
symmetry group is k!, ignoring any symmetry in the graph itself. If k colours are not
sufficient to colour the graph, we might want to find the ‘best’ colouring with the colours
available, by attaching a cost to any assignment that does not satisfy the constraints. To
illustrate the point, suppose that the value of the assignment {v i = l, vj = l}, where
nodes i and j are adjacent, is max(2, l). Under this valuation, only the colours 0, 1, 2
are interchangeable in the soft CSP.

Suppose that the value of a complete assignment is the sum of the values of individ-
ual assignments; an optimal solution minimizes the sum. A solution with value 2 must
have just one edge whose vertices have the same colour; if the search finds a solution
with value 2, it will then look for a better solution, with no edge whose vertices have
the same colour. The search will only accept solutions with value 0, corresponding to
semiring value 1, i.e. it will look for a solution to the classical CSP, Ph. At this point, the
symmetries of the classical CSP become valid, and it would be legitimate to eliminate
them.

What we want to do ideally is to use the symmetries of Ph where possible, and the
symmetries of the soft CSP, Ps, otherwise. The symmetries of Ph that are not also sym-
metries of Ps can be viewed as conditional symmetries [12]. Conditional symmetries

exist only within a subproblem; in this case, within the subproblem where the semiring
value is 1.

We show how this works out in practice in Section 7.

6 Further Conditional Symmetries

If a soft CSP instance Ps has less symmetry than the classical CSP instance Ph in
which all the soft constraints must be satisfied, then in theory it would be useful to treat
the additional symmetries as conditional symmetries, which become valid if the search
explores a subproblem where solutions must have semiring value 1, as described in the
last section. However, this will only be useful in practice if the search looks for such
solutions; if the optimal solution to the soft CSP has many violated constraints, the
conditional symmetries will never become relevant.

However, there are sometimes additional symmetries that can be active even when
the optimal solution is not close to a solution to Ph; the graph colouring example il-
lustrates this. Consider the edges of the graph where the constraints of Ph are violated,
i.e. the edges whose nodes have the same colour. If the largest colour assigned to the
nodes of any of these edges is i, with i ≥ 2, then the colours i + 1, ..., k − 1 are inter-
changeable. Hence, there are conditional symmetries whose condition is not the overall
value of the solutions within the subproblem, but a specific property of those solutions,
namely the largest colour used in a violated constraint. Moreover, there is a hierarchy
of such conditional symmetries. Some of them will become active at an early stage of
the search; as the search progresses and better solutions are found, more colours can be
treated as interchangeable. Again, experiments showing the value of this are presented
in Section 7.

Although the graph colouring example is an artificial one constructed for illustration
purposes, conditional soft symmetries that do not depend on the value of the solution
can occur in more realistic problems. The following example is taken from a competi-
tion held in connection with the PATAT conference in 2002-3 4. It is a simplified version
of a university timetabling problem, consisting of classes to be scheduled over 5 days
with 9 hours in each day, rooms where classes can take place, students who attend the
classes, and room features required by classes. In a feasible timetable, every class is
assigned a timeslot and a room so that the following hard constraints are satisfied:

– no student attends more than one class at the same time;
– the room assigned to a class is large enough and has the required features;
– only one class is in each room in any timeslot.

The soft constraints are that:

– a student should not have a class in the last slot of the day;
– a student should not have more than two classes consecutively (within a day);
– a student should not have a single class on a day.

4 See http://www.idsia.ch/Files/ttcomp2002/.

In the problem of finding a feasible timetable, the 45 timeslots are interchangeable.
In adding the soft constraints, some symmetry is lost; however, the days as a whole are
still interchangeable. The classical CSP in which all the soft constraints become hard
constraints also has more symmetry than the soft CSP; given any timetable that satisfies
all the soft constraints, and therefore has no class assigned to the last timeslot of any
day, we can reverse the timetable for the first 8 timeslots in any individual day. In any
subproblem in which the “no class at the end of the day” soft constraint is satisfied in
day i, the reversal symmetry applies to the timetable for that day. Hence this is a condi-
tional symmetry, whose condition is that there is no class assigned to the last timeslot of
day i. (Unfortunately, we cannot solve the competition problems and demonstrate the
conditional symmetries in this case: the competition was designed to test metaheuristic
algorithms and the instances are too large to be amenable to complete search methods.)

7 Experimental Evaluation

Experiments with symmetry breaking, including conditional symmetry breaking, are
presented in this section. The experiments were carried out using ILOG Solver 6.0, on
a Pentium 1.7GHz laptop running Windows 2000. We consider the soft graph colouring
problem described earlier, where the aim is to find the best colouring with k colours.

As described earlier, the symmetries of the soft CSP are that the colours 0, 1, 2
are interchangeable. In addition, the soft CSP has conditional symmetries; some are
conditional on the value of the solution: if the search is looking for a solution with
value 0 (semiring value 1), then all the colours are interchangeable. Finally, if the largest
colour assigned to any edge whose vertices have the same colour is i, the colours i +
1, ..., k − 1 are interchangeable.

In the CSP, the colours are represented by the domain values of the variables. Sym-
metries due to interchangeable values can easily be eliminated using SBDS (Symme-
try Breaking During Search) [13]; this is a dynamic symmetry breaking method that
adds constraints on backtracking to a choice point, to ensure that choices symmetri-
cally equivalent to the choice already explored will not be explored in future. SBDS
requires a function for each symmetry specifying the symmetric equivalent of the as-
signment of a value to a variable. In the case of interchangeable values, SBDS functions
are needed only for transpositions of pairs of values, rather than one function for each
element of the symmetry group [1]. For instance, the equivalent of v i = j under the
symmetry σjl that transposes the values j and l is vi = l. On backtracking to a choice
point between vi = j and vi �= j, SBDS uses this function both to check whether or not
the symmetry remains unbroken on the path through the search tree to this point, and if
so, to post the symmetric equivalent of the constraint v i �= j, that is vi �= l.

The symmetry functions have access to the variables c, representing the value of the
solution, and maxCol, representing the largest colour used in any violated constraint. We
describe the conditional symmetry function for the symmetries that depend on the value
of c; other conditional symmetries are analogous. For the symmetry σ jl, where at least
one of j, l > 2, the conditional symmetry function returns the constraint c = 0∧ v i = l
as the symmetric equivalent of vi = j. If this symmetry is still unbroken, SBDS adds
the negation of this constraint, i.e. c �= 0 ∨ vi �= l.

For our experiments we randomly generated connected graphs with 20 nodes, with
the probability of an edge between a pair of nodes set as 0.7. For these parameter values,
the chromatic number, γ, i.e. the minimum number of colours required to give a perfect
colouring, is between 7 and 9. ILOG Solver’s default optimization search was used,
with the value of the solution defined as the objective. As each successive solution
is found, future solutions are constrained to have a smaller objective value. When it
can be proved that no better solution exists, the incumbent solution has been proved
optimal. The variable ordering used is smallest domain, breaking ties by the smallest
future degree; the value ordering is to use the value that had been least used so far. The
value ordering was introduced for the soft case; if the smallest available value is used
instead, as is usual, the first solution found has every node coloured 0, and it takes a
long time to find a good solution.

We first solved 20 instances with the number of colours allowed equal to γ, so that it
is possible to colour the graph exactly. For these instances, we compared no symmetry
breaking at all with breaking as much symmetry as possible, i.e. we used SBDS func-
tions for the three unconditional symmetries of the soft CSP and for both types of con-
ditional symmetry. Symmetry breaking makes little or no difference for most instances.
Of the 20 instances, 19 are solved with almost the same number of backtracks, with
and without symmetry breaking. Since there is some overhead in adding symmetry-
breaking constraints on backtracking, solving these instances takes slightly longer with
symmetry breaking than without, though very little time in either case (less than 1.5
sec. for any instance). However, the 20th instance takes 1,530 backtracks to solve with
symmetry breaking, and nearly 1.5 million without. The time taken to solve this in-
stance without symmetry breaking (192 sec.) vastly outweighs the additional overhead
of using symmetry breaking on all the other instances, which amounts to less than 1
second in total. A solution with value 2 can easily be found, both with and without
symmetry breaking; from that point on, both types of conditional symmetry become
unconditional, and all colours can be treated as interchangeable. If just the symmetries
of the soft CSP are eliminated (that the colours 0, 1, 2 are interchangeable), solving this
instance takes around 750,000 backtracks and 100 seconds.

Symmetry breaking, including conditional symmetry breaking, is clearly beneficial
for this type of instance, even though it makes no difference for most individual in-
stances. It is in line with previous experience with classical CSPs that symmetry break-
ing often makes little difference in finding a single solution to a CSP instance, if there is
one. However, these experiments show that this is not always true, and if the symmetry
group is large, it can be well worthwhile to eliminate the symmetry for the sake of the
occasional instance where a solution is hard to find.

We then generated 20 instances for which the optimal value is 2, when the number
of colours allowed is γ− 1. (Recall that, given the values of the soft constraints, 2 is the
smallest possible non-zero value for a solution.) We solved these using no symmetry
breaking and three different symmetry-breaking strategies. In the first, only the symme-
tries of the soft CSP are broken. In the 2nd strategy, we used the remaining symmetries
of the classical CSP, conditional on the value of the solution being 0. Since the optimal
value is 2, the proof of optimality requires proving that there is no solution with value
0, and the conditional symmetries come into play at the proof stage. Finally, we made

the symmetries that transpose colours j, l where 2 < j < l, conditional on maxCol < j,
where maxCol is the largest colour used in a violated constraint, rather than on c = 0.
This allows the symmetry to be eliminated at an earlier stage in the search.

The results for the 20 instances are shown in Table 1, in ascending order of to-
tal search effort for the best symmetry breaking strategy. It is useful to separate the

Table 1. Comparison of symmetry-breaking using SBDS for soft graph colouring instances
whose optimal value is 2. The symmetries broken are either the soft symmetries (0,1,2 are in-
terchangeable), or that all values are interchangeable when the solution value = 0, or that colours
> l are interchangeable when the largest colour involved in a violated constraint is ≤ l. ‘F’ is the
number of backtracks to find the optimal solution; ‘P’ is the total number of backtracks; the time
is in seconds on a 1.7GHz Pentium PC.

No. No symmetry Soft Cond. symmetries: Cond. symmetries:
of breaking symmetries c = 0 maxCol≤ l

colours F P time P time P time F P time
8 1,269 1,815,682 412.32 308,242 66.11 1,338 0.26 1,269 1,338 0.26
8 1,232 403,169 85.45 143,009 26.11 1,380 0.22 1,232 1,380 0.23
7 2,283 455,540 11.45 10,668 2.42 2,324 0.34 2,283 2,324 0.36
7 2,913 116,840 23.11 30,032 5.92 3,020 0.43 2,913 3,020 0.43
7 4,187 49,548 13.24 11,892 2.44 4,207 0.61 3,607 3,627 0.54
6 4,090 17,580 2.66 7,190 0.99 4,200 0.56 4,090 4,200 0.55
7 4,740 40,038 9.29 10,782 2.00 4,765 0.68 4,740 4,765 0.61
7 6,353 84,104 17.98 22,592 4.43 6,430 0.75 6,353 6,430 0.69
7 15,068 30,163 9.04 17,731 3.52 15,091 2.25 7,487 7,510 1.06
7 7,636 283,613 46.13 52,757 7.20 7,742 0.98 7,636 7,742 0.89
7 14,406 39,980 9.95 19,124 2.83 14,451 1.51 14,406 14,451 1.51
7 23,388 130,029 27.14 41,973 6.14 23,435 2.36 17,694 17,741 2.11
7 19,184 60,770 11.15 27,314 3.67 19,233 2.04 19,184 19,233 2.02
6 26,061 28,765 3.76 26,761 3.09 26,088 3.12 22,038 22,065 2.54
7 33,294 621,271 108.78 130,015 18.96 33,394 2.87 33,294 33,394 3.04
7 43,751 85,967 17.24 53,495 6.49 43,805 4.52 36,019 36,073 4.70
7 316,784 327,611 42.95 318,755 31.04 316,805 34.81 37,984 38,005 5.56
7 224,022 315,124 46.39 239,668 23.20 224,056 23.23 52,436 52,470 6.49
7 244,249 305,773 44.66 255,205 27.44 244,283 29.16 61,968 62,002 7.67
7 124,966 140,741 21.10 128,285 15.81 124,982 16.95 65,515 65,531 9.01

Ave. 55,993.8 267,615.4 48.19 92,774.5 12.99 56,051.45 6.38 20,107.4 20,165.05 2.51

search into two stages: the columns headed ‘F’ show the number of backtracks to find
a solution with value 2; the columns headed ‘P’ show the total number of backtracks,
including the proof of optimality. We should expect that the symmetry breaking makes
most difference at the proof stage; the search then has to show that there is no solution
better than the one already found, by an exhaustive search of the remaining possibilities.

For the first three strategies shown in the table, finding the optimal solution takes
the same number of backtracks for every instance, and these columns are not repeated.

However, the total search effort, including the proof of optimality, is very different.
With no symmetry breaking, the search effort increases with the number of colours, and
hence with the number of symmetries. The total search effort is dominated by the proof
of optimality: it takes nearly four times as long, on average, to prove that the solution
with value 2 is optimal as to find this solution. On the other hand, with symmetries
conditional on maxCol, the proof of optimality takes little additional effort once the
optimal solution is found; furthermore, it takes less than half as much effort to find the
optimal solution than with no symmetry breaking. It is also worth noticing that the two
instances where the number of colours is 8 are the easiest to solve with this symmetry-
breaking strategy, whereas they are amongst the hardest with no symmetry breaking;
these instances have the most symmetry. For 11 of the instances, using symmetries
conditional on maxCol is no better than using symmetries conditional on c = 0, even
though overall it reduces the average search effort by more than half; the instances
where it gives most benefit are those that are most difficult for the other strategies. For
these instances, it finds the optimal solution much more quickly, as well as reducing the
effort to prove optimality.

We solved a further 20 instances for which the optimal value is 4 when the number
of colours is γ − 1; the optimal solutions have exactly two edges whose vertices are
assigned the same colour. These instances are harder to solve than those in Table 1,
and we did not attempt to solve them without symmetry breaking. The symmetries
conditional on the value of the solution being 0 never become active for these instances,
so they cannot affect the number of backtracks, in comparison with breaking just the
soft symmetries, and we have not shown the results for this strategy in Table 2. However,
the conditional constraints added by SBDS do increase the run-time slightly (by roughly
10%), since there is an overhead involved in adding the constraints. The results for the
remaining symmetry-breaking strategies are shown in Table 2; the instances are shown
in increasing order of difficulty for the best strategy.

The symmetries that are conditional on the value of maxCol are clearly very useful,
especially for those instances where the number of colours is 7 rather than 6 (and hence
there are more conditional symmetries). For most instances (with one exception) the
conditional symmetries have little effect, if any, on the search effort to find the optimal
solution, but they speed up the proof of optimality considerably. With a cut-off of 2 mil-
lion backtracks, the solution could not be proved optimal with just the soft symmetries,
in 5 of the 20 instances, although the optimal solution was found in each case. Since
these instances are not included in the averages for this strategy, it should be noted
that the averages in the table are biased against the conditional symmetries; if 2 million
backtracks for each of these instances are included in the calculation of the average
number of backtracks, it increases to over 900,000.

The results presented in this section demonstrate that if the symmetry group of the
classical CSP is larger than that of the soft CSP, being able to eliminate the result-
ing conditional symmetries can lead to huge reductions in search effort. Making these
symmetries conditional on the value of the solution being the semiring value 1 is most
useful when the search has to prove that there is no such solution, as in Table 1. If
the optimal solution is worse, so that subproblems in which the value of the solution
is constrained to be 1 never arise, these conditional symmetries never become active,

Table 2. Comparison of symmetry-breaking using SBDS for soft graph colouring instances
whose optimal value is 4. The symmetries broken are either the soft symmetries (0,1,2 are in-
terchangeable), or that colours > l are interchangeable when the largest colour involved in a
violated constraint is ≤ l. ‘F’ is the number of backtracks to find the optimal solution; ‘P’ is the
total number of backtracks; the time is in seconds on a 1.7GHz Pentium PC. Averages exclude
instances that reach the cutoff of 2 million backtracks.

No. Soft Cond. symmetries:
of symmetries maxCol ≤ l

colours F P time F P time
6 14,962 110,231 18.97 14,962 61,200 10.29
6 28,263 133,530 15.02 28,262 80,439 13.10
6 24,937 139,168 18.19 24,937 81,703 13.04
6 4,517 248,960 31.74 4,517 125,577 22.19
6 5,000 278,943 33.01 5,000 141,921 23.59
6 34,414 334,160 48.32 34,414 182,874 27.02
6 49,234 345,038 54.08 49,234 195,950 30.91
6 6,503 390,822 59.55 6,503 196,757 30.94
7 17,560 1,146,070 155.14 17,531 202,487 36.57
6 65,008 422,944 48.18 64,927 244,408 36.77
6 171,462 326,490 39.97 171,011 248,000 42.78
6 8,515 577,918 85.28 8,515 292,529 45.45
7 3,301 1,794,580 214.93 3,301 298,872 52.93
6 168,687 599,754 89.90 168,687 381,969 56.33
7 61,563 > 2m. 61,563 463,088 80.81
7 423,299 1,968,826 323.76 212,149 463,780 74.35
7 201,208 > 2m. 201,208 489,981 80.64
7 5,073 > 2m. 5,073 1,062,627 169.67
7 58,619 > 2m. 58,619 1,128,539 170.87
7 38,077 > 2m. 38,077 1,326,228 212.23

Ave. 69,510.1 587,828.9 82.40 58,924.5 383,446.45 61.52

and offer no benefit. However, some of the additional symmetries may still be relevant
during the search, conditional on some other aspect of the solution. Table 2 shows that
eliminating the symmetries as early in the search as possible can give large reductions
in search effort, both in finding the optimal solution and in proving optimality.

8 Discussion and Conclusions

We have enriched the notions of symmetry for satisfiability and symmetry for all solu-
tions for soft CSPs [5, 7] with the notion of constraint symmetry, defined analogously
to constraint symmetry for classical CSPs [8]. It was previously noted that symmetries
in soft CSPs are rarer than in classical CSPs [5, 7]; we have shown that the constraint
symmetry group of a soft CSP instance Ps is a subgroup of that of the corresponding
classical CSP instance Ph in which the soft constraints become hard constraints, and
in practice may be smaller. The additional symmetries can be successfully exploited by

using conditional symmetry breaking. All the additional symmetries can be eliminated
in any subproblem in which the solution to Ps is constrained to be a solution to Ph,
i.e. to have semiring value 1; this happens either if the optimal solution to P s is also
a solution to Ph, or if the proof of optimality requires proving that there is no such
solution.

The graph colouring example shows that the additional symmetries may become
applicable at an earlier stage in the search, conditional on some property of the solu-
tion, not necessarily its value. If the conditional symmetries depend on the value of the
solution, they can be seen as similar to α-symmetry [5, 7]; α-symmetries preserve so-
lutions whose semiring value is better than a threshold α, but can also map solutions to
solutions with a different semiring value, if both values are worse than α. However, the
graph colouring example shows that the symmetries of Ph that are not symmetries of
Ps can be conditional on other properties of the solution (in that case, the largest colour
involved in a violated constraint). Hence, the conditional symmetries that arise in soft
CSPs are more general than α-symmetries.

Soft CSPs provide a context in which conditional symmetries can come into their
own; whenever a soft CSP instance Ps has fewer symmetries than its classical CSP
counterpart Ph, the additional symmetries will hold in the subproblem in which the
solution value is 1, if not sooner. In general, identifying conditional symmetries in a
classical CSP instance is difficult; there is no practicable way to identify the symme-
tries of all the subproblems that could arise during search, and conditional symmetry
breaking has hitherto relied on insight to identify useful conditional symmetries, as in
the examples given in [12]. However, the conditional symmetries that arise in soft CSPs
are well-defined: the constraint symmetry groups of Ph and Ps can be found, in princi-
ple automatically, and the conditional symmetries, if any, are those that are in the first
group but not in the second.

Having identified the conditional symmetries, we need an efficient way to deal with
them. It is pointed out in [12] that, in general, SBDS is not a satisfactory way to deal
with conditional symmetry because it requires a different symmetry function for ev-
ery possible conditional symmetry, and there might be very many of them. Again, this
difficulty is mitigated in soft CSPs, because we need to deal only with the constraint
symmetry group of Ph. Furthermore, SBDS adds conditional constraints on backtrack-
ing to a choice point; this could slow down the search significantly if there are many
SBDS functions and no subproblem in which the conditions are satisfied ever arises.
In the graph colouring example, the overhead is manageable even when the conditional
constraints never becomes active, because the number of SBDS functions is small; in
other problems, this might become a difficulty. One possibility is to add the SBDS con-
straints only when the condition holds; in general, this is not a valid approach, as pointed
out in [12], because on backtracking, the condition might become false, and this could
result in symmetrically equivalent subtrees being explored. In the case of symmetries
that are conditional on the value of the solution, however, once the condition is true, it
will never become false on backtracking; when a solution with a given value has been
found, the search never again considers worse solutions. Hence, this might be a valid
approach for these symmetries.

A remaining drawback of SBDS is that in most cases a symmetry function is re-
quired for every element of the symmetry group, for complete symmetry breaking,
and this is impracticable if the symmetry group is large. The same difficulty applies
to adding constraints to the CSP. SBDD (Symmetry breaking by Dominance Detection)
[10, 11], as explored in [7], may then be a better option.

Our empirical results on graph colouring problems demonstrate that eliminating
both the symmetry of the soft CSP and the conditional symmetry can lead to huge re-
ductions in the search effort to find an optimal solution. Where the soft CSP has less
symmetry than its classical counterpart, the additional symmetries will apply when-
ever the solutions is constrained to have semiring value 1; however, it is important to
consider whether the additional symmetries apply earlier. The more symmetry is elim-
inated, and the earlier in search, the better the results.

Acknowledgments

This material is based in part on works supported by the Science Foundation Ireland
under Grant Nos. 00/PI.1/C075 and 05/IN/I886.

References

1. Rolf Backofen and Sebastian Will. Excluding Symmetries in Constraint-Based Search. In
Joxan Jaffar, editor, Principles and Practice of Constraint Programming - CP’99, LNCS
1713, pages 73–87. Springer, 1999.

2. Stefano Bistarelli. Semirings for Soft Costraint Solving and Programming. LNCS 2962.
Springer, 2004.

3. Stefano Bistarelli, Philippe Codognet, Yan Georget, and Francesca Rossi. Abstracting Soft
Constraints. In New Trends in Constraints: Proc. Joint ERCIM/Compulog Net Workshop,
1999. Selected Papers, volume 1865 of LNAI, pages 108–133. Springer, 2000.

4. Stefano Bistarelli, Philippe Codognet, and Francesca Rossi. Abstracting Soft Constraints:
Framework, Properties, Examples. Artificial Intelligence, 139(2):175–211, 2002.

5. Stefano Bistarelli, Jerome Kelleher, and Barry O’Sullivan. Symmetry Breaking in Soft CSPs.
In Proceedings of AI-2003, the Twenty-third SGAI International Conference on Knowledge-
Based Systems and Applied Artificial Intelligence, BCS Conference Series “Research and
Development in Intelligent Systems XX”, pages 199–212. Springer, 2004.

6. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint solving
and optimization. Journal of ACM, 44(2):201–236, 1997.

7. Stefano Bistarelli and Barry O’Sullivan. Combining branch & bound and SBDD to solve
soft CSPs. In Proceedings of SymCon Workshop, 2004.

8. David Cohen, Peter Jeavons, Chris Jefferson, Karen E. Petrie, and Barbara M. Smith. Sym-
metry Definitions for Constraint Programming. Constraints, 11:115–137, 2006.

9. James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-Breaking
Predicates for Search Problems. In Proceedings KR’96, pages 149–159, 1996.

10. Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry Breaking. In Toby
Walsh, editor, Principles and Practice of Constraint Programming - CP 2001, LNCS 2239,
pages 225–239. Springer, 2001.

11. Filippo Focacci and Michaela Milano. Global Cut Framework for Removing Symmetries. In
Toby Walsh, editor, Principles and Practice of Constraint Programming - CP 2001, LNCS
2239, pages 77–92. Springer, 2001.

12. Ian P. Gent, Tom Kelsey, Steve A. Linton, Iain McDonald, Ian Miguel, and Barbara M.
Smith. Conditional Symmetry Breaking. In P. van Beek, editor, Principles and Practice of
Constraint Programming - CP 2005, LNCS 3709, pages 256–270. Springer, 2005.

13. Ian P. Gent and Barbara M. Smith. Symmetry Breaking During Search in Constraint Pro-
gramming. In W. Horn, editor, Proceedings ECAI’2000, the European Conference on Artifi-
cial Intelligence, pages 599–603, 2000.

14. Pedro Meseguer, Francesca Rossi, and Thomas Schiex. Soft constraints. In F. Rossi, P. van
Beek, and T. Walsh, editors, Handbook of Constraint Programming, chapter 9, pages 281–
328. Elsevier, 2006.

15. Jean-François Puget. On the Satisfiability of Symmetrical Constrained Satisfaction Prob-
lems. In J. Komorowski and Z. W. Ras, editors, Methodologies for Intelligent Systems (Pro-
ceedings of ISMIS’93), LNAI 689, pages 350–361. Springer-Verlag, 1993.

