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ABSTRACT 
Soft comtr~dnts are a generalizatkm of classical constraints,  
where constraints and /or  part ial  n-'miLmments are associated 
to preferenco or importance levels, and constraints are com- 
bined according to combinators which expLe~ the demLred 
optimization criteria. Constra int  I~anrllin~ RuleS (CHI~)  
const i tute a high-level na tura l  formalism to specify con- 
s traint  sol,ram and propagation algorithrn~. In  this paper 
we present a framework to design and  specify soft coustraint  
solvers by using CHRs. In  this way, we extend the range of 
applicability of CH]~  to soft constraints  ra ther  than  jus t  
c l ~ i c a l  ones, and we provide a straightforward implemen- 
ta t ion for soft constraint  solver& 

Keywords 
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1. INTRODUCTION 
Many ree/-life problems are ~_qity described via constraints, 

t ha t  s ta te  the necessary requirements of the probl~m~. How- 
ever, umml]y such requirements are not  hard ,  mu i  could 
be more faithfully reprmented as preferences, which should 
preferably be followed bu t  no t  ne~.~ar i ly .  Moreover, in reel 
l i fe,  we  are  o f ten  oon f ron ted  w i t h  ov~-cons t re ined  problems, 
which do no t  have any stdution, and this Aim leads to the 
use of soft constraints to find the variable instant ia t ions tha t  
most  ~ L e  a complete solution. 

Generally speak ing,  a sof t  constra int  is jus t  a classical 
comt.ralnt plus a way to associate, either to the entire con- 
s t ra in t  or to each msiLmment  o f  its vaziables,  a certain el- 
emmzt, which is usually interpreted as a level of preference 
or importance.  Such levels are usually ordered, and the or- 
der reflects the idea tha t  some levels are be t te r  t han  o thm~ 
Moreover, one has alto to say, via  a sui table combinat ion 
operator, how to obta in  t he  level of preference of a global 
solution from the preferences in the constraints.  

Many formalisras have been developed to describe one or 
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more cla&ses of soft constraints [6, 7, 3]. In  this paper we 
refer to one which is general enough to describe most  of 
the dedred  c i r .  This  framework is based on a semiring 
structure,  tha t  is, a set plus two operators: the set contains 
all the p re fe ren~  levels, one of the operatom gives the or- 
der over such a set w while the other one is the combinat ion 
operator  [2, 1]. 

I t  has been  shown tha t  constraint  propagation and search 
tochniqum, as usually developed for classical constraints,  
caa  be extended Aim to soR constraints,  if certain condi- 
t ions are met  [2]. However, while for classical constraints 
there are formalisms and environments  to describe search 
procedures and propagation schemes [14], as far as we know 
nothing  of this sort is yet available for soft constraints. Such 
tools would obviously be very useful, since they would pro- 
vide a flexible environment  where to specify and experiment 
with different propagation schemes_ 

In  thia paper we propose to use the Constraint  Handling 
Rules (CI-IRs) framework [8], which is widely used to spec- 
ify propagat ion algorithms for classical constraints,  and has 
shown great generality and flexibility in  many application 
fields. ~ describe p r o p a ~ t i o n  ~gori thnm via two kinds 
of rules, which, given some constraints, either replace them 
(by a simplification rule) or add some new constraints (by 
a propagat ion  rule). W i t h  such rules, one can specify con- 
str~int  reasoning a~ori thms,  and the repeated application 
of the rules implements  the desired algorithm. 

We describe how to use CHRs to specify propagation al- 
gorithms for soft com~traints. The  a d v a ~ a g m  of uaing a 
w~lLtestod formalmm~ as CHRs ~, to specify soft constraint  
propagation algorithms are manyfold. First ,  we get an easy 
implementa t ion  of new solvem for soft constraints  s tar t ing 
from existing solve~ for classical constraints.  Moreover, we 
ob ta in  an easy experimemtation platform, which is a i ~  flex_ 
ihle end  adaptable.  And  finally, we develop a general im- 
p lementa t ion  which can be used for many  diffes~.nt c l ~  
of soft constraints,  and also to combine some of them. 

2. SOFT CONSTRAINTS 
In  short, a soft constraint  is a constraint  where each in- 

stemtiation of its variables has an mmociated v~lue from a 
part ial ly ordered set. Combining constraints will then have 
to take into account such additional values, and thus the 
formalism has al.~ to provide suitable operations for com- 
b ina t ion  ( x )  and comparison (4-) ol" tuples of values and 
constraints.  This  is why this formalization is based on the 
concept of semiring, which is a set plus two operations. 



5emiringx andSCSPs. A semirin9 is a tuple  (A, + ,  x ,  O, 1) 
such that :  A is a set and  O, 1 E A; -i- is commutat ive ,  asso- 
ciative and 0 is its un i t  element;  x is associative, d is t r ibutes  
over + ,  1 is i ts  un i t  e lement  and 0 is its absorb ing  element .  
In reality, we will need some addi t ional  properties,  leading 
to the no t ion  of c-serniring (for ~ c o n s t r a i n t - b a . s ~ " ) :  a c-  
semirin9 is a semir ing  (A, + ,  x ,  0, 1) such tha t  + is idempo-  
tent  with 1 e.s its absorbing e lement  and x is commllts.tive. 

Let us consider the re la t ion __<s over A such t h a t  a _<s b itf 
a + b = b. T h e n  it  is pomible  to prove tha t :  _<s is a par t ia l  
order; + and  x are mono tone  on  _<a; 0 is its m i n i m u m  and  
1 its max imum;  (A, _<s) is a complete lat t ice and  + is its 
lub. Moreover, if x is idempotent ,  then: + d is t r ibutes  over 
x;  (A, _<,v) is a complete d is t r ibut ive  lat t ice a n d  x its glb. 
The  _<s re la t ion  is wha t  we will use to compare tuples  and  
constraints:  i f  a _<s b it in tu i t ively  m~vms t h a t  b is be t t e r  
than  a. 

In  this  context ,  a -,off constraint is then  a pa i r  (def, con) 
where con _C V, V is the set  of problem variables,  and  
day : D I=~F ~ A. T h e r e f o r e ,  a cons t ra in t  specifies a set  
of variables ( the  ones in  con),  and  assigns to each tuple  of 
values of these variables an  element  of the semiring. 

An  SCSP constraint problem is a pair (C, con) where con C 
V and C is a set  of cons t ra in t~  con is the  set  of vsrixhles of 
interest  for the  cons t ra in t  set  C,  which bowev~  rn~y concern 
also variables no t  in  con. 

Combining and  projecting soft  constraints. Given  two 
soft cons t ra in ts  cs = (days, conx) and c2 = (de]a,  con2), 
their comb/nab/on c~ @e= is the  cons t ra in t  {def, con) defined 
by con = connUa~nz and  def(t)  = de]s( t  ~ z ) x d e f ( t  1~= 
), where t | 6  denotes  the  tuple  of values over the variables 
in Y, ob ta ined  by pro jec t ing  tuple  t from X to  Y. I n  words, 
combining two soft cons t ra in ts  means  bui ld ing  a new soft 
constraint  involving ail the variables of the original  ones, 
and which .a~.sociates to each tuple  of domain  values for such 
variables a serniring e lement  which is obta ined by  mul t ip ly-  
ing the e lements  associated by the  original soft cons t ra in t s  
to the appropr ia te  suhtuples .  

Given a soft cons t ra in t  c = (def, con) and  a subse t  I of 
V, the projection of c over I ,  wr i t t en  c $ !  is the soft con- 
s t ra in t  (def', con') where con" = con I"! I and  d e f ' ( t ' )  = 
~-~ , / l~ f f i , ,  def(t). Informally,  projec t ing  means  e l iminat -  
ing some variables. This  is done by  associating to each tup le  
over the r emain ing  variables a semir ing element which is the  
sum of the e lements  associated by the original cons t ra in t  to  
all the extensions of this tuple  over the e l iminated  variables. 

Examples. Classical CSPs  are SCSPs where the  chosen c- 
semiring is Bool = ({false, true}, V, ^ , fa l se ,  true).  By  us ing  
thJs semiring we m e a n  to associate to each tup le  a boolean  
value, with the  in ten t ion  t ha t  t rue is be t te r  t h a n  f - / se ,  and  
we combine cons t ra in t s  via the  logical and. 

Fuzzy CSPs [6] can instead be  modeled by choosing the  
c-semlring Fuzzy = (10,1], max,  rain, 0, 1). Here each tup le  
has a value be tween 0 and  1, where higher values are bet ter .  
Then,  cons t ra in ts  are combined via the rain opera t ion  and  
different so lut ions  are compared via the max operat ion.  The  
ordering here reduces to the  usual  ordering on reals. F igure  
1 shows a fuzzy CSP. Variables are inside circles, cons t ra in t s  
are represented by undirec ted  arcs, and  semiring v - lues  are 
wri t ten to the r ight  of the corresponding tuples. Here we 

assume tha t  the domain  of the  variables contains only ele- 
ment~ a and  b. 

a . - U  a--0.9 [ 

i---i , ~ _  a.2 
b - - 8  

F i g u r e  1: A f u z z y  C S P .  

Ano the r  in teres t ing i m t ~ c e  of the  SCSP fxamew~k  is 
based on set opera t ions  like un ion  a nd  intersect ion and  uses 
the c - ~ - i ~ i n g  Set8 = (p(A),  t J, n, m, A), where A is any  set. 
I n  this r ~  the order  redu,--~ to  set  inclmdon and therefore 
is par t ia l .  I t  is also i m p o r t a n t  to notice t h a t  the  Car tes ian  
p roduc t  of two semir ings is again a semiring. This  allows 
one  to reason wi th  mul t ip le  cr i ter ia  (one for each ~=~iring) 
a t  the  ~mme time. 

,.~OIm~OrLV. The sob,tion of a n  SCSP problem P = (C, con) 
is the  c o . ~ . t  S d ( P )  = ( ®  C)  ~ m .  In w o ~ ,  we com- 
bine  all constra ints  a nd  then  we project  t he  resul t ing con- 
s t r a in t  en to  the variables of in tm~st .  For  example,  each 
solut inn of the fuzzy C S P  of F igure  1, where we , m u m e  
tha t  all variables are of i n t e r e s t ,  c o n s i s t s  o f  a pair  o f  domain  
values ( tha t  is, a d o m a i n  value for each of the  two variables) 
and  an  associated semir ing  element.  Such an element  is ob- 
t a ined  by looking at  the  m a l l e s t  value for all the  subtuples  
(as m a n y  as the const ra ints)  forming the  pair.  For example,  
for tupIe (a, a) ( tha t  is, z = y = a), we have to compute  
the m i n i m u m  of 0.9 (which is the  value for ~- = a), 0.8 ( the 
w h i e  for (z --- a , v  = ~)) and 0.9 (for y = . ) .  Hence, the  
result  is 0.8. 

Soft constmintpropaEation.  SCSP problm~m can beso lved  
by  extending  and  adap t ing  t he  t e ~ - i q u ~  used for classical 
CSPs,  like arc- and  pa th-cons is tency [12|. To find the bes t  
solution,  we can employ a b r a n c h - a n d - b o u n d  search algo- 
r i thm.  

The  kind of soft const ra int  p ropaga t ion  we will consider 
in this  paper  amounts  to  combining,  at  each step, a subse t  
of the  soft constraints  and  then  pro jec t ing  over some of their  
variables. This  is no t  the  moat  general form of cons t ra in t  
propagat ion,  bu t  it  s t r ic t ly  generalizes the  nsmd propaga- 
t ion algorithms like arc- and path-consistency,  therefore it  
is rcesonab]y general. More precisely, each constra int  prop- 
agat ion rule can be un iqua ly  identified by jus t  specifying a 
subset  C of the cons t ra in t  set, and  one par t icu lar  cons t ra in t  
in  C, say c. Then ,  apply ing  such a rule  consists in per- 
forming the following operat ion:  c : =  ( ~  G) $~(c) .  T h a t  
is, c is replaced by the project ion,  over its variables, of the 
combina t ion  of all the cons t ra in t s  in  C. 

A soft constraint  propagat ion  a lgor i thm operates on a 
given set of soft constraints ,  by apply ing  a cer ta in  set of 
cons t ra in t  propagat ion rules un t i l  stabili ty.  In  [2] i t  was 
proven tha t  any cons t ra in t  p ropaga t ion  algori thm defined 
in this  way te rminates  and,  if x is idempotent ,  then the 
final constraint  set is equivalent  to the  ini t ial  one and the 
result  does no t  depend  on the order of applicat ion of the 
propagat ion rules. 



3. C O N S T R A I N T  H A N D L I N G  R U L E S  
CHR (Constraint H6rtdling Rules) [8] a re  a commi t t sd -  

choice concurrent  cons t ra in t  logic prograr l lmin K la~t~ruago 
consis t ing of mul t i -headed  gua rded  rules. CHRs define b o t h  
simplifimtion of and propagat /on over nsm-deYmed constraints .  
Simplif icat ion r e p l a c ~  m . ~ t r a i n t s  by  s impler  cons t ra in ts  while 
preserving logical equivalence. P r o p a g a t i o n  adds  new con- 
s t ra in t s  which are logically r edundan t  hu t  m a y  axxtse fur ther  
s implif icat ion.  CHi t s  have been  used in dozens of p ro jec t s  
worldwide to  implement  various cons t ra in t  so lve~ ,  includ- 
ing novel ones such as terminological ,  spa t ia l  and  t empora l  
~ o ~ n g  [Sl- 

In th is  sect ion we quickly give syn tax  and  m a n t i c s  for 
CHI%s, for deta i l s  see [8]. We a~mtme some fami l ia r i ty  wi th  
(concurrent)  cons t ra in t  (logic) p r o g r a m m i n g  [10, I3,  I1]. A 
constraint is a p red ica te  (a tomic  formula) in fLrst-order logic. 
W e  dis t inguish be tween built-in (pTedefmed) cona~rnin~ and 
CHR (nser.defined) conJtmints. Buil t - in  const ra ints  axe those 
hand led  by a predefined, given cons t ra in t  solver. 

Abstract ~Tntax. In the  following, uppe r  case le t te rs  s t and  
for conjunct ions of eonstra ints .  A C H R  p rog ram is a fi- 
ni ts  set  of CHRs.  There  are two kinds of CHRs_ S/mp//- 
fication and propagation CHR are respect ively of  the  form 
N @ H < f > G  [ B and N Q H f f i = > G  ] B,  where  the  rule 
has an opt ional  name N followed by  the  symbol  Q. The  
mul t i -head H is a conjunct ion of  C H R  constra ints .  T h e  op- 
tional guard G followed by the symbol  I is a conjunct ion  of 
buil t - in constraints .  The  body  B is a conjunct ion of bui l t - in  
and C H R  constraints .  

A simpagation CHR is a combina t ion  of  the  above two 
kinds of rule, wi th  the form N @ HI\H2 =ffi> G ] B,  where 
the  symbol  \ separa tes  the head  tmnstraiuts  into two nonempty  
conjunctions H I  and H2.  In  th is  paper ,  a s impaga t ion  rule 
can be regarded as concise abbrev ia t ion  of  the s implif icat ion 
rule N Q H 1 , H 2  •ffi-> G [ H1,B. 

Operationalsemantics. The  opera t iona l  semantie~ of  C H R  
programs is given by  a s t a t e  t rans i t ion  system. W i t h  dor/va- 
6mr st~'pm (grons/t,/or~, reduct/ona) one can proceed from one 
s t a t e  to  t he  next.  A stage (or: 9oa/) is a conjunct ion  of 
bui l t - in  end C H R  constraints .  An  initiaJ stage (or: query) 
is an a rb i t r a ry  s ta te .  In a final stage (or: answer) ei ther  the  
bui l t - in  cons t ra in ts  a re  inconsis tent  or  no der iva t ion  s tep  is 
possible anymore.  

Le t  P be a C H R  program for the C H R  const ra in ts  xnd 
be a cons t ra in t  theory for t he  bui l t - in  constra ints .  The  

t rans i t ion  r e l a t i o n ,  , for C H R  is as follows. 

S i m p l i f y  
H'^D, ,(H=H')^G^B^D 
i[ (H <=> G I B)  i n P  
and 
CT~D--.B~(H=H' ^ G )  
P r o p a g a t e  
H'^D, ,(H=H')^G^B^H'^D 
i f ( H  ~ > G [ B )  i n P  
and 
CT~D--*3~(H=H' ^G) 

When  we use a rule from the p rogram,  we will rename its 
variables  using new symbols,  and  these variables are denoted 
by  the sequence 2. A rule wi th  head H and guard  G is ap- 
plicoble to C H R  constra ints  H '  in the  context  of const ra in ts  

D,  when the  condi t ion  C T  ~ D --, : I~(H = H '  ^ G) holds.  
T h e  equa t ion  ( H  = H ' )  is a no t a t i ona l  shor thand  for 

equa t ing  the  a rguments  of  the  C H R  constra ints  tha t  occur  
in H and H ' .  Operat ional ly ,  we first check if H '  matches  H .  
W h e n  umWhi-,% we take the  context  D into account since 
i ts  bui l t - in  const ra in ts  m a y  imply  t h a t  variables  in H '  are  
equal  to specific tczma. Thia means  t ha t  there  is no dist inc-  
t ion  between,  say, c (X)  A X = 1 and c(1) ^ X = 1- I f  H '  
ma tches  H,  we equate  H '  mad H .  Final ly ,  using the var iable  
e q - - l l t i e s  from D and H '  = H,  we check the guard  G. 

A n y  of the  appl icable  rules csm he applied,  but ,  since C H R  
is a co~-ml t t sd  choice language, i t  cannot  be  undone.  I f  an  
app l i cab le  s impl i l i -~t ion rule ( H  <=7 G I B )  is appl ied  to  
the  C I t R  const ra ints  H ' ,  t he  S i m p l i f y  t rans i t ion  remuvee 
H" from the s ta te  and  adds  the  body  B,  the  equat ion H = 
H ' ,  and  the  guard  G. I f  a p ropaga t ion  r ide ( H  ==> G I B )  
is app l ied  to  H ' ,  t he  P r o p a g a t e  t ramdt ion  adds  B ,  H = H ' ,  
end  G b u t  does no t  remove H ' .  Trivial  non- te rmina t ion  is 
avoided by  apply ing  a p ropaga t ion  rule a t  most  once to  the  
same cormtraints. 

4. I M P L E l V ~ A ~ r A T I O N  
Typical ly ,  CHRs  are  used wi th in  a C L P  environment  such 

as Ecl ipse  or Siestus P m l o g  [4]- This  means  t h a t  p ropaga-  
t ion  algorithrnR are  descr ibed v ia  CHRs, while t he  under ly-  
ing C L P  language is used  to define search procedures  and 
auxi l iary  predicates .  Th i s  is the  case in our  implementa t ion  
of  soft  constraints ,  where  the  under ly ing  language is Sicstus 
Prolog.  The  ac tua l  code has  been  s l ight ly  edi ted to  abs t rac t  
aw~y from technicali t ies l ike cuts and  t e rm copying. 

Choice o f  the 5emirin&. The implementa t ion  is pa ramet r i c  
w.r . t ,  the smniring. To choose one pa r t i cu la r  semiring S, 
the user states (that is, asserts) the f~t semriag(S) using 
t he  p red ica te  u~e_smair~ug(S) .  

Recall that a semiring is c h a r ~  by (A, +, ×, 0,1). 
W h i l e  the  definit ion of  the  set  A is impl ic i t  through the oper-  
at ions,  t he  opera t ions  and remain ing  parmnetem are  defined 
by  C L P  clauses. T h e  two opera tom of the  chceen s~nniriug 
are  defined v ia  p red ica te  p l u / 4  for the  addi t ive  ope ra to r  
+ and  t t a e m / 4  for the  mul t ip l ica t ive  o p e r a t o r  x .  The  par -  
lied order  is defined v ia  I s q s l 2 ,  in t e rms  of the  addle.lye 
opera tor ,  as in the  defini t ion of the  semir ing s t ructure .  F i -  
nally,  the  t op  and b o t t o m  e lement  are  defined via pred ica tes  
o a e / l  and z ~ o / 1 .  Fo r  example ,  for t he  claesical semir ing 
(for ha rd  constraints), we have the  following clauses: 

plus(cluslcm1,V1,t~,WS) :- or(Vl,~2,W3). 
tlmesfclunical,Wl,W2,1/3) :- mmd(M2,~jV3). 

n id ( t ,  t , t ) .  ~ d ( f , _ ,  f ) .  n~d(_, f , f ) .  
ar(:~,f,~)_ o rC t ,_ , t ) ,  mL'(_,t, t) .  

.ae(~) :- HmlrlagCclustcal). 
zaza (f) :- samirlas(clusi©al). 

For  the  fuzzy semir ing and car tes ian p roduc t  we have: 

plus (fuzzy,WI,W2,W3) :- V3 in max(W1,VJ). 
times(fuzzy,Vl,~,W3):- W3 is mlnCWI,V2). 
oni(1) :- samlring(f~). 
zsro (0) : -  s,,airlmg(f~y). 
plus ((SI,$2),VI,&~,W~) :- VI-(AI,BI), W-(A2,B2), ~-(A3,B3), 

plus(S1,Al,du~,AS), pltm(m2,B1,B2.B3). 
ci]moC(S:t,S2),Ml,I/2,1~) : -  VI-(A1,B1), i/2-(A2.B2), W~-(A.R,BS), 

timaa (-ql, AI.A2, A3), times (S2,B1 ,B2,BS). 



Domains and constraints.  Variable domains  are described 
as ]ists of pairs, where each pai r  conta ins  a domain  element  
and an associated preference. T h e  operator  i n  allows one 
to s ta te  the una ry  cons t ra in t  tha t  a variable is in a certain 
domain. For example: IX] i n  [ffi-2,b-3].  

The  operator  i n  can also be used for s ta t ing  n-ary con- 
straints.  For example: IX,Y] i n  [ ( a , b ) - 3 , ( b , c ) - 4 ] .  We 
call such a defmit ion ezten.v/onaL N-ary const ra ints  can 
also be defined / n t ~ a / I g ,  which comes handy  in  the 
c~se of infini te  relations.  For example,  IX,Y] i n  l e q - 3 - 1  
associates impor tance  value 3 to all tuples sat isfying the 
constraint  l e q / 2  and  value 1 to the  others. In  extensional  
definitions, preferences are assigned to variable aesimnments 
while in in tens ionai  definit ions preferences are a ~ i g n e d  to  
constraints.  

Constraint  combinat ion.  Two extensional ly defined soft 
constraints  are combined via the predicate combina~£on/3, 
which takes two const ra ints  and re turns  a th i rd  cons t ra in t  
which is their combination_ 

coabinstion(Conl 4" De l l ,  Con2 La De|2. Co~3 4- Def3) : -  
ied~zt erosional (Def 1). i~ztemsion~l (Daf2) ,  
=ion(Con1, Co=2, ConS), s e ~ q ~ ( S ) ,  zero(Z),  
:~4-dnll{CooS-VS, Om,embe~(Conl-V1, Ikrel),  mmbe~(Con2-V2, Def2). 

~ s C S ,  ¥1, I/2 ,N3), V3 \ ~  Z), De~3). 

The combined cons t ra in t  Con3 £n Def3 is computed  as 
[ollows: the variables involved in  the  cons t ra in t  are com- 
pu ted  by the un ion  operator.  T h e n  f i n d a l l / 3  collects all 
tuples Con3-V3 o[ the new cons t ra in t  in the  list Def3, where 
each tuple is found by comput in~  all pairs of consis tent  tu-  
pies h e m  Con1 and  Con2 using member/2 and  by comput ing  
their preference value I/3 us ing the  t imes opera tor  of the  
specified semir ing S. For performance reasons and to  enable  
p run ing  o! the search space, the tuples  with zero preference 
value are deleted. 

In  order to deal wi th  in tens ional ly  defined constraints ,  a 
variat ion of combina t±on /3  is defined, called l o n g c o m b i n a t i o n / 4 .  
It  takes an intensional]y defined constra int  and two exten- 
sional domain constraints ,  and computes  a new extension- 
ally defined constraint ,  which represents the combina t ion  of 
the three original constraints .  

lon~camb~us~ion(A in L i ,  B ia  L2, E in  L4, C 4- L3) : -  
iaZnteuslonalCLl), l ~ . x ~ i a n ~ l ( L 2 ) ,  i s b t e ~ J i o n ~ ( L 4 ) .  
unian(A. B. AB), unia~(AB. E, C), samiz~aq~(S), zero(Z),  
f i n d a l l ( C - V S ,  (meml:~r(B--VS, LS) ,  member(E-V40 L4,), 

cbe~kConatra~mt(Ll. A, i l l ) ,  t~ms(9,  VX, V2, V12). 
~ lma(  n. V12, t/4, VS), V3 \ ~  Z), L3). 

To assign a level of preference to each tuple, by s ta r t ing  
from an  in tens ionai  defined cmmtraint ,  we use the  predicate  
e.heckconsl:r-~-~:/3,  which takes the  relat ion to check (L1), 
the variables involved (A), the preference parameters  of L1, 
and  re turns  the level of pre/erence [or the tuple (t/l),  e.g_: 

c h a c k C o n s t r a l n t ( l e q - V - W i ,  [X.Y~ ,Wi)-'- X-<Y -> HI i s  g ; W1 is  VA. 
checkC~stra:LntCslq-V-gA.[X,Y],Vl) : -  X-¢Y -> t;1 i x  V ; g l  i s  

max(VA, 1/( I -Y)*WI) - 

The first re la t ion assigns weight V to each tuple t ha t  saris- 
ties the re la t ion Xffi<Y, and W1 to the  other  tuples. The  second 
relat ion assigns to each tuple  a weight which depends on the 
distance between X and  Y. 

Constraintprojection_ Predicate  p r o j  e c t  i o n / 3  implements  
the project ion operator  for an ex~na iona i ly  defined soft con- 
s t ra in t  and a ]ist of variables Con2, resul t ing in a new con- 
s t ra in t  Con2 i n  Def2. 

] p r o j e c t i o n ( C a n 1  i n  k f l ,  Con2.  Can2 i n  D a f 2 ) : -  
I s E x t e n s l o n a l ( D e f l ) ,  2:l .ncla].Z(Con2-gl,  Cmeabex(Con1-W1, Do£1) ) ,  De~2),  
I r ~ y s o r t ( D a f S .  l)e:f4),  sem.1.r/.ul(S) , , , 1 ] . p l u s ( D e f 4 ,  O ~ 2 ,  S ) .  

Firs t  findaS.). /3 finds all tuples in  te rms o[ the variables 
of interest  Con2 ~ the  tuples from the  ori~inai cons t ra in t  
Conl i n  Def l .  Throe tuples are sorted so that  tuples with 
the s s m e  domain  e lement  are neighboring.  T h e n  predicate 
a J . I p l u s / 3  sums all the semirmE values whose domain  ele- 
men t  is the -q~me to compute  the final new domain  l)efS. 

s l l p l u s ( [ ] ,  t ' l .  _ ) .  
L12pIu~C[A-V1, a-i/2lDefO], Da£, 5) : -  

! ,  plus(S, VI .  H2. W-q), a l lp /us( [ l -V31DafO],  Def ,  a).  
"11p/us([A-gl lDefO], [A-W£1Da:], S) : -  a.l.Z]plus(I)efO, De~', S). 

4.1 Node- and are-consistency 
A variable is node-consis tent  if for every value in the cur- 

rent  domain  of the variable, each una r y  cons t ra in t  on the 
variable is satisfied. The  following CH R rule achieves node- 
consistency by intersect ing the  domains  associated with the 
variable X using c o m b i n a t i o n / 3 :  

n o d e _ c o n l i s t a n c y  a Con i n  D e l l ,  Con JJa Def2  <-> 
Con,,[)[], i sEz tsns ion~(Def l ) ,  i sF . z t ena imaa3 . (Def2 )  I 
comblna'~ionCCon / n  D e l l ,  Con :in Def2 .  Con :in D a f 3 ) ,  
Con i n  Def3 .  

Actually,  we can drop Con= (X] from the guard of the  rule, 
so t h a t  Con can be  any list of variables. Thus  the generalized 
rule now perform~ intersect ion of the domains  o[ two soft 
constra ints  o v ~  the same variables. 

T h e  following s impagat ion  rule implements  arv-cons~tency,  
by combin ing  b inary  and  una ry  cons t ra in ts  involving two 
variables g and  ¥ and  then  projec t ing  onto  each of the two 
variables.  In  effect, the two una r y  cons t ra in ts  on  g and Y 
are t ightened taking into account  the b ina ry  constraint .  

~rc_cons:Lecency @ [W,Y] i~ C ~ [X] in A, ~J in  B <-> 
iaEztmnsiomLt(C), £sExtsnsiona/(A). i s E x t e a s i m a a . l ( B ) ,  
mJxJJa~CS), ide~pote~:(S) | 

cmnbilmtio=([X,l~J in  C, IX] i~ A, IX,Y] ~ D).  
c m a b i n a t i a n ( [ l , Y ' J  i a  D, [It] t a  B, [X,Y] i~ E), 
p ro joc t ion( [x , l r ]  in E, D[], IX] i n  F), 
p ro jec t ion( [ l ,~J  in E, I~1~, (Y] in n), 

[X] i n  F ,  [Y] im C. 

We recall here tha t  so[t arc-consistency can be applied 
only when the (mult ipl icat ive opera t ion  of the) semiring is 
idempotent .  Otherwise, in our implementa t ion ,  we spply 
a variat ion of arc-consistency tha t  uses another  project ion 
predicate. I t  e l iminates from the domains  only those ele- 
men t s  wi th  zero as a ~ o c i a t s d  prefenmco level. 

Ano the r  v ~ s i o n  of the are-con~qtency rule  dealing wi th  
in tensional ly  defined cons t ra in t  has also been  implemented.  
I t  basically differs ~ om the  rule above only in  tha t  it uses the 
g o a l l o u s c o m b l - - t £ o n ( [ X , Y ]  i n  C, [13 ~s A. (Y] ~s B, 
IX,Y] £n E) ins tead of the two goals involving e e m b i a a t i o n / 3 .  

4.2 Complete solvers 

N n / v e  $0/ver.  Predicate  s o l v e / 2  implements  the not ion  of 
solut ion,  by combining all the cons t ra in ts  in  Cs and then  
project ing over the  variables of interest  (those in  Con) (here 
predicate  g l o b a _ l C e n b i n a t i o n / 2  folds c o m b i n a t i o n / 3  over 
a l ist  of constraints) .  
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soivsCCs. C ~ ,  Sol~t lo~) : -  
globsICombi~atio~(©a, C). p ro jec t lon (C ,  Cam, 8o lu t l on ) .  

Dynamic  progranuning. This solver, called alp, incremen- 
t~dly el iminates  a set  of variables from the const ra int  store. 
I t  is working on one variahle  a t  a time. F i rs t ,  i t  selects 
a variable • to  el imiz~te (bu t  no t  one ~ those give~ in 
the  list  ge).  Second, i t  identifies the  constraints  involving 
g and combines them into s - i . ~ e  const ra in t  Ca. Thi rd ,  
i t  p-limirmtes • f rom Cs by p ro jec t i en  obta in ing C. Pinally, 
the ~ involving X ar'e replaeed by  C and the s o l ~  
i terates  to el iminate the  remaining  v s r i a b l e s . .  

dpCXa) : -  (aeXectYszlable(X,ga) 
-~, r:LudLl.1, commtr~L~tm(][, _ 4 , . . .  C~). g l o l n ~ L ~ t A ( m ( C s .  CO). 

CO -(ComO 4. _). delete([[, C~sO, Ca~l). 
proJKtionCC0, Co~l, C). ~sm~v~matraL~ts(CaO), 
-_~__~m.tx~Lnts (C). ~p(h)  

; t r a m ) .  

Branch & bound with variable labeling. T I ~  solver, 
called varbb ,  performs branch  sad  bound  wi th  variable la- 
be.ling in the search for & solution w i th  maxima[ weight. 
Given m list  of variables Xa s a d  cmmtrsints  Con, the  solu- 
t ion  S o l u t i o n  is found in the  following way:. first a variable 
X is selected detenninis t ica l ly  from I s  according to  some 
buil t - in strategy.  Second, m value-weight pair  is choeen non- 
determinist ical ly from the domain  of • according to  same 
built-in stmtelD'. Then the remlting unary constraint IX] 
ia ~-A~ is impmed. If th~ is already a curnmt bound 
(weight), the constrmints Cun mm solved ,-~-_- s o l v e  mud it  
made sure that  there is &t least one lmmible valne in the s~  
lut ion domain whose weight is lower ~ the current weight. 
Finally, t he  recursive ~ continues wi th  t ]~  remainder  of  
the v e r ~ b k s  ga l .  

I f  the  list  of vexiables is empty,  the  second clause for vmL'bb 
computes  a solution s a d  upda te s  the  bonnd  to be  the  weight 
occurring in the  solution. 

~urbb(]lm. Com. SoXutl~) : -  
~ l ec tVs r i e l de ( I s .  i ,  IsJ.). 
R ls©t¥ f f i l h ( i .  A- iV).  DQ la  [S-AM[. 
(boud(US) 
-> solve(Com, . 4.. I )~ ) ,  mca((mmbm:(_-V. DeX), lue(LB.  V))) 
; t n a ) .  vaz'bb(J(sl. Con, So].utioa).  

v L r b b ( n ,  Cma, Bolutlon) : -  so lve(Col .  S o l a r i a ) ,  
so1,~i~ - (_ lu r -B[) ,  ~ l a t e ( b o , ~ ( a ) ) .  

5. C O N C L U S I O N S  
We have implemented a Eeneric soft constraint environ- 

ment  w h ~ e  i t  is p a r a b l e  to  work wi th  any class of  soft 
constraints ,  if  they can be  cas t  within the semiring-heasd 
framework: once the  esmir ing features have been s t a ted  
via  sui table clauses, the various solvers we have developed 
in CHRs end Sicetus Pro log  will t ake  cave of solving such 
soft constraint& We have implemented  semi - r inR for mimed- 
ca], fuzzy, set, s a d  Car tes ian-produc t  soft cenatraints .  Our  
solvers include p r o p a g ~ i o n - h a s e d  node- and  arc-consistency 
solvers es well an the several  complete  solvms umng branch 
s a d  bound  with variable or  const ra int  labeling, or dynamic  
programming.  The  solvers ~re available online at  
h t t p : / / m m ~ .  ]ms .  i~f orma~ik,  u n i - a u e n c h e n ,  d e / - v e b c l ~ r /  

We plan  to predefine more classes of soft constraints  (such 
as vector-c0sts  wi th  ]exicographical orderings for hierexchi- 
ca] CSPs)  s a d  to  develop o ther  soft p ropaga t ion  algori thms 

s a d  solvers for soft constraints.  We also p lan  to compare 
our approach to the  one followed by the  soft constraint  pro- 
t r a m m i n g  lemguage clp(fd,S) [9]. Of course we do not  ex- 
pect  to show the same efficiency as clp(fd,S),  bu t  we claim 
the same ge~eraiity, s a d  a very na tu ra l  environment to de- 
velop new propaga t ion  s lgor i thn~  end eolvem for soft eon- 
s t rs inta .  M o r ~ v e r ,  we did not  need to add  anything, ex- 
cept  the  r ~ , , ~  and  C H R  rules shown in this paper ,  w.r. t .  
the  exist ing CHR m~i ronment  s a d  CLP  language of choice_ 
O n  the  o ther  hand,  elp(fd,S) needed & new implementat ion 
and  abs t rac t  machine w.r.t_ clp(fd) [5], from which i t  origi- 
nated.  
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