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Abstract

The paradigm of pattern discovery based on constraints was introduced with the
aim of providing to the user a tool to drive the discovery process towards poten-
tially interesting patterns, with the positive side effect of achieving a more efficient
computation. So far the research on this paradigm has mainly focused on the latter
aspect: the development of efficient algorithms for the evaluation of constraint-based
mining queries. Due to the lack of research on methodological issues, the constraint-
based pattern mining framework still suffers from many problems which limit its
practical relevance. In this paper we analyze such limitations and we show how they
flow out from the same source: the fact that in the classical constraint-based mining,
a constraint is a rigid boolean function which returns either true or false. Indeed,
interestingness is not a dichotomy. Following this consideration, we introduce the
new paradigm of pattern discovery based on Soft Constraints, where constraints are
no longer rigid boolean functions.

Albeit based on a simple idea, our proposal has many merits: it provides a rigorous
theoretical framework, which is very general (having the classical paradigm as a
particular instance), and which overcomes all the major methodological drawbacks
of the classical constraint-based paradigm, representing an important step further
towards practical pattern discovery.
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1 Background and Motivations

During the last decade a lot of researchers have focused their (mainly algorith-
mic) investigations on the computational problem of Frequent Pattern Discov-
ery, i.e. mining patterns which satisfy a user-defined constraint of minimum
frequency (Agrawal et al., 1993; Agrawal and Srikant, 1994).

The simplest form of a frequent pattern is the frequent itemset.

Definition 1 (Frequent Itemset Mining) Let I = {x1, ..., xn} be a set of
distinct items, where an item is an object with some predefined attributes (e.g.,
price, type, etc.). An itemset X is a non-empty subset of I. A transaction
database D is a bag of itemsets t ∈ 2I, usually called transactions. The sup-
port of an itemset X in database D, denoted suppD(X), is the number of
transactions which are superset of X. Given a user-defined minimum support,
denoted σ, an itemset X is called frequent in D if suppD(X) ≥ σ. This defines
the minimum frequency constraint: Cfreq[D,σ](X) ⇔ suppD(X) ≥ σ. The Fre-
quent Itemset Mining Problem requires to compute all itemsets in a transaction
database, which satisfy the minimum frequency constraint.

This computational problem is at the basis of the well known Association Rules
mining. The idea of mining association rules (Agrawal et al., 1993) originates
from the analysis of market-basket data where we are interested in finding rules
describing customers behavior in buying products. Their direct applicability
to business problems together with their inherent understandability, even for
non data mining experts, made association rules a popular mining method,
and made frequent itemsets mining one of the most hot research themes in
data mining. However frequent itemsets are meaningful not only in the context
of association rules mining: they can be used as basic element in many other
kind of analysis, ranging from classification (Liu et al., 1998; Li et al., 2001)
to clustering (Pei et al., 2003; Yiu and Mamoulis, 2003).

Recently the research community has turned its attention from the itemsets
to more complex kinds of frequent patterns extracted from more structured
data: e.g., sequences (Agrawal and Srikant, 1994; Garofalakis et al., 1999),
trees (Wang and Liu, 2000; Zaki, 2005), and graphs (Inokuchi et al, 2000; Ku-
ramochi and Karypis, 2001). All these different kinds of pattern have different
peculiarities and application fields, but they all share the same computational
aspects: a usually very large input, an exponential search space, and a too
large solution set. This situation – too much data yielding too many patterns
– is harmful for two reasons. First, performance degrades: mining generally be-
comes inefficient or, often, simply unfeasible. Second, the identification of the
fragments of interesting knowledge, blurred within a huge quantity of mostly
useless patterns, is difficult. The paradigm of constraint-based pattern mining
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was introduced as a solution to both these problems. In such paradigm, it
is the user which specifies to the system what is interesting for the current
application: constraints are a tool to drive the mining process towards po-
tentially interesting patterns, moreover they can be pushed deep inside the
mining algorithm in order to fight the exponential search space curse, and to
achieve better performance (Srikant et al., 1997; Ng et al., 1998; Han et al.,
1999; Bayardo et al., 1999; Boulicaut and Jeudy, 2005). When instantiated to
the pattern class of itemsets, the constraint-based pattern mining problem is
defined as follows.

Definition 2 (Constrained Frequent Itemset Mining) A constraint on
itemsets is a function C : 2I → {true, false}. We say that an itemset I satisfies
a constraint if and only if C(I) = true. We define the theory of a constraint
as the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}.
Thus with this notation, the frequent itemsets mining problem requires to com-
pute the set of all frequent itemsets Th(Cfreq[D,σ]). In general, given a conjunc-
tion of constraints C the constrained frequent itemsets mining problem requires
to compute Th(Cfreq) ∩ Th(C).

Example 1 The following is an example mining query:

Q : suppD(X) ≥ 1500 ∧ avg(X.weight) ≤ 5 ∧ sum(X.price) ≥ 20

It requires to mine, from database D, all patterns which are frequent (have a
support at least 1500), have average weight at most 5 and a sum of prices at
least 20.

According to the constraint-based mining paradigm, the data analyst must
have a high-level vision of the pattern discovery system, without worrying
about the details of the computational engine, in the very same way a database
designer has not to worry about query optimization: she must be provided
with a set of primitives to declaratively specify to the pattern discovery sys-
tem how the interesting patterns should look like, i.e., which conditions they
should obey. Indeed, the task of composing all constraints and producing the
most efficient mining strategy (execution plan) for the given data mining query
should be left to an underlying query optimizer. Thus, so far constraint-based
frequent pattern mining has been seen as a query optimization problem, i.e.,
developing efficient, sound and complete evaluation strategies for constraint-
based mining queries. Or in other terms, designing efficient algorithmic strate-
gies to mine all and only the patterns in Th(Cfreq)∩Th(C). To this aim, proper-
ties of constraints have been studied comprehensively, e.g., anti-monotonicity,
succinctness (Ng et al., 1998; Lakshmanan et al., 1999), monotonicity (De
Raedt and Kramer, 2001; Bucila et al., 2002; Bonchi et al., 2003c), convert-
ibility (Pei and Han, 2000), loose anti-monotonicity (Bonchi and Lucchese,
2005), and on the basis of such properties efficient computational strategies
have been defined.
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Despite such algorithmic research effort, and regardless some successful appli-
cations, e.g., in medical domain (Ordonez et al., 2001; Lau et al., 2003), or in
biological domain (Besson et al., 2005), the constraint-based pattern mining
framework still suffers from many problems which limit its practical relevance.

First of all, consider the mining query Q in Example 1:

where do the three thresholds (i.e., 1500, 5 and 20) come from?

In some cases they can be precisely imposed by the application, i.e. they can
be suggested by the domain expert. But in practice this is rarely the case.
In most of the cases, they come from an exploratory mining process, where
they are iteratively adjusted until a solution set of reasonable size is produced.
This practical way of proceeding is in contrast with the basic philosophy of the
constraint-based paradigm: constraints should represent what is a priori inter-
esting, given the application background knowledge, rather than be adjusted
accordingly to a preconceived output size.

Another major drawback of the constraint-based pattern mining paradigm is
its rigidity.

Example 2 In this example, and in the rest of the paper, we use for the
patterns the notation p : 〈v1, v2, v3〉, where p is an itemset, and 〈v1, v2, v3〉
denote the three values 〈suppD(p), avg(p.weight), sum(p.price)〉 corresponding
to the three constraints in the conjunction in the query Q of Example 1.

Consider, for instance, the following three patterns:

• p1 : 〈1700, 0.8, 19〉,
• p2 : 〈1550, 4.8, 54〉,
• p3 : 〈1550, 2.2, 26〉.

The first pattern, p1, largely satisfies two out of the three given constraints,
while slightly violates the third one. According to the classical constraint-based
pattern mining paradigm p1 would be discarded as non interesting.

From the above example, the following questions spontaneously arise: is pat-
tern p1 really less interesting than p2 and p3 which satisfy all the three con-
straints, but which are much less frequent than p1? Moreover, is it reasonable,
in real-world applications, that all constraints are equally important?

All these problems flow out from the same source: the fact that in the classical
constraint-based mining framework, a constraint is a function which returns a
boolean value C : 2I → {true, false} (see Definition 2). Indeed, interestingness
is not a dichotomy (Bistarelli and Bonchi, 2005). This consideration suggests
us a simple solution to overcome all the main drawbacks of constraint-based
paradigm.
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Paper Contributions and Organization

In this paper, as a mean to handle interestingness (Tan et al., 2002; Hilder-
man and Hamilton, 2002; Sahar, 1999), we introduce the soft constraint based
pattern mining paradigm, where constraints are no longer rigid boolean func-
tions, but are “soft” functions, i.e., functions with value in a set A, which
represents the set of interest levels, or costs, assigned to each pattern.

• The proposed paradigm is not rigid: a potentially interesting pattern is not
discarded for just a slight violation of a constraint.

• Our paradigm creates an order of patterns w.r.t. interestingness (level of
constraints satisfaction): this allows to say that a pattern is more interesting
than another, instead of strictly dividing patterns in interesting and not
interesting.

• From the previous point it follows that our paradigm allows to express top-k
queries based on constraints: e.g., the data analyst can ask for the top-10
patterns w.r.t. a given description (a conjunction of soft constraints).

• Alternatively, we can ask to the system to return all and only the patterns
which exhibit an interest level larger than a given threshold λ.

• The proposed paradigm allows to assign different weights to different con-
straints, while in the classical constraint-based pattern discovery paradigm
all constraints were equally important.

• Last but not least, our proposal is very general: classical constraint-based
paradigm is just a particular instance of the proposed framework, which,
moreover, can be instantiated to different classes of patterns such as item-
sets, sequences, trees or graphs.

It is worth noting that, by adopting the soft constraint based paradigm, we
do not reject all research results obtained in the classical constraint based
paradigm; on the contrary, we fully exploit such algorithmic results. In other
terms, our proposal is merely methodological, and it exploits previous research
results that were mainly computational. For the reasons listed above, we be-
lieve that the proposed paradigm represents an important step further towards
practical pattern discovery.

The paper is organized as follows. In the next Section we briefly review the
theory of soft constraints based on c-semiring, describing it by the pattern
discovery perspective. In Section 3 we discuss possible alternative instances
of the paradigm. In Section 4 we formally define the Soft Constraint Based
Pattern Discovery paradigm. In Section 5 we implement the paradigm in a
concrete system, built as a wrapper around a classical constraint pattern min-
ing system. Finally in Section 6 we review some related work and in Section
7 we conclude and sketch some future development of our proposal.
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2 Introducing Soft Constraints

Constraint Solving is an emerging software technology for declarative descrip-
tion and effective solving of large problems. Many real life systems, ranging
from network management (Frühwirth and Brisset, 1997) to complex schedul-
ing (Bellone et al., 1992), are analyzed and solved using constraint related
technologies. The constraint programming process consists of the generation
of requirements (constraints) and solution of these requirements, by special-
ized constraint solvers. When the requirements of a problem are expressed as
a collection of boolean predicates over variables, we obtain what is called the
crisp (or classical) Constraint Satisfaction Problem (CSP). In this case the
problem is solved by finding any assignment of the variables that satisfies all
the constraints.

Sometimes, when a deeper analysis of a problem is required, soft constraints
are used instead.

Several formalizations of the concept of soft constraints are currently available.
In the following, we refer to the formalization based on c-semirings (Bistarelli
et al., 1997): a semiring-based constraint assigns to each instantiation of its
variables an associated value from a partially ordered set. When dealing with
crisp constraints, the values are the boolean true and false representing the
admissible and/or non-admissible values; when dealing with soft constraints
the values are interpreted as preferences/costs. The framework must also han-
dle the combination of constraints. To do this one must take into account such
additional values, and thus the formalism must provide suitable operations for
combination (×) and comparison (+) of tuples of values and constraints. This
is why this formalization is based on the mathematical concept of semiring.

Definition 3 (c-semirings (Bistarelli et al., 1997)) A semiring is a tu-
ple 〈A, +,×,0,1〉 such that: A is a set and 0,1 ∈ A; + is commutative,
associative and 0 is its unit element; × is associative, distributes over +, 1
is its unit element and 0 is its absorbing element. A c-semiring (“c” stands
for “constraint-based”) is a semiring 〈A, +,×,0,1〉 such that + is idempotent
with 1 as its absorbing element and × is commutative.

Definition 4 (soft constraint on c-semiring (Bistarelli et al., 1997))
Given a c-semiring S = 〈A, +,×,0,1〉 and an ordered set of variables V over
a finite domain D, a constraint is a function which, given an assignment
η : V → D of the variables, returns a value of the c-semiring. By using this
notation we define C = η → A as the set of all possible constraints that can be
built starting from S, D and V .

In the following we will always use the word semiring as standing for c-
semiring.
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The following example illustrates the definition of soft constraint based on
semiring, using the query Q of Example 1 in the classical crisp framework,
i.e., on the boolean semiring.

Example 3 Consider again the mining query Q. In this context we have that
the ordered set of variables V is 〈suppD(X), avg(X.weight), sum(X.price)〉,
while the domain D is: D(suppD(X)) = N, D(avg(X.weight)) = R

+, and
D(sum(X.price)) = N. If we consider the classical crisp framework (i.e., hard
constraints) we are on the boolean semiring:

SBool = 〈{true, false},∨,∧, false, true〉

A soft constraint C is a function V → D → A; for instance, suppD(X) →
1700 → true.

The + operator is what we use to compare tuples of values (or patterns, in
our context). Let us consider the relation ≤S (where S stands for the specified
semiring) over A such that a ≤S b iff a+ b = b. It is possible to prove that: ≤S

is a partial order; + and × are monotone on ≤S; 0 is its minimum and 1 its
maximum, and 〈A,≤S〉 is a complete lattice with least upper bound operator
+. In the context of pattern discovery a ≤S b means that the pattern b is more
interesting than a, where interestingness is defined by a combination of soft
constraints.

When using (soft) constraints it is necessary to specify, via suitable combi-
nation operators, how the level of interest of a combination of constraints is
obtained from the interest level of each constraint. The combined weight (or
interest) of a combination of constraints is computed by using the operator
⊗ : C × C → C defined as (C1 ⊗ C2)η = C1η ×S C2η.

Example 4 If we adopt the classical crisp framework, in the mining query
Q of Example 1 we have to combine the three constraints using the ∧ opera-
tor (which is the × in the boolean semiring SBool). Consider for instance the
pattern p1 : 〈1700, 0.8, 19〉 for the ordered set of variables V = 〈suppD(X),
avg(X.weight), sum(X.price)〉. The first and the second constraint are sat-
isfied leading to the semiring level true, while the third one is not satisfied
and has associated level false. Combining the three values with ∧ we obtain
true ∧ true ∧ false = false and we can conclude that the pattern 〈1700, 0.8, 19〉
is not interesting w.r.t. our purposes. Similarly, we can instead compute level
true for pattern p3 : 〈1550, 2.2, 26〉 corresponding to an interest w.r.t. our
goals. Notice that using crisp constraints, the order between values only says
that we are interested to patterns with semiring level true and not interested
to patterns with semiring level false (that is semiring level false ≤SBool

true).
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3 Instances of the Semiring

Dividing patterns in interesting and non-interesting is sometimes not meaning-
ful nor useful. Most of the times we want to say that each pattern is interesting
with a specific level of preference. Soft constraints can deal with preferences
by moving from the two values semiring SBool to other semirings able to give
a finer distinction among patters (see (Bistarelli, 2004) for a comprehensive
guide to the semiring framework). For our scope the fuzzy, the weighted, and
the probabilistic semirings are the most suitable.

3.1 Fuzzy Semiring

When using fuzzy semiring (Dubois et al., 1993; Ruttkay, 1994), to each pair
constraint-pattern is assigned an interest level between 0 and 1, where 1 rep-
resents the best value (maximum interest) and 0 the worst one (minimum
interest). Therefore the + in this semiring is given by the max operator, and
the order ≤S is given by the usual ≤ on real numbers. The value associated to
a pattern is obtained by combining the constraints using the minimum oper-
ator among the semiring values. Therefore the × in this semiring is given by
the min operator.

Recapitulating, the fuzzy semiring is given by SF = 〈[0, 1],max,min, 0, 1〉.
The reason for such a max-min framework relies on the attempt to maximize
the value of the least preferred feature. Fuzzy soft constraints are able to model
partial constraint satisfaction (Freuder and Wallace, 1992), so to get a solution
even when the problem is overconstrained, and also prioritized constraints,
that is, constraints with different levels of importance (Borning et al., 1989).

In Figure 1 we provide graphical representations of possible fuzzy instances of
the constraints in query Q of example 1.

suppD(X)

1000 1200 1400 1600 1800 2000
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

avg(X.weight)

2 3 4 5 6 7 8
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

sum(X.price)

0 10 20 30 40
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

(C1) (C2) (C3)

Fig. 1. Graphical representation of possible fuzzy/probabilistic instances of the con-
straints in the mining query Q in Example 1.
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Consider, for instance, the graphical representation of the frequency constraint
in Figure 1(C1). The dotted line describes the behavior of the crisp version
(where 1 = true and 0 = false) of the frequency constraint, while the solid line
describes a possible fuzzy instance of the same constraint. In this instance do-
main values smaller than 1200 yield an interest level equals to 0 (completely
uninteresting patterns); from 1200 to 1800 the interest level grows linearly
reaching the maximum value of 1. Similarly the other two constraints in Fig-
ure 1(C2) and (C3). In this situation for the pattern p1 = 〈1700, 0.8, 19〉 we
obtain that: C1(p1) = 0.83, C2(p1) = 1 and C3(p1) = 0.45. Since in the fuzzy
semiring the combination operator × is min, we got that the interest level of
p1 is 0.45. Similarly for p2 and p3:

• p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = min(0.83, 1, 0.45) = 0.45
• p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = min(0.58, 0.6, 1) = 0.58
• p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = min(0.58, 1, 0.8) = 0.58

Therefore, with this particular instance we got that p1 <SF
p2 =SF

p3, i.e., p2

and p3 are the most interesting pattern among the three.

3.2 Probabilistic Semiring

Also interesting could be the use of the probabilistic semiring. Sometimes the
data can be not completely correct and only partially represent real data.
Using a probability level to represent how much a data is “real” can be used
to guide the mining toward the most interesting and most realistic patterns.
In this case we can consider the semiring value associated to each pattern as
the probability of being an interesting pattern.

Using the probabilistic constraints framework (Fargier and Lang, 1993) we
suppose each constraint to have an independent probability law, and com-
bination is computed performing the product of the semiring value of each
constraint instantiations. As a result, the semiring corresponding to the prob-
abilistic framework is SP = 〈[0, 1],max,×, 0, 1〉.

Consider again the constraints graphical representations in Figure 1, where
the semiring values between 0 and 1 are this time interpreted as probabil-
ities. In this situation for the pattern p1 = 〈1700, 0.8, 19〉 we obtain that:
C1(p1) = 0.83, C2(p1) = 1 and C3(p1) = 0.45. Since in the probabilistic semir-
ing the combination operator × is the arithmetic multiplication, we got that
the interest level of p1 is 0.37. Similarly for p2 and p3:

• p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = ×(0.83, 1, 0.45) = 0.37
• p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = ×(0.58, 0.6, 1) = 0.35
• p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = ×(0.58, 1, 0.8) = 0.46
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Therefore, with this particular instance we got that p2 <SP
p1 <SP

p3, i.e., p3

is the most interesting pattern among the three.

3.3 Weighted Semiring

While in the fuzzy semiring each pattern has an associated level of preference
(or interestingness) for each constraint, and in the probabilistic semiring a
value which represents a probability, in the weighted semiring they have an
associated cost. Therefore, in the weighted semiring the cost function is defined
by summing up the costs of all constraints.

Note that the weighted semiring is usually adopted to model optimization
problems where the goal is to minimize the total cost (e.g., time, space, number
of resources, etc.) of the proposed solution, whilst in the fuzzy and probabilistic
one is to maximize the preference (so, in the weighted semiring smaller is
better while in the others is worse). According to the informal description
given above, the weighted semiring is SW = 〈R+,min, sum, +∞, 0〉.

Consider the following weighted instance for the constraints in the query Q
(graphically represented in Figure 2):

• C1(suppD(X)) =











1750 − suppD(X), if suppD(X) < 1750

0, otherwise.

• C2(avg(X.weight)) = 25 ∗ avg(X.weight)

• C3(sum(X.price)) =











5 ∗ (60 − sum(X.price)), if sum(X.price) < 60

0, otherwise.

suppD(X)

600 800 1000 1200 1400 1600 1800 2000
0
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400
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avg(X.weight)

0 2 4 6 8
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100

150

200 weighted sum(X.price)

0 20 40 60 80
0

50

100

150

200

250
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(C1) (C2) (C3)

Fig. 2. Graphical representation of possible weighted instances of the constraints in
in the mining query Q in Example 1.
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Note how the soft version of the constraints are defined in the weighted frame-
work: C1 for instance, since bigger support is better, gives a cost of 0 when the
support is greater than 1750 and an increasing cost as the support decreases.
Similarly for constraint C3: we assign a cost 0 when the sum of prices is at
least 60, while the cost increases linearly as the sum of prices shrinks. Con-
straint C2 instead aims to have an average weight as lower as possible, and
thus larger average weight will produce larger (worse) cost.

Note that, since in the weighted semiring the aim is to minimize the cost while
in the fuzzy/probabilistic is to maximize the preference, the constraints that
were defined by increasing functions in Figure 1 are defined by decreasing
functions (and vice versa) in Figure 2.

In this situation we got that:

• p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = sum(50, 20, 205) = 275
• p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = sum(200, 120, 30) = 350
• p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = sum(200, 55, 170) = 425

Therefore, with this particular instance we got that p3 <SW
p2 <SW

p1 (re-
member that the order ≤SW

correspond to the ≥ on real numbers). In other
terms, p1 is the most interesting pattern w.r.t. this constraints instance.

The weighted and the fuzzy paradigm, can be seen as two different approaches
to give a meaning to the notion of optimization. The two models correspond
in fact to two definitions of social welfare in utility theory (Moulin, 1988):
“egalitarianism”, which maximizes the minimal individual utility, and “util-
itarianism”, which maximizes the sum of the individual utilities. The fuzzy
paradigm has an egalitarianistic approach, aimed at maximizing the overall
level of interest while balancing the levels of all constraints; while the weighted
paradigm has an utilitarianistic approach, aimed at getting the minimum cost
globally, even though some constraints may be neglected presenting a big cost.
We believe that both approaches present advantages and drawbacks, and may
be preferred to the other one depending on the application domain.

Beyond the fuzzy, the weighted and the probabilistic many other possible in-
stances of the semiring exist, and could be useful in particular applications.
Moreover, it is worth noting that the cartesian product of semirings is a semir-
ing (Bistarelli et al., 1997) and thus it is possible to use the framework also
to deal with multicriteria pattern selection. Finally, note that the soft con-
straint framework is very general, and could be instantiated not only to unary
constraints (as we do in this paper) but also to binary and k-ary constraints
(dealing with two or more variables). This could be useful to extend the soft
constraint based paradigm to association rules with “2-var” constraints (Lak-
shmanan et al., 1999): this is beyond the scope of this paper, but however, it
is worth further investigation.
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4 Soft Constraint Based Pattern Mining

In this Section we instantiate the soft constraint theory to the pattern dis-
covery framework, obtaining the novel Soft Constraint Based Pattern Mining
framework.

Definition 5 (Soft Constraint Based Pattern Mining) Let P denote the
domain of possible patterns. A soft constraint on patterns is a function C :
P → A where A is the carrier set of a semiring S = 〈A, +,×,0,1〉. Given a
combination of soft constraints ⊗C, i.e., a description of what is considered
by the user an interesting pattern, we define two different problems:

λ-interesting: given a minimum interest threshold λ ∈ A, it is required to
mine the set of all λ-interesting patterns, i.e., {p ∈ P| ⊗ C(p) ≥S λ}.

top-k: given a threshold k ∈ N, it is required to mine the top-k patterns p ∈ P
w.r.t. the order ≤S.

In the rest of the paper we adopt the notation intPS (λ) to denote the problem
of mining λ-interesting patterns (from pattern domain P) on the semiring S,
and similarly topPS (k), for the corresponding top-k mining problem. Note that
the Soft Constraint Based Pattern Mining paradigm just defined, has many
degrees of freedom. In particular, it can be instantiated:

(1) on the domain of patterns P in analysis (e.g., itemsets, sequences, trees
or graphs),

(2) on the semiring S = 〈A, +,×,0,1〉 (e.g., boolean, fuzzy, weighted or
probabilistic), and

(3) on one of the two possible mining problems, i.e., λ-interesting or top-k
mining.

In other terms, by means of Definition 5, we have defined many different
mining problems: for instance, the problem of mining λ-interesting itemsets on
the fuzzy semiring, that we denote as intIf (λ); or that of mining top-k itemsets
on the probabilistic semiring, that we denote topIp (k). It is worth noting that
the classical constraint based paradigm (Definition 2), is just a particular
instance of our framework. In particular, it corresponds to the mining of λ-
interesting itemsets on the boolean semiring, where λ = true, i.e., intIb (true).

In the rest of this paper we will focus on how to concretely develop solvers
for the mining problems we have defined. In particular, we will show how to
build a concrete soft-constraint based pattern discovery system, by means of a
set of appropriate wrappers around a crisp constraint pattern mining system.
To do this we exploit the property that in a c-semiring S = 〈A, +,×,0,1〉 the
×-operator is extensive (Bistarelli et al., 1997), i.e, a× b ≤S a for all a, b ∈ A.
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Thanks to this property, we can easily prune away some patterns from the
set of possibly interesting ones. In particular this result directly applies when
we want to solve a λ-interesting problem. In fact for any semiring (fuzzy,
weighted, probabilistic) we have that (Bistarelli et al., 1997):

Proposition 1 Given a combination of soft constraints ⊗C based on a semir-
ing S, for any pattern p ∈ P: ⊗C(p) ≥S λ ⇒ ∀C ∈ ⊗C : C(p) ≥S λ.

Proof Straightforward from the extensivity of ×.

Therefore, computing all the λ-interesting patterns can be done by solving
a crisp problem where all the constraint instances with semiring level lower
than λ have been assigned level false, and all the instances with semiring
level greater or equal to λ have been assigned level true. In fact, if a pat-
tern does not satisfy such conjunction of crisp constraints, it will not be nei-
ther interesting w.r.t. the soft constraints. Using this theoretical result, and
some simple arithmetic we can transform each soft constraint in a correspond-
ing crisp constraint, push the crisp constraint in the mining computation to
prune uninteresting patterns, and when needed, post-process the solution of
the crisp problem, to remove uninteresting patterns from it. Note that when
dealing with a semiring with idempotent × (e.g., the fuzzy semiring) no post-
processing is needed, since all patterns satisfying the conjunction of crisp con-
straint, would for sure reach a cumulative semiring level larger than λ. This
general methodology will be described in detail for each different semiring in
the next Section.

5 Implementing the Framework

The basic components which we use to build our soft-constraint based pattern
discovery system are the following:

A crisp constraints solver - i.e., a system for mining constrained frequent
itemsets, where constraints are classical binary functions, and not soft con-
straints. Or in other terms, a system for solving the problem in Definition 2.
To this purpose we adopt ConQueSt, a system which we have developed
at Pisa KDD Laboratory (Bonchi et al., 2006). Such a system is based on
a mining engine which is a general Apriori-like algorithm which, by means
of data reduction and search space pruning, is able to push a wide variety
of constraints (practically all possible kinds of constraints which have been
studied and characterized so far (Bonchi and Lucchese, 2005)) into the fre-
quent itemsets computation. Based on the algorithmic results developed in
the last years by our lab (e.g., (Bonchi et al., 2003c,b; Bonchi and Lucchese,
2004, 2005; Orlando et al., 2002)), our system is very efficient and robust,
and to our knowledge, is the unique existing implementation of this kind.
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A language of constraints - to express, by means of queries containing
combination of soft constraints, what is interesting for the given applica-
tion. The wide repertoire of constraints that we admit, corresponds to the
repertoire of constraints which are handled by ConQueSt, and it com-
prehends the frequency constraint (suppD(X) ≥ σ), the constraints based
on ⊆ and ⊇, and all constraints defined over the following aggregates 1 :
min,max, count, sum, range, avg, var,median, std,md.

A methodology to define the interest level - that must be assigned to
each pair itemset-constraint. In other terms, we need to provide the analyst
with a simple methodology to define how to assign for each constraint and
each itemset a semiring value, as done, for instance, by the graphical repre-
sentations of constraints in Figures 1 and 2. This methodology should pro-
vide the analyst with a knob to adjust the softness level of each constraint,
and a knob to set the importance of each constraint in the combination.

5.1 Mining intIf (λ) (λ-interesting Itemsets on the Fuzzy Semiring)

Definition 6 Let I = {x1, ..., xn} be a set of items, where an item is an object
with some predefined attributes (e.g., price, type, etc.). A soft constraint on
itemsets, based on the fuzzy semiring, is a function C : 2I → [0, 1]. Given a
combination of such soft constraints ⊗C ≡ C1⊗ . . .⊗Cn, we define the interest
level of an itemset X ∈ 2I as ⊗C(X) = min(C1(X), . . . , Cn(X)). Given a min-
imum interest threshold λ ∈ ]0, 1], the λ-interesting itemsets mining problem,
requires to compute intIf (λ) = {X ∈ 2I | ⊗ C(X) ≥ λ}.

Note that in the above definition in order to get rid of useless details, we
avoid the trivial case λ = 0, in which no constraint can be pushed in the
computation to prune the search space, since all patterns are “interesting”
and they all must be enumerated in the solution.

In the following we describe how to build a concrete pattern discovery system
for intIf (λ), as a wrapper around a classical constraint pattern mining system.
Let us focus on the last requirement of the three listed above: methodology
to define the interest level, i.e., the semiring value that is returned for a given
pattern and a given constraint. Essentially we must describe how the user can
define the fuzzy behavior of a soft constraint. For sake of simplicity, we restrict
our system to constraints which behave as those ones in Figure 1: they return
a value which grows linearly from 0 to 1 in a certain interval, while they are
null before the interval and equal to 1 after the interval. To describe such
a simple behavior we just need two parameters: a value associated to the

1 range is (max − min), var is for variance, std is for standard deviation, md is
for mean deviation.
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center of the interval (corresponding to the 0.5 fuzzy semiring value), and a
parameter to adjust the width of the interval (and consequently the gradient
of the function).

Definition 7 A soft constraint C on itemsets, based on the fuzzy semiring, is
defined by a quintuple 〈Agg,Att, θ, t, α〉, where:

• Agg ∈ {supp,min,max, count, sum, range, avg, var,median, std,md};
• Att is the name of the attribute on which the aggregate agg is computed (or

the transaction database, in the case of the frequency constraint);
• θ ∈ {≤,≥};
• t ∈ R corresponds to the center of the interval and it is associated to the

semiring value 0.5;
• α ∈ R

+ is the softness parameter, which defines the inclination of the pref-
erence function (and thus the width of the interval).

In particular, if θ =≤ (as in Figure 1(C2)) then C(X) is 1 for X ≤ (t−αt), is
0 for X ≥ (t + αt), and is linearly decreasing from 1 to 0 within the interval
[t−αt, t+αt]. The other way around if θ =≥ (as, for instance, in Figure 1(C3)).
Note that if the softness parameter α is 0, then we obtain the crisp (or hard)
version of the constraint.

Example 5 Consider again the query Q given in Example 1, and its fuzzy
instance graphically described by Figure 1. Such query can be expressed in our
constraint language as:

〈supp,D,≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉

Before we have stated that our system should provide to the user also a knob
to increase or decrease the importance of a constraint w.r.t. the other con-
straints in the query. Since the combination operator × in min, increasing
the importance of a constraint w.r.t. the others in the combination means to
force the constraint to return lower values for not really satisfactory patterns.
By decreasing the softness parameter α, we increase the gradient of the func-
tion making the shape of the soft constraint closer to a crisp constraint. This
translates in a better value for patterns X which were already behaving well
w.r.t. such constraint(C(X) > 0.5), and in a lower value for patterns which
were behaving not so well (C(X) < 0.5).

Decreasing the gradient (increasing α) instead means to lower the importance
of the constraint itself: satisfying or not satisfying the constraint does not
result in a big fuzzy value difference. Additionally, by operating on t, we
can increase the “severity” of the constraint w.r.t. those patterns which were
behaving not so well.
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Therefore, the knob to increase or decrease the importance of a constraint is
not explicitly given, because its role, in the fuzzy semiring, can be played by
a combined action on the two knobs α and t.

Example 6 Consider again the query Q given in Example 1, and its fuzzy in-
stance: 〈supp,D,≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉.
As we stated in Subsection 3.1, it holds that p2 =SF

p3.

Suppose now that we increase the importance of C3, e.g., 〈sum, price,≥, 28, 0.25〉.
We obtain that p3 <SF

p2:

• p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = min(0.58, 0.6, 1) = 0.58
• p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = min(0.58, 1, 0.36) = 0.36

As stated before, when dealing with the fuzzy semiring, computing all the
patterns more interesting than a threshold λ can be performed by solving
a crisp problem where all the constraint instances with semiring level lower
than λ have been assigned level false, and all the instances with semiring level
greater or equal to λ have been assigned level true. Using this theoretical
result, and some simple arithmetic we can transform each fuzzy constraint in
a corresponding crisp constraint.

Definition 8 Given a fuzzy soft constraint C ≡ 〈Agg,Att, θ, t, α〉, and a min-
imum interest threshold λ, we define the crisp translation of C w.r.t. λ as:

Cλ
crisp ≡











Agg(Att) ≥ t − αt + 2λαt, if θ =≥

Agg(Att) ≤ t + αt − 2λαt, if θ =≤

Example 7 The crisp translation of the soft constraint 〈sum, price,≥, 20, 0.5〉
is sum(X.price) ≥ 26 for λ = 0.8, while it is sum(X.price) ≥ 18 for λ = 0.4.

Since in the fuzzy semiring the × operator is min, which is idempotent, the
solution of the crisp computation will exactly correspond to the solution of
the λ-interesting mining problem, i.e., no post-processing will be needed.

Proposition 2 Given the vocabulary of items I, a combination of fuzzy soft
constraints ⊗C ≡ C1 ⊗ . . .⊗Cn, and a minimum interest threshold λ. Let C′ be
the conjunction of crisp constraints obtained by conjoining the crisp translation
of each constraint in ⊗C w.r.t. λ: C′ ≡ C1

λ
crisp ∧ . . . ∧ Cn

λ
crisp. It holds that:

intIf (λ) = {X ∈ 2I | ⊗ C(X) ≥ λ} = Th(C′)

where Th(C′) is the solution set for the crisp problem, according to the notation
introduced in Definition 2.
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Proof [sketch] The soundness of the mapping come from the result in (Bistarelli
et al., 1997) and the idempotence of min. We here have to only give a jus-
tification of the formula in Definition 8. This is done by means of Figure 3,
that shows a graphical representation of the simple arithmetic problem and its
solutions. For instance, when θ is ≤, the soft fuzzy constraint is represented
by the straight line which goes from (t − αt, 1) to (t + αt, 0): in this case, to
have a semiring value smaller than λ equates to have a crisp value smaller
than t + αt − 2λαt.

Fig. 3. Graphical proof to Proposition 2.

Therefore, if we adopt the fuzzy semiring, we can fully exploit a classical
constraint-based pattern discovery system (and all algorithmic results behind
it), by means of a simple translation from soft to crisp constraints. This is
exactly what we have done, obtaining a pattern discovery system based on
fuzzy soft constraints built as a wrapper around a classical constraint-based
mining system.

In the following we report the results of some experiments that we have con-
ducted in order to asses the concrete effects obtained by manipulating the α,
t and λ parameters. To this purpose we have compared 8 different instances

〈supp,D,≥, t, α〉 〈avg, weight,≤, t, α〉 〈sum, price,≥, t, α〉

D t α t α t α

Q1 retail 20 0.8 10000 0.5 20000 0.5

Q2 retail 20 0.5 10000 0.5 20000 0.5

Q3 retail 20 0.2 10000 0.5 20000 0.5

Q4 retail 20 0.8 5000 0.2 20000 0.5

Q5 retail 20 0.8 5000 0.8 20000 0.5

Q6 T40I10D100K 800 0.75 15000 0.2 100000 0.5

Q7 T40I10D100K 800 0.75 15000 0.9 100000 0.5

Q8 T40I10D100K 800 0.25 15000 0.2 100000 0.2

Fig. 4. Description of queries experimented.
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(described in Figure 4) of the query Q :

〈supp,D,≥, t, α〉〈avg, weight,≤, t, α〉, 〈sum, price,≥, t, α〉

We have experimented on two different transactional datasets 2 D. For the first
five queries we used the well known retail dataset, donated by Tom Brijs
and contains the (anonymized) retail market basket data from an anonymous
Belgian retail store: it contains 88163 transactions over 16470 items. For the
last three queries we used another well known dataset, named T40I10D100K,
and containing 100000 transactions over 1000 items. In both cases, the two
attributes weight and price have been randomly generated with a gaussian
distribution within the range [0, 150000].
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Fig. 5. Experimental results on the retail dataset with λ ranging in ]0, 1] in the
fuzzy semiring.

Figure 5(a) reports the number of solutions for the first five queries at different
λ thresholds. Note that, as stated before, we do not consider in our framework
the 0-interestingness query, which would result in enumerating all possible
patterns. Therefore in the plots reported in Figure 5 and in the following
figures, the point 0 on the X-axis corresponds to the query with λ > 0, i.e.,
interestingness strictly larger than 0; while at all the other x points on the
X-axis we report the result of the query with λ ≥ x as in Definition 6.

The first obvious observation is that as λ increases the number of solutions
shrinks accordingly. This behavior is also reflected in queries evaluation times,
reported in Figure 5(b): the bigger is the size of the solution set, the longer
is the associated computation. Comparing queries Q1, Q2 and Q3, we can
gain more insight about the α parameter. In fact, the three queries differ only
by the α associated with one constraint (the frequency constraint). We can

2 http://fimi.cs.helsinki.fi/data/
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observe that, if the λ threshold is not too much selective, increasing the α
parameter (i.e., the size of the soft interval), the number of solutions grows.

Note however that, when λ becomes selective enough (i.e., λ > 0.5), increasing
the softness parameter we obtain an opposite behavior. This is due to the fact
that, if on one hand a more soft constraint is less severe with patterns not good
enough, on the other hand it is less generous with good patterns, which risk to
be discarded by an high λ threshold. Such observation is also confirmed by the
behaviour of Q4 and Q5: such queries correspond to Q1 on the first and on the
third constraint, while have a much more selective second constraint. Among
them Q5 has a softer second constraint, and this results in a larger number of
solutions than Q4 for small λ, and in a smaller number of solutions for large
λ. Quite surprisingly the plots of their execution time correspond, indicating
that, in this particular situation, the softness of the second constraint does
not affect the execution time. This was not true for the frequency constraint
in Q1, Q2 and Q3: a softer frequency constraint was corresponding to longer
execution time for small λ, and shorter execution time for large λ.

Finally, it is worth noting that for λ = 0.5 all the queries give as result the
same number of solution. In fact for λ = 0.5 we have that t − αt + 2αλt =
t + αt − 2αλt = t for any α.
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Fig. 6. Experimental results on the T40I10D100K dataset with λ ranging in ]0, 1]
in the fuzzy semiring.

In Figure 6 the results of the experiments on the dataset T40I10D100K are
reported. All the behaviors described above for the other dataset are here
amplified. This is due to the fact that the dataset is larger and more dense,
and thus it contains much more frequent patterns, i.e., possible solutions. For
the same reason, execution time is a bit larger than in Figure 5(b).
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5.2 Mining intIp (λ) (λ-interesting Itemsets on the Probabilistic Semiring)

Dealing with the probabilistic semiring, we can readapt most of the framework
developed for the fuzzy semiring. In fact the two semirings are based on the
same set [0, 1] and on the same + operator which is max. The only distin-
guishing element is the × operator which is min for the fuzzy semiring, while
it is the arithmetic times for the probabilistic semiring. This means that we
can straightforwardly readapt the problem definition (Definition 6), the way of
defining the behaviour of soft constraints (Definition 7), and the crisp trans-
lation (Definition 8). What instead can not be readapted directly is the result
in Proposition 2. In fact, in the fuzzy semiring, thanks to the idempotence
of the × operator, we had this nice property that the λ-interesting patterns
where exactly the solution set of the corresponding crisp query. Since the ×
operator in the probabilistic semiring is no longer idempotent, we can not rely
on the same nice property. However, we can still rely on Proposition 1, which
states that a pattern in order to be λ-interesting, must return a semiring value
larger than λ for each single constraint in the query: this assures us that if a
pattern does not satisfy the crisp translation of the given query, it will not be
λ-interesting neither in the probabilistic semiring. In other words we can al-
ways use the same methodology described for the fuzzy semiring, but instead
of having directly the exact solution set, we have a superset of it. Therefore
some post-processing will be needed to select the exact solution set.

Proposition 3 Given the vocabulary of items I, a combination of soft con-
straints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a minimum interest threshold λ. It holds
that:

intIp (λ) ⊆ intIf (λ)

Proof [sketch] Consider two real numbers x1, x2 in the interval [0, 1]. It holds
that x1 × x2 ≤ min(x1, x2). Therefore, for a given pattern i, if in the proba-
bilistic semiring ⊗C(i) ≥p λ, then also in the fuzzy semiring ⊗C(i) ≥f λ.

When dealing with the probabilistic semiring, we adopt the same methodol-
ogy used in the fuzzy semiring, i.e., translate the given query to a crisp one.
But afterwards, we need a post-processing step in which we select, among
the solutions to the crisp query, the λ-interesting patterns. It is natural to
ask ourselves how much selective is this post-processing. This could provide
a measure of the kind of improvement that one could get by studying and
developing ad-hoc techniques, to push probabilistic soft constraints into the
pattern extraction computation. In Figure 7, for the retail dataset and the
queries of Figure 4, we report: in (a), the number of λ-interesting patterns
in the probabilistic semiring, while in (b) the ratio of this number with the
number of solutions in the fuzzy semiring, i.e., |intIp (λ)| / |intIf (λ)|. The ex-
ecution time of the post-processing is not reported in the plots, because in
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Fig. 7. Experimental results on the retail dataset with λ ranging in ]0, 1] in the
probabilistic semiring: number of solutions (a), and ratio with the number of solu-
tions in the fuzzy semiring (b).

all the experiments conducted, it was always in the order of few milliseconds,
thus negligible w.r.t. the mining time. Observing the ratio we can note that
it is always equals to 1 for λ = 0 and λ = 1. In fact a pattern having at least
a constraint for which it returns 0, will receive a semiring value of 0 in both
the fuzzy semiring (min combination operator), and the probabilistic semir-
ing (× combination operator). Similarly, for λ = 1, to be a solution a pattern
must return a value of 1 for all the constraints in the combination, in both the
semirings.

Then we can observe that this ratio is quite high, always larger than 0.7 in the
retail dataset. This is no longer true for the queries on the T40I10D100K
dataset, reported in Figure 8 (a) and (b): the ratio reach a minimum value of
0.244 for query Q7 when λ = 0.2. What we can observe is that the ratio does
not depend neither on the number of solutions nor on λ (apart the extreme
cases 0 and 1). The ratio depends on the softness of the query: the softer the
query the lower the ratio, i.e., more patterns discarded by the post-processing.
This can be observed in both Figure 7(b) and 8(b): for instance, among the
first three queries Q1 is softer than Q2 which in turns is softer than Q3, and
this is reflected in the ratio which is lower for Q1; similarly Q5 is softer than
Q4 and its ratio is lower; in 8(b) Q8 is the least soft while Q7 is the most soft,
and accordingly behaves the ratio.

5.3 Mining intIw(λ) (λ-interesting Itemsets on the Weighted Semiring)

Since in the weighted semiring, the values correspond to costs, instead of
looking for patterns with an interest level larger than λ, we seek for patterns
with a cost smaller than λ.
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Fig. 8. Experimental results on the T40I10D100K dataset with λ ranging in ]0, 1]
in the probabilistic semiring: number of solutions (a), and ratio with the number of
solutions in the fuzzy semiring (b).

Definition 9 Let I = {x1, ..., xn} be a set of items, where an item is an object
with some predefined attributes (e.g., price, type, etc.). A soft constraint on
itemsets, based on the weighted semiring, is a function C : 2I → R

+. Given a
combination of such soft constraints ⊗C ≡ C1⊗ . . .⊗Cn, we define the interest
level of an itemset X ∈ 2I as ⊗C(X) =

∑

i=1,...,n Ci(X). Given a maximum
cost threshold λ ∈ R

+, the λ-interesting itemsets mining problem, requires to
compute intIw(λ) = {X ∈ 2I | ⊗ C(X) ≤ λ}.

Note that this definition is in conformity with the general paradigm defined
in Definition 5: in fact, it is worth recalling that ≥S corresponds to ≤ when
S is the weighted semiring.

For sake of simplicity, we restrict to weighted constraints with a linear behavior
as those ones described in Figure 2. To describe such simple behavior, we need
a new parameter β ∈ R

+ that represents the semiring value associated to the
t point (playing the role of the implicitly given 0.5 value for the fuzzy and
probabilistic semiring). In other words we provide two points to describe the
straight line passing through them: the point (t, β) and the point (t − αt, 0)
for θ =≤ or (t+αt, 0) for θ =≥. Note that α still plays the role of the softness
knob.

Definition 10 A soft constraint C on itemsets, based on the weighted semir-
ing, is defined by a sextuple 〈Agg,Att, θ, t, β, α〉, where: Agg,Att, θ and α are
defined as for the fuzzy/probabilistic case (Definition 7), t is a point in the car-
rier set of the weighted semiring, i.e., t ∈ R

+, and β represents the semiring
value associated to t.

Example 8 Consider again the query Q given in Example 1, and its weighted
instance graphically described by Figure 2. Such query can be expressed in our
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constraint language as:

〈supp,D,≥, 1500, 250,
1

6
〉, 〈avg, weight,≤, 5, 125, 1〉, 〈sum, price,≥, 20, 200, 1〉

For the weighted semiring we can still rely on Proposition 1, which states that
a pattern in order to be λ-interesting, must return a semiring value smaller
than λ (we are dealing this time with costs; i.e., ≥W is ≤) for each single
constraint in the query: this assures us that if a pattern does not satisfy the
crisp translation of the given query, it will not be λ-interesting neither in the
weighted semiring. In other words we can always use the same methodology
described for the probabilistic semiring: translate the query to a crisp one,
evaluate it, post-process the result to select the exact solution set.

Definition 11 Given a weighted soft constraint C ≡ 〈Agg,Att, θ, t, β, α〉, and
a maximum cost threshold λ, we define the crisp translation of C w.r.t. λ as:

Cλ
crisp ≡











Agg(Att) ≤ t − αt + 1
β
λαt, if θ =≤

Agg(Att) ≥ t + αt − 1
β
λαt, if θ =≥

Example 9 Given the weighted soft constraint 〈sum, price,≥, 20, 200, 1〉, its
crisp translation is sum(X.price) ≥ 24 for λ = 180, it is sum(X.price) ≥ 10
for λ = 250.

Proposition 4 Given the vocabulary of items I, a combination of weighted
soft constraints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a maximum interest threshold λ.
Let C′ be the conjunction of crisp constraints obtained by conjoining the crisp
translation of each constraint in ⊗C w.r.t. λ: C′ ≡ C1

λ
crisp∧ . . .∧Cn

λ
crisp. It holds

that:
intIw(λ) ⊆ {X ∈ 2I | ⊗ C(X) ≤ λ} = Th(C′)

where Th(C′) is the solution set for the crisp problem, according to the notation
introduced in Definition 2.

Proof [sketch] The proof follows the same idea used for the proves of Proposi-
tion 2 and 3.

In the following we report the results of some experiments that we have con-
ducted on the same datasets used before for the fuzzy and the probabilistic
semirings. We have compared 8 different instances (described in Figure 9) of
the query Q :

〈supp,D,≥, t, β, α〉〈avg, weight,≤, t, β, α〉, 〈sum, price,≥, t, β, α〉

The results of the experiments are reported in Figure 10 and Figure 11. A first
observation is that, on the contrary of what happening in the probabilistic and
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〈supp,D,≥, t, β, α〉 〈avg, weight,≤, t, β, α〉 〈sum, price,≥, t, β, α〉

D t β α t β α t β α

Q9 retail 20 600 0.8 5000 100 0.2 20000 250 0.5

Q10 retail 20 600 0.2 5000 100 0.2 20000 250 0.5

Q11 retail 20 600 0.8 5000 100 0.8 20000 250 0.5

Q12 retail 20 600 0.8 5000 500 0.2 20000 250 0.5

Q13 retail 20 600 0.8 5000 1000 0.2 20000 500 0.5

Q14 T40I10D100K 800 500 0.8 5000 200 0.5 80000 400 0.8

Q15 T40I10D100K 600 600 0.8 15000 500 0.5 80000 400 0.8

Q16 T40I10D100K 1000 500 0.5 15000 500 0.5 100000 600 0.9

Fig. 9. Description of queries experimented.
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Fig. 10. Experimental results on the retail dataset with λ ranging in [0, 1000]
in the weighted semiring: number of solutions (a), and ratio with the number of
solutions of the crisp translation (b).

fuzzy semiring, here the larger is λ the larger is the number of solutions. This
is trivially because the order of the weighted semiring says that smaller is bet-
ter. In Figure 10(a) we can observe that queries Q12 and Q13 always return a
small number of solutions: this is due to the high values of β in the constraints,
which means high costs, making difficult for patterns to produce a total cost
smaller than λ. In Figure 10(b) and Figure 11(b) we report the ratio of the
number of solution with the cardinality of the theory corresponding to the
crisp translation of the queries, i.e., |intIw(λ)| / |Th(C′)|. This gives a measure
of how good is the approximation of the crisp translation, or in other terms,
the amount of post-processing needed (which, however, has negligible com-
putational cost). The approximation we obtain using our crisp solver is still
quite good but, as we expected, not as good as in the probabilistic semiring.
Also in this case, the softer the query the lower the ratio, i.e., the crisp ap-
proximation is better for harder constraints (closer to crisp). For instance in
Figure 10(b) we can observe that Q10, which is the query with smaller values
for the softness parameter α, always present a very high ratio.
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Fig. 11. Experimental results on the T40I10D100K dataset with λ ranging in
[0, 1000] in the weighted semiring: number of solutions (a), and ratio with the num-
ber of solutions of the crisp translation (b).

5.4 Mining top-k Itemsets

For sake of completeness, in this section we sketch a simple methodology to
deal with top-k queries, according to Bistarelli et al. (2002). In the following
we do not distinguish between the possible semiring instances, we describe the
general methodology and leave to the reader to instantiate it to the various
semirings.

The main difficult to solve top-k queries is that we can know the number of
solutions only after the evaluation of a query. Therefore, given k, the simple
idea is to repeatedly run λ-interesting queries with different λ thresholds: we
start from extremely selective λ (fast mining) decreasing in selectivity, until
we do not extract a solution set which is large enough (more than k).

Considering for instance the fuzzy semiring, where the best semiring value is 1:
we could start by performing a 0.95-interesting query, and if the query results
in a solution set of cardinality larger than k, then we sort the solution according
to their semiring value and return the best k, otherwise we slowly decrease
the threshold, for instance λ = 0.9, and so on. Notice that is important to
start from a very high threshold in order to perform fast mining extractions
with small solution sets, and only if needed decrease the threshold to get more
solutions at the cost of longer computations.
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6 Related Work

Since in this paper we introduce a novel paradigm, there are not many related
works in a strict sense. In a larger sense, all the work done on interestingness
of extracted patterns can be considered related. In (Tan et al., 2005) all these
works are divided in four classes: objective interestingness measures (Brin et
al., 1997; Bayardo and Agrawal, 1999; Tan et al., 2002; Hilderman and Hamil-
ton, 2002), visualization-based approaches (Hofmann et al., 2000), subjective
domain-dependent measures of interest (Silberschatz and Tuzhilin, 1995), and
constraint-based approaches. Our proposal clearly collocates within the last
class. As already stated in the introduction, a lot of work has been done on
constraint-based pattern discovery, but almost all has been done on the de-
velopment of efficient constraint-pushing algorithms. Entering in the details
of these computational techniques, for which we have provided references in
the introduction, is beyond the scope of this paper. The reader should refer
to (Boulicaut and Jeudy, 2005; Bonchi and Lucchese, 2006) for un updated
state-of-the-art. What we can say here is that most of these techniques have
been adopted to build the mining engine (Bonchi et al., 2006), we used in this
paper as crisp constraint-based miner.

To the best of our knowledge only few works (Hipp and Güntzer, 2002; Ba-
yardo, 2004) have studied the constraint-based paradigm by a methodological
point of view, mainly criticizing some of its weak points. To overcome these
weak points in this paper we have introduced the use of soft-constraints. A
similar approach, based on relaxation of constraints, has been adopted in
(Antunes and Oliveira, 2004) but for sequential patterns. In the context of
sequential patterns, constraints are usually defined by means of regular lan-
guages: a pattern is a solution to the query only if it is frequent and it is
accepted by the regular language. In this case, constraint-based techniques
adopt a deterministic finite automaton to define the regular language.

The use of regular languages transforms the pattern mining process into the
verification of which of the sequences of the language are frequent, completely
blocking the discovery of novel patterns. In (Antunes and Oliveira, 2004) the
authors propose a new mining methodology based on the use of constraint re-
laxations, which assumes that the user is responsible for choosing the strength
of the restriction used to constrain the mining process. A hierarchy of con-
straint relaxations is developed.
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7 Conclusions and Future Work

In the classical constraint-based mining framework, a constraint is a function
which returns a boolean value C : 2I → {true, false}. This dichotomic behavior
is the source of many practical limitations of the framework. In this paper we
have introduced the novel (and more general) framework of soft constraint
based pattern mining, and showed how it overcomes all major drawbacks of
the classical framework. In particular we have adopted the formalization of
soft constraint based on the mathematical concept of semiring. We have then
instantiated such a general framework over the fuzzy, the probabilistic and
the weighted semiring instances, and for two different problems: mining λ-
interesting patterns, and mining the top-k patterns. Finally, we have built
a concrete system by means of wrappers around an existent crisp constraint
solver, and have experimented various prototypical queries.

We are actually working at the tight integration of the proposed framework
over the ConQueSt (Bonchi et al., 2006) system: this requires to define
methodologies of interaction between the user and the system, e.g., how to
define by means of a graphical paradigm the behavior of the soft constraints.
We plan also to apply the framework on real-world biomedical problems, where
the physicians want to drive the discovery process using their background do-
main knowledge, but at the same time, hope to discover some novel, unknown,
surprising patterns.
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