
Soft Constraint Propagation and Solving in CHRs

Stefano Bistarelli
C.N.R. - Istfluto per le

Applicazioni Telematiche
Pisa, Italy

bista @ iat.cnr.it

Thorn Frfihwirth
LMU MOnchen, Institut fOr

Informatik
Munich, Germany

fruehwir@ informatik.uni-
m u e n c h e n . d e

Michael Marte
LMU M0nchen, Institut for

Informatik
Munich, Germany

matte @ informatik.uni-
muenchen.de

ABSTRACT
Soft comtr~dnts are a generalizatkm of classical constraints,
where constraints and /or part ial n-'miLmments are associated
to preferenco or importance levels, and constraints are com-
bined according to combinators which expLe~ the demLred
optimization criteria. Constra int I~anrllin~ RuleS (CHI~)
const i tute a high-level na tura l formalism to specify con-
s traint sol,ram and propagation algorithrn~. In this paper
we present a framework to design and specify soft coustraint
solvers by using CHRs. In this way, we extend the range of
applicability of CH]~ to soft constraints ra ther than jus t
c l ~ i c a l ones, and we provide a straightforward implemen-
ta t ion for soft constraint solver&

Keywords
Constraint reasoning algorithms, constraint progrmmming

1. INTRODUCTION
Many ree/-life problems are ~_qity described via constraints,

t ha t s ta te the necessary requirements of the probl~m~. How-
ever, umml]y such requirements are not hard , mu i could
be more faithfully reprmented as preferences, which should
preferably be followed bu t no t ne~.~ar i ly . Moreover, in reel
l i fe, we are o f ten oon f ron ted w i t h ov~-cons t re ined problems,
which do no t have any stdution, and this Aim leads to the
use of soft constraints to find the variable instant ia t ions tha t
most ~ L e a complete solution.

Generally speak ing, a sof t constra int is jus t a classical
comt.ralnt plus a way to associate, either to the entire con-
s t ra in t or to each msiLmment o f its vaziables, a certain el-
emmzt, which is usually interpreted as a level of preference
or importance. Such levels are usually ordered, and the or-
der reflects the idea tha t some levels are be t te r t han o thm~
Moreover, one has alto to say, via a sui table combinat ion
operator, how to obta in t he level of preference of a global
solution from the preferences in the constraints.

Many formalisras have been developed to describe one or

Pe~mssion to make digital or hard copies of all or part of Ihis wed[for
pemmal or clmsmem use is gt-~med without fee provided that copies e~e
not made or diseributed for profit or comme~al advantage and that copies
be-at tiffs noli"~-- aml the hdl d la lkm ns fit= I~,rst page. To copy oflm'wise, to
republish, to imst om servers crto redlsuibum to IL~, ~ ~ specific
pcozdmse codlor a fee_
Y, AC 2¢~2 Madrid, Spain
(3Olr~dght 2002 ACM 1 - 5 8 1 1 3 - 4 4 5 - ~ _.S5.00.

more cla&ses of soft constraints [6, 7, 3]. In this paper we
refer to one which is general enough to describe most of
the dedred c i r . This framework is based on a semiring
structure, tha t is, a set plus two operators: the set contains
all the p re fe ren~ levels, one of the operatom gives the or-
der over such a set w while the other one is the combinat ion
operator [2, 1].

I t has been shown tha t constraint propagation and search
tochniqum, as usually developed for classical constraints,
caa be extended Aim to soR constraints, if certain condi-
t ions are met [2]. However, while for classical constraints
there are formalisms and environments to describe search
procedures and propagation schemes [14], as far as we know
nothing of this sort is yet available for soft constraints. Such
tools would obviously be very useful, since they would pro-
vide a flexible environment where to specify and experiment
with different propagation schemes_

In thia paper we propose to use the Constraint Handling
Rules (CI-IRs) framework [8], which is widely used to spec-
ify propagat ion algorithms for classical constraints, and has
shown great generality and flexibility in many application
fields. ~ describe p r o p a ~ t i o n ~gori thnm via two kinds
of rules, which, given some constraints, either replace them
(by a simplification rule) or add some new constraints (by
a propagat ion rule). W i t h such rules, one can specify con-
str~int reasoning a~ori thms, and the repeated application
of the rules implements the desired algorithm.

We describe how to use CHRs to specify propagation al-
gorithms for soft com~traints. The a d v a ~ a g m of uaing a
w~lLtestod formalmm~ as CHRs ~, to specify soft constraint
propagation algorithms are manyfold. First , we get an easy
implementa t ion of new solvem for soft constraints s tar t ing
from existing solve~ for classical constraints. Moreover, we
ob ta in an easy experimemtation platform, which is a i ~ flex_
ihle end adaptable. And finally, we develop a general im-
p lementa t ion which can be used for many diffes~.nt c l ~
of soft constraints, and also to combine some of them.

2. SOFT CONSTRAINTS
In short, a soft constraint is a constraint where each in-

stemtiation of its variables has an mmociated v~lue from a
part ial ly ordered set. Combining constraints will then have
to take into account such additional values, and thus the
formalism has al.~ to provide suitable operations for com-
b ina t ion (x) and comparison (4-) ol" tuples of values and
constraints. This is why this formalization is based on the
concept of semiring, which is a set plus two operations.

5emiringx andSCSPs. A semirin9 is a tuple (A, + , x , O, 1)
such that : A is a set and O, 1 E A; -i- is commutat ive , asso-
ciative and 0 is its un i t element; x is associative, d is t r ibutes
over + , 1 is i ts un i t e lement and 0 is its absorb ing element .
In reality, we will need some addi t ional properties, leading
to the no t ion of c-serniring (for ~ c o n s t r a i n t - b a . s ~ ") : a c-
semirin9 is a semir ing (A, + , x , 0, 1) such tha t + is idempo-
tent with 1 e.s its absorbing e lement and x is commllts.tive.

Let us consider the re la t ion __<s over A such t h a t a _<s b itf
a + b = b. T h e n it is pomible to prove tha t : _<s is a par t ia l
order; + and x are mono tone on _<a; 0 is its m i n i m u m and
1 its max imum; (A, _<s) is a complete lat t ice and + is its
lub. Moreover, if x is idempotent , then: + d is t r ibutes over
x; (A, _<,v) is a complete d is t r ibut ive lat t ice a n d x its glb.
The _<s re la t ion is wha t we will use to compare tuples and
constraints: i f a _<s b it in tu i t ively m~vms t h a t b is be t t e r
than a.

In this context , a -,off constraint is then a pa i r (def, con)
where con _C V, V is the set of problem variables, and
day : D I=~F ~ A. T h e r e f o r e , a cons t ra in t specifies a set
of variables (the ones in con), and assigns to each tuple of
values of these variables an element of the semiring.

An SCSP constraint problem is a pair (C, con) where con C
V and C is a set of cons t ra in t~ con is the set of vsrixhles of
interest for the cons t ra in t set C, which bowev~ rn~y concern
also variables no t in con.

Combining and projecting soft constraints. Given two
soft cons t ra in ts cs = (days, conx) and c2 = (de]a, con2),
their comb/nab/on c~ @e= is the cons t ra in t {def, con) defined
by con = connUa~nz and def(t) = de]s(t ~ z) x d e f (t 1~=
), where t | 6 denotes the tuple of values over the variables
in Y, ob ta ined by pro jec t ing tuple t from X to Y. I n words,
combining two soft cons t ra in ts means bui ld ing a new soft
constraint involving ail the variables of the original ones,
and which .a~.sociates to each tuple of domain values for such
variables a serniring e lement which is obta ined by mul t ip ly-
ing the e lements associated by the original soft cons t ra in t s
to the appropr ia te suhtuples .

Given a soft cons t ra in t c = (def, con) and a subse t I of
V, the projection of c over I , wr i t t en c $! is the soft con-
s t ra in t (def', con') where con" = con I"! I and d e f ' (t ') =
~-~ , / l~ f f i , , def(t). Informally, projec t ing means e l iminat -
ing some variables. This is done by associating to each tup le
over the r emain ing variables a semir ing element which is the
sum of the e lements associated by the original cons t ra in t to
all the extensions of this tuple over the e l iminated variables.

Examples. Classical CSPs are SCSPs where the chosen c-
semiring is Bool = ({false, true}, V, ^ , fa l se , true). By us ing
thJs semiring we m e a n to associate to each tup le a boolean
value, with the in ten t ion t ha t t rue is be t te r t h a n f - / se , and
we combine cons t ra in t s via the logical and.

Fuzzy CSPs [6] can instead be modeled by choosing the
c-semlring Fuzzy = (10,1], max, rain, 0, 1). Here each tup le
has a value be tween 0 and 1, where higher values are bet ter .
Then, cons t ra in ts are combined via the rain opera t ion and
different so lut ions are compared via the max operat ion. The
ordering here reduces to the usual ordering on reals. F igure
1 shows a fuzzy CSP. Variables are inside circles, cons t ra in t s
are represented by undirec ted arcs, and semiring v - lues are
wri t ten to the r ight of the corresponding tuples. Here we

assume tha t the domain of the variables contains only ele-
ment~ a and b.

a . - U a--0.9 [

i---i , ~ _ a.2
b - - 8

F i g u r e 1: A f u z z y C S P .

Ano the r in teres t ing i m t ~ c e of the SCSP fxamew~k is
based on set opera t ions like un ion a nd intersect ion and uses
the c - ~ - i ~ i n g Set8 = (p(A), t J, n, m, A), where A is any set.
I n this r ~ the order redu,--~ to set inclmdon and therefore
is par t ia l . I t is also i m p o r t a n t to notice t h a t the Car tes ian
p roduc t of two semir ings is again a semiring. This allows
one to reason wi th mul t ip le cr i ter ia (one for each ~=~iring)
a t the ~mme time.

,.~OIm~OrLV. The sob,tion of a n SCSP problem P = (C, con)
is the c o . ~ . t S d (P) = (® C) ~ m . In w o ~ , we com-
bine all constra ints a nd then we project t he resul t ing con-
s t r a in t en to the variables of in tm~st . For example, each
solut inn of the fuzzy C S P of F igure 1, where we , m u m e
tha t all variables are of i n t e r e s t , c o n s i s t s o f a pair o f domain
values (tha t is, a d o m a i n value for each of the two variables)
and an associated semir ing element. Such an element is ob-
t a ined by looking at the m a l l e s t value for all the subtuples
(as m a n y as the const ra ints) forming the pair. For example,
for tupIe (a, a) (tha t is, z = y = a), we have to compute
the m i n i m u m of 0.9 (which is the value for ~- = a), 0.8 (the
w h i e for (z --- a , v = ~)) and 0.9 (for y = .) . Hence, the
result is 0.8.

Soft constmintpropaEation. SCSP problm~m can beso lved
by extending and adap t ing t he t e ~ - i q u ~ used for classical
CSPs, like arc- and pa th-cons is tency [12|. To find the bes t
solution, we can employ a b r a n c h - a n d - b o u n d search algo-
r i thm.

The kind of soft const ra int p ropaga t ion we will consider
in this paper amounts to combining, at each step, a subse t
of the soft constraints and then pro jec t ing over some of their
variables. This is no t the moat general form of cons t ra in t
propagat ion, bu t it s t r ic t ly generalizes the nsmd propaga-
t ion algorithms like arc- and path-consistency, therefore it
is rcesonab]y general. More precisely, each constra int prop-
agat ion rule can be un iqua ly identified by jus t specifying a
subset C of the cons t ra in t set, and one par t icu lar cons t ra in t
in C, say c. Then , apply ing such a rule consists in per-
forming the following operat ion: c : = (~ G) $~(c) . T h a t
is, c is replaced by the project ion, over its variables, of the
combina t ion of all the cons t ra in t s in C.

A soft constraint propagat ion a lgor i thm operates on a
given set of soft constraints , by apply ing a cer ta in set of
cons t ra in t propagat ion rules un t i l stabili ty. In [2] i t was
proven tha t any cons t ra in t p ropaga t ion algori thm defined
in this way te rminates and, if x is idempotent , then the
final constraint set is equivalent to the ini t ial one and the
result does no t depend on the order of applicat ion of the
propagat ion rules.

3. C O N S T R A I N T H A N D L I N G R U L E S
CHR (Constraint H6rtdling Rules) [8] a re a commi t t sd -

choice concurrent cons t ra in t logic prograr l lmin K la~t~ruago
consis t ing of mul t i -headed gua rded rules. CHRs define b o t h
simplifimtion of and propagat /on over nsm-deYmed constraints .
Simplif icat ion r e p l a c ~ m . ~ t r a i n t s by s impler cons t ra in ts while
preserving logical equivalence. P r o p a g a t i o n adds new con-
s t ra in t s which are logically r edundan t hu t m a y axxtse fur ther
s implif icat ion. CHi t s have been used in dozens of p ro jec t s
worldwide to implement various cons t ra in t so lve~ , includ-
ing novel ones such as terminological , spa t ia l and t empora l
~ o ~ n g [Sl-

In th is sect ion we quickly give syn tax and m a n t i c s for
CHI%s, for deta i l s see [8]. We a~mtme some fami l ia r i ty wi th
(concurrent) cons t ra in t (logic) p r o g r a m m i n g [10, I3, I1]. A
constraint is a p red ica te (a tomic formula) in fLrst-order logic.
W e dis t inguish be tween built-in (pTedefmed) cona~rnin~ and
CHR (nser.defined) conJtmints. Buil t - in const ra ints axe those
hand led by a predefined, given cons t ra in t solver.

Abstract ~Tntax. In the following, uppe r case le t te rs s t and
for conjunct ions of eonstra ints . A C H R p rog ram is a fi-
ni ts set of CHRs. There are two kinds of CHRs_ S/mp//-
fication and propagation CHR are respect ively of the form
N @ H < f > G [B and N Q H f f i = > G] B, where the rule
has an opt ional name N followed by the symbol Q. The
mul t i -head H is a conjunct ion of C H R constra ints . T h e op-
tional guard G followed by the symbol I is a conjunct ion of
buil t - in constraints . The body B is a conjunct ion of bui l t - in
and C H R constraints .

A simpagation CHR is a combina t ion of the above two
kinds of rule, wi th the form N @ HI\H2 =ffi> G] B, where
the symbol \ separa tes the head tmnstraiuts into two nonempty
conjunctions H I and H2. In th is paper , a s impaga t ion rule
can be regarded as concise abbrev ia t ion of the s implif icat ion
rule N Q H 1 , H 2 •ffi-> G [H1,B.

Operationalsemantics. The opera t iona l semantie~ of C H R
programs is given by a s t a t e t rans i t ion system. W i t h dor/va-
6mr st~'pm (grons/t,/or~, reduct/ona) one can proceed from one
s t a t e to t he next. A stage (or: 9oa/) is a conjunct ion of
bui l t - in end C H R constraints . An initiaJ stage (or: query)
is an a rb i t r a ry s ta te . In a final stage (or: answer) ei ther the
bui l t - in cons t ra in ts a re inconsis tent or no der iva t ion s tep is
possible anymore.

Le t P be a C H R program for the C H R const ra in ts xnd
be a cons t ra in t theory for t he bui l t - in constra ints . The

t rans i t ion r e l a t i o n , , for C H R is as follows.

S i m p l i f y
H'^D, ,(H=H')^G^B^D
i[(H <=> G I B) i n P
and
CT~D--.B~(H=H' ^ G)
P r o p a g a t e
H'^D, ,(H=H')^G^B^H'^D
i f (H ~ > G [B) i n P
and
CT~D--*3~(H=H' ^G)

When we use a rule from the p rogram, we will rename its
variables using new symbols, and these variables are denoted
by the sequence 2. A rule wi th head H and guard G is ap-
plicoble to C H R constra ints H ' in the context of const ra in ts

D, when the condi t ion C T ~ D --, : I~(H = H ' ^ G) holds.
T h e equa t ion (H = H ') is a no t a t i ona l shor thand for

equa t ing the a rguments of the C H R constra ints tha t occur
in H and H ' . Operat ional ly , we first check if H ' matches H .
W h e n umWhi-,% we take the context D into account since
i ts bui l t - in const ra in ts m a y imply t h a t variables in H ' are
equal to specific tczma. Thia means t ha t there is no dist inc-
t ion between, say, c (X) A X = 1 and c(1) ^ X = 1- I f H '
ma tches H, we equate H ' mad H . Final ly , using the var iable
e q - - l l t i e s from D and H ' = H, we check the guard G.

A n y of the appl icable rules csm he applied, but , since C H R
is a co~-ml t t sd choice language, i t cannot be undone. I f an
app l i cab le s impl i l i -~t ion rule (H <=7 G I B) is appl ied to
the C I t R const ra ints H ' , t he S i m p l i f y t rans i t ion remuvee
H" from the s ta te and adds the body B, the equat ion H =
H ' , and the guard G. I f a p ropaga t ion r ide (H ==> G I B)
is app l ied to H ' , t he P r o p a g a t e t ramdt ion adds B , H = H ' ,
end G b u t does no t remove H ' . Trivial non- te rmina t ion is
avoided by apply ing a p ropaga t ion rule a t most once to the
same cormtraints.

4. I M P L E l V ~ A ~ r A T I O N
Typical ly , CHRs are used wi th in a C L P environment such

as Ecl ipse or Siestus P m l o g [4]- This means t h a t p ropaga-
t ion algorithrnR are descr ibed v ia CHRs, while t he under ly-
ing C L P language is used to define search procedures and
auxi l iary predicates . Th i s is the case in our implementa t ion
of soft constraints , where the under ly ing language is Sicstus
Prolog. The ac tua l code has been s l ight ly edi ted to abs t rac t
aw~y from technicali t ies l ike cuts and t e rm copying.

Choice o f the 5emirin&. The implementa t ion is pa ramet r i c
w.r . t , the smniring. To choose one pa r t i cu la r semiring S,
the user states (that is, asserts) the f~t semriag(S) using
t he p red ica te u~e_smair~ug(S) .

Recall that a semiring is c h a r ~ by (A, +, ×, 0,1).
W h i l e the definit ion of the set A is impl ic i t through the oper-
at ions, t he opera t ions and remain ing parmnetem are defined
by C L P clauses. T h e two opera tom of the chceen s~nniriug
are defined v ia p red ica te p l u / 4 for the addi t ive ope ra to r
+ and t t a e m / 4 for the mul t ip l ica t ive o p e r a t o r x . The par -
lied order is defined v ia I s q s l 2 , in t e rms of the addle.lye
opera tor , as in the defini t ion of the semir ing s t ructure . F i -
nally, the t op and b o t t o m e lement are defined via pred ica tes
o a e / l and z ~ o / 1 . Fo r example , for t he claesical semir ing
(for ha rd constraints), we have the following clauses:

plus(cluslcm1,V1,t~,WS) :- or(Vl,~2,W3).
tlmesfclunical,Wl,W2,1/3) :- mmd(M2,~jV3).

n id (t , t , t) . ~ d (f , _ , f) . n~d(_, f , f) .
ar(:~,f,~)_ o rC t ,_ , t) , mL'(_,t, t) .

.ae(~) :- HmlrlagCclustcal).
zaza (f) :- samirlas(clusi©al).

For the fuzzy semir ing and car tes ian p roduc t we have:

plus (fuzzy,WI,W2,W3) :- V3 in max(W1,VJ).
times(fuzzy,Vl,~,W3):- W3 is mlnCWI,V2).
oni(1) :- samlring(f~).
zsro (0) : - s,,airlmg(f~y).
plus ((SI,$2),VI,&~,W~) :- VI-(AI,BI), W-(A2,B2), ~-(A3,B3),

plus(S1,Al,du~,AS), pltm(m2,B1,B2.B3).
ci]moC(S:t,S2),Ml,I/2,1~) : - VI-(A1,B1), i/2-(A2.B2), W~-(A.R,BS),

timaa (-ql, AI.A2, A3), times (S2,B1 ,B2,BS).

Domains and constraints. Variable domains are described
as]ists of pairs, where each pai r conta ins a domain element
and an associated preference. T h e operator i n allows one
to s ta te the una ry cons t ra in t tha t a variable is in a certain
domain. For example: IX] i n [ffi-2,b-3].

The operator i n can also be used for s ta t ing n-ary con-
straints. For example: IX,Y] i n [(a , b) - 3 , (b , c) - 4] . We
call such a defmit ion ezten.v/onaL N-ary const ra ints can
also be defined / n t ~ a / I g , which comes handy in the
c~se of infini te relations. For example, IX,Y] i n l e q - 3 - 1
associates impor tance value 3 to all tuples sat isfying the
constraint l e q / 2 and value 1 to the others. In extensional
definitions, preferences are assigned to variable aesimnments
while in in tens ionai definit ions preferences are a ~ i g n e d to
constraints.

Constraint combinat ion. Two extensional ly defined soft
constraints are combined via the predicate combina~£on/3,
which takes two const ra ints and re turns a th i rd cons t ra in t
which is their combination_

coabinstion(Conl 4" De l l , Con2 La De|2. Co~3 4- Def3) : -
ied~zt erosional (Def 1). i~ztemsion~l (Daf2) ,
=ion(Con1, Co=2, ConS), s e ~ q ~ (S) , zero(Z),
:~4-dnll{CooS-VS, Om,embe~(Conl-V1, Ikrel), mmbe~(Con2-V2, Def2).

~ s C S , ¥1, I/2 ,N3), V3 \ ~ Z), De~3).

The combined cons t ra in t Con3 £n Def3 is computed as
[ollows: the variables involved in the cons t ra in t are com-
pu ted by the un ion operator. T h e n f i n d a l l / 3 collects all
tuples Con3-V3 o[the new cons t ra in t in the list Def3, where
each tuple is found by comput in~ all pairs of consis tent tu-
pies h e m Con1 and Con2 using member/2 and by comput ing
their preference value I/3 us ing the t imes opera tor of the
specified semir ing S. For performance reasons and to enable
p run ing o! the search space, the tuples with zero preference
value are deleted.

In order to deal wi th in tens ional ly defined constraints , a
variat ion of combina t±on /3 is defined, called l o n g c o m b i n a t i o n / 4 .
It takes an intensional]y defined constra int and two exten-
sional domain constraints , and computes a new extension-
ally defined constraint , which represents the combina t ion of
the three original constraints .

lon~camb~us~ion(A in L i , B ia L2, E in L4, C 4- L3) : -
iaZnteuslonalCLl), l ~ . x ~ i a n ~ l (L 2) , i s b t e ~ J i o n ~ (L 4) .
unian(A. B. AB), unia~(AB. E, C), samiz~aq~(S), zero(Z),
f i n d a l l (C - V S , (meml:~r(B--VS, LS) , member(E-V40 L4,),

cbe~kConatra~mt(Ll. A, i l l) , t~ms(9, VX, V2, V12).
~ lma(n. V12, t/4, VS), V3 \ ~ Z), L3).

To assign a level of preference to each tuple, by s ta r t ing
from an in tens ionai defined cmmtraint , we use the predicate
e.heckconsl:r-~-~:/3, which takes the relat ion to check (L1),
the variables involved (A), the preference parameters of L1,
and re turns the level of pre/erence [or the tuple (t/l), e.g_:

c h a c k C o n s t r a l n t (l e q - V - W i , [X.Y~ ,Wi)-'- X-<Y -> HI i s g ; W1 is VA.
checkC~stra:LntCslq-V-gA.[X,Y],Vl) : - X-¢Y -> t;1 i x V ; g l i s

max(VA, 1/(I -Y)*WI) -

The first re la t ion assigns weight V to each tuple t ha t saris-
ties the re la t ion Xffi<Y, and W1 to the other tuples. The second
relat ion assigns to each tuple a weight which depends on the
distance between X and Y.

Constraintprojection_ Predicate p r o j e c t i o n / 3 implements
the project ion operator for an ex~na iona i ly defined soft con-
s t ra in t and a]ist of variables Con2, resul t ing in a new con-
s t ra in t Con2 i n Def2.

] p r o j e c t i o n (C a n 1 i n k f l , Con2. Can2 i n D a f 2) : -
I s E x t e n s l o n a l (D e f l) , 2:l .ncla].Z(Con2-gl, Cmeabex(Con1-W1, Do£1)) , De~2),
I r ~ y s o r t (D a f S . l)e:f4), sem.1.r/.ul(S) , , , 1] . p l u s (D e f 4 , O ~ 2 , S) .

Firs t findaS.). /3 finds all tuples in te rms o[the variables
of interest Con2 ~ the tuples from the ori~inai cons t ra in t
Conl i n Def l . Throe tuples are sorted so that tuples with
the s s m e domain e lement are neighboring. T h e n predicate
a J . I p l u s / 3 sums all the semirmE values whose domain ele-
men t is the -q~me to compute the final new domain l)efS.

s l l p l u s ([] , t ' l . _) .
L12pIu~C[A-V1, a-i/2lDefO], Da£, 5) : -

! , plus(S, VI . H2. W-q), a l lp /us([l -V31DafO], Def , a).
"11p/us([A-gl lDefO], [A-W£1Da:], S) : - a.l.Z]plus(I)efO, De~', S).

4.1 Node- and are-consistency
A variable is node-consis tent if for every value in the cur-

rent domain of the variable, each una r y cons t ra in t on the
variable is satisfied. The following CH R rule achieves node-
consistency by intersect ing the domains associated with the
variable X using c o m b i n a t i o n / 3 :

n o d e _ c o n l i s t a n c y a Con i n D e l l , Con JJa Def2 <->
Con,,[)[], i sEz tsns ion~(Def l) , i sF . z t ena imaa3 . (Def2) I
comblna'~ionCCon / n D e l l , Con :in Def2 . Con :in D a f 3) ,
Con i n Def3 .

Actually, we can drop Con= (X] from the guard of the rule,
so t h a t Con can be any list of variables. Thus the generalized
rule now perform~ intersect ion of the domains o[two soft
constra ints o v ~ the same variables.

T h e following s impagat ion rule implements arv-cons~tency,
by combin ing b inary and una ry cons t ra in ts involving two
variables g and ¥ and then projec t ing onto each of the two
variables. In effect, the two una r y cons t ra in ts on g and Y
are t ightened taking into account the b ina ry constraint .

~rc_cons:Lecency @ [W,Y] i~ C ~ [X] in A, ~J in B <->
iaEztmnsiomLt(C), £sExtsnsiona/(A). i s E x t e a s i m a a . l (B) ,
mJxJJa~CS), ide~pote~:(S) |

cmnbilmtio=([X,l~J in C, IX] i~ A, IX,Y] ~ D).
c m a b i n a t i a n ([l , Y ' J i a D, [It] t a B, [X,Y] i~ E),
p ro joc t ion([x , l r] in E, D[], IX] i n F),
p ro jec t ion([l ,~J in E, I~1~, (Y] in n),

[X] i n F , [Y] im C.

We recall here tha t so[t arc-consistency can be applied
only when the (mult ipl icat ive opera t ion of the) semiring is
idempotent . Otherwise, in our implementa t ion , we spply
a variat ion of arc-consistency tha t uses another project ion
predicate. I t e l iminates from the domains only those ele-
men t s wi th zero as a ~ o c i a t s d prefenmco level.

Ano the r v ~ s i o n of the are-con~qtency rule dealing wi th
in tensional ly defined cons t ra in t has also been implemented.
I t basically differs ~ om the rule above only in tha t it uses the
g o a l l o u s c o m b l - - t £ o n ([X , Y] i n C, [13 ~s A. (Y] ~s B,
IX,Y] £n E) ins tead of the two goals involving e e m b i a a t i o n / 3 .

4.2 Complete solvers

N n / v e $0/ver. Predicate s o l v e / 2 implements the not ion of
solut ion, by combining all the cons t ra in ts in Cs and then
project ing over the variables of interest (those in Con) (here
predicate g l o b a _ l C e n b i n a t i o n / 2 folds c o m b i n a t i o n / 3 over
a l ist of constraints) .

4

soivsCCs. C ~ , Sol~t lo~) : -
globsICombi~atio~(©a, C). p ro jec t lon (C , Cam, 8o lu t l on) .

Dynamic progranuning. This solver, called alp, incremen-
t~dly el iminates a set of variables from the const ra int store.
I t is working on one variahle a t a time. F i rs t , i t selects
a variable • to el imiz~te (bu t no t one ~ those give~ in
the list ge). Second, i t identifies the constraints involving
g and combines them into s - i . ~ e const ra in t Ca. Thi rd ,
i t p-limirmtes • f rom Cs by p ro jec t i en obta in ing C. Pinally,
the ~ involving X ar'e replaeed by C and the s o l ~
i terates to el iminate the remaining v s r i a b l e s . .

dpCXa) : - (aeXectYszlable(X,ga)
-~, r:LudLl.1, commtr~L~tm(][, _ 4 , . . . C~). g l o l n ~ L ~ t A (m (C s . CO).

CO -(ComO 4. _). delete([[, C~sO, Ca~l).
proJKtionCC0, Co~l, C). ~sm~v~matraL~ts(CaO),
-_~__~m.tx~Lnts (C). ~p(h)

; t r a m) .

Branch & bound with variable labeling. T I ~ solver,
called varbb , performs branch sad bound wi th variable la-
be.ling in the search for & solution w i th maxima[weight.
Given m list of variables Xa s a d cmmtrsints Con, the solu-
t ion S o l u t i o n is found in the following way:. first a variable
X is selected detenninis t ica l ly from I s according to some
buil t - in strategy. Second, m value-weight pair is choeen non-
determinist ical ly from the domain of • according to same
built-in stmtelD'. Then the remlting unary constraint IX]
ia ~-A~ is impmed. If th~ is already a curnmt bound
(weight), the constrmints Cun mm solved ,-~-_- s o l v e mud it
made sure that there is &t least one lmmible valne in the s~
lut ion domain whose weight is lower ~ the current weight.
Finally, t he recursive ~ continues wi th t]~ remainder of
the v e r ~ b k s ga l .

I f the list of vexiables is empty, the second clause for vmL'bb
computes a solution s a d upda te s the bonnd to be the weight
occurring in the solution.

~urbb(]lm. Com. SoXutl~) : -
~ l ec tVs r i e l de (I s . i , IsJ.).
R ls©t¥ f f i l h (i . A- iV). DQ la [S-AM[.
(boud(US)
-> solve(Com, . 4.. I)~) , mca((mmbm:(_-V. DeX), lue(LB. V)))
; t n a) . vaz'bb(J(sl. Con, So].utioa).

v L r b b (n , Cma, Bolutlon) : - so lve(Col . S o l a r i a) ,
so1,~i~ - (_ lu r -B[) , ~ l a t e (b o , ~ (a)) .

5. C O N C L U S I O N S
We have implemented a Eeneric soft constraint environ-

ment w h ~ e i t is p a r a b l e to work wi th any class of soft
constraints , if they can be cas t within the semiring-heasd
framework: once the esmir ing features have been s t a ted
via sui table clauses, the various solvers we have developed
in CHRs end Sicetus Pro log will t ake cave of solving such
soft constraint& We have implemented semi - r inR for mimed-
ca], fuzzy, set, s a d Car tes ian-produc t soft cenatraints . Our
solvers include p r o p a g ~ i o n - h a s e d node- and arc-consistency
solvers es well an the several complete solvms umng branch
s a d bound with variable or const ra int labeling, or dynamic
programming. The solvers ~re available online at
h t t p : / / m m ~ .]ms . i~f orma~ik, u n i - a u e n c h e n , d e / - v e b c l ~ r /

We plan to predefine more classes of soft constraints (such
as vector-c0sts wi th]exicographical orderings for hierexchi-
ca] CSPs) s a d to develop o ther soft p ropaga t ion algori thms

s a d solvers for soft constraints. We also p lan to compare
our approach to the one followed by the soft constraint pro-
t r a m m i n g lemguage clp(fd,S) [9]. Of course we do not ex-
pect to show the same efficiency as clp(fd,S), bu t we claim
the same ge~eraiity, s a d a very na tu ra l environment to de-
velop new propaga t ion s lgor i thn~ end eolvem for soft eon-
s t rs inta . M o r ~ v e r , we did not need to add anything, ex-
cept the r ~ , , ~ and C H R rules shown in this paper , w.r. t .
the exist ing CHR m~i ronment s a d CLP language of choice_
O n the o ther hand, elp(fd,S) needed & new implementat ion
and abs t rac t machine w.r.t_ clp(fd) [5], from which i t origi-
nated.

6. A D D I T I O N A L A U T H O R S
Pranceeca Rossi, Universi tk di Padova, Dipar t imento di

Matemat ica Pu ra ed Appl ica ta , Via G. B. Be]zoni 7, Padovs,
ItaJy. E-marl: f~oesiQmsth.unipd. i t

7- R E F E R E N C E S
[1] s. BistavdlL Sop Co,...m-a~ 8oi~,,,g and

pmmmmnb~: a e e u e n d / m m e , ~ PhD thas~,
Dipart imento di In[ormatica, Univendtb di PLsa, Italy,
mar 2001. TD-2/01.

[2] S. Bistaxelli, U. Montansr i , and F. Romi.
Smirin__g-based Const ra in t Solving and Optimizat ion.
Journal o[the ACM, 44(2):201-236, Mar 1997.

[3] A. Bovning, M. Maher, A. Msr t inda le , sad. M. Wilson.
C o I I t I ~ t h ie l lMx:hies And l o g i c p r o g r a m r n ~ l l g . In
Prec. 6th [nternatioual Conference on Logic
PTmjmmm/m3, pages 149-164. M I T Press, 1989.

[41 M. Curlmon ami J. Wide~ SICStus Pmlog User 's
Man-a l . on-line vendon at
h t~cp : / / mica. me /mic s tu s / . Technical report ,
Swedi,h Ins t i tu te of Compute r Sci,mce (SICS), 1999.

[51 P. C, odognet and D. DISz. Compi l ing constraints in
cZpCfd). The Journd o/Logic Pmemmming, 27(3),
1996.

[6] D. Dubois, H- Fargier, and H. Prade . The calculus of
fuzzy restr ict ions as a basis for flexible constraint
satisfaction. In Prec. IF~EE Infernat~onal Conference
on I;hr.z'y ,.fystern, s, pages 1131-1136. IEEE, 1993.

[7] E. C. Freuder and R. J. Wallace. Par t ia l constraint
satisfaction. Ar~j~i~ Intdl~gence, 58(1-3):21-70, dec
1992.

[8] T. ~ i h w i r t h . Theory and pract ice of constraint
handYmg rules. Journal of Logic Programming -
Spec/al Issue on Constm/nt L~j/c Programming,
37(1-3):95-138, oc t -dec 1998.

[9] Y. Georget and P. Godognet . Compil ing
semiring-hesed constraints wi th clp(fd~s)_ In P , oc.
CPgm, number 1520 in LNCS_ Springer-Verlag, 1998.

[10] K. Marriott sad P. Studmy. Pn~nffimm~ e~th
Co~tndnta. M I T Press, 1998.

[11] V. Saraswst . Concurrent Conatramt Programming.
M I T Press, 1993.

[12] E. P. K. Tsang. F ~ o l Cor.stredrg
,5'ed~ach~o~ Academic Press, 1993.

[13] P. van Hentenryck. Constraint So~isfaetio~ in Logic
Programming. MIT Press, 1989.

[14] P. van HentemTck, L. Perron, and J.-P. Puget . Seerch
and strategies in OPL. ACM Tmnsactior.s on
Computational Logic, 1(2):285-320, 2000.

