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Abstract. The paradigm of pattern discovery based on constraints was intro-
duced with the aim of providing to the user a tool to drive the discovery process
towards potentially interesting patterns, with the positive side effect of achieving
a more efficient computation. So far the research on this paradigm has mainly
focussed on the latter aspect: the development of efficient algorithms for the eval-
uation of constraint-based mining queries. Due to the lack of research on method-
ological issues, the constraint-based pattern mining framework still suffers from
many problems which limit its practical relevance. As a solution, in this paper
we introduce the new paradigm of pattern discovery based on Soft Constraints.
Albeit simple, the proposed paradigm overcomes all the major methodological
drawbacks of the classical constraint-based paradigm, representing an important
step further towards practical pattern discovery.

1 Background and Motivations

During the last decade a lot of researchers have focussed their (mainly algorithmic)
investigations on the computational problem of Frequent Pattern Discovery, i.e. mining
patterns which satisfy a user-defined constraint of minimum frequency [1].

The simplest form of a frequent pattern is the frequent itemset.

Definition 1 (Frequent Itemset Mining). Let I = {x1, ..., xn} be a set of distinct
items, where an item is an object with some predefined attributes (e.g., price, type, etc.).
An itemset X is a non-empty subset of I. A transaction database D is a bag of itemsets
t ∈ 2I , usually called transactions. The support of an itemset X in database D, denoted
supp

D
(X), is the number of transactions which are superset of X . Given a user-defined

minimum support σ, an itemset X is called frequent in D if supp
D

(X) ≥ σ. This defines
the minimum frequency constraint: Cfreq[D,σ](X) ⇔ supp

D
(X) ≥ σ.

Recently the research community has turned its attention to more complex kinds
of frequent patterns extracted from more structured data: sequences, trees, and graphs.
All these different kinds of pattern have different peculiarities and application fields, but
they all share the same computational aspects: a usually very large input, an exponential
search space, and a too large solution set. This situation – too many data yielding too
many patterns – is harmful for two reasons. First, performance degrades: mining gen-
erally becomes inefficient or, often, simply unfeasible. Second, the identification of the



fragments of interesting knowledge, blurred within a huge quantity of mostly useless
patterns, is difficult. The paradigm of constraint-based pattern mining was introduced
as a solution to both these problems. In such paradigm, it is the user which specifies
to the system what is interesting for the current application: constraints are a tool to
drive the mining process towards potentially interesting patterns, moreover they can be
pushed deep inside the mining algorithm in order to fight the exponential search space
curse, and to achieve better performance [15, 20, 25].

When instantiated to the pattern class of itemsets, the constraint-based pattern min-
ing problem is defined as follows.

Definition 2 (Constrained Frequent Itemset Mining). A constraint on itemsets is a
function C : 2I → {true, false}. We say that an itemset I satisfies a constraint if
and only if C(I) = true. We define the theory of a constraint as the set of itemsets
which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}. Thus with this notation, the
frequent itemsets mining problem requires to compute the set of all frequent itemsets
Th(Cfreq[D,σ]). In general, given a conjunction of constraints C the constrained frequent
itemsets mining problem requires to compute Th(Cfreq) ∩ Th(C).

Example 1. The following is an example mining query:

Q : supp
D

(X) ≥ 1500 ∧ avg(X.weight) ≤ 5 ∧ sum(X.price) ≥ 20

It requires to mine, from database D, all patterns which are frequent (have a support
larger than 1500), have average weight less than 5 and a sum of prices greater than 20.

So far constraint-based frequent pattern mining has been seen as a query optimiza-
tion problem, i.e., developing efficient, sound and complete evaluation strategies for
constraint-based mining queries. Or in other terms, designing efficient algorithms to
mine all and only the patterns in Th(Cfreq) ∩ Th(C). To this aim, properties of con-
straints have been studied comprehensively, and on the basis of such properties (e.g.,
anti-monotonicity, succinctness [20, 18], monotonicity [11, 17, 6], convertibility [22],
loose anti-monotonicity [9]), efficient computational strategies have been defined. De-
spite such effort, the constraint-based pattern mining framework still suffers from many
problems which limit its practical relevance.

First of all, consider the example mining query Q given above: where do the three
thresholds (i.e., 1500, 5 and 20) come from? In some cases they can be precisely im-
posed by the application, but this is rarely the case. In most of the cases, they come from
an exploratory mining process, where they are iteratively adjusted until a solution set of
reasonable size is produced. This practical way of proceeding is in contrast with the ba-
sic philosophy of the constraint-based paradigm: constraints should represent what is a
priori interesting, given the application background knowledge, rather than be adjusted
accordingly to a preconceived output size. Another major drawback of the constraint-
based pattern mining paradigm is its rigidity. Consider, for instance, the following three
patterns (we use the notation 〈v1, v2, v3〉 to denote the three values corresponding to
the three constraints in the conjunction in the example query Q): p1 : 〈1700, 0.8, 19〉,
p2 : 〈1550, 4.8, 54〉, and p3 : 〈1550, 2.2, 26〉. The first pattern, p1, largely satisfies two
out of the three given constraints, while slightly violates the third one. According to



the classical constraint-based pattern mining paradigm p1 would be discarded as non
interesting. Is such a pattern really less interesting than p2 and p3 which satisfy all the
three constraints, but which are much less frequent than p1? Moreover, is it reasonable,
in real-world applications, that all constraints are equally important?

All these problems flow out from the same source: the fact that in the classical
constraint-based mining framework, a constraint is a function which returns a boolean
value C : 2I → {true, false}. Indeed, interestingness is not a dichotomy.

This consideration suggests us a simple solution to overcome all the main draw-
backs of constraint-based paradigm.

Paper Contributions and Organization

In this paper, as a mean to handle interestingness [26, 16, 24], we introduce the soft con-
straint based pattern mining paradigm, where constraints are no longer rigid boolean
functions, but are “soft” functions, i.e., functions with value in a set A, which represents
the set of interest levels or costs assigned to each pattern.

– The proposed paradigm is not rigid: a potentially interesting pattern is not discarded
for just a slight violation of a constraint.

– Our paradigm creates an order of patterns w.r.t. interestingness (level of constraints
satisfaction): this allows to say that a pattern is more interesting than another, in-
stead of strictly dividing patterns in interesting and not interesting.

– From the previous point it follows that our paradigm allows to express top-k queries
based on constraints: the data analyst can ask for the top-10 patterns w.r.t. a given
description (a conjunction of soft constraints).

– Alternatively, we can ask to the system to return all and only the patterns which
exhibit an interest level larger than a given threshold λ.

– The proposed paradigm allows to assign different weights to different constraints,
while in the classical constraint-based pattern discovery paradigm all constraints
were equally important.

– Last but not least, our idea is very simple and thus very general: it can be instanti-
ated to different classes of patterns such as itemsets, sequences, trees or graphs.

For the reasons listed above, we believe that the proposed paradigm represents an
important step further towards practical pattern discovery.

A nice feature of our proposal is that, by adopting the soft constraint based paradigm,
we do not reject all research results obtained in the classical constraint-based paradigm;
on the contrary, we fully exploit such algorithmic results. In other terms, our proposal
is merely methodological, and it exploits previous research results that were mainly
computational.

The paper is organized as follows. In the next Section we briefly review the theory
of soft constraints and we define the soft constraint based pattern mining paradigm. In
Section 3 we discuss possible alternative instances of the paradigm. In Section 4 we
formally define the Soft Constraint Based Pattern Discovery paradigm. We then focus
on one of the many possible instances of the proposed paradigm, and we implement it
in a concrete Pattern Discovery System. Such a system is built as a wrapper around a
classical constraint pattern mining system.



2 Introducing Soft Constraints

Constraint Solving is an emerging software technology for declarative description and
effective solving of large problems. Many real life systems, ranging from network man-
agement [14] to complex scheduling [2], are analyzed and solved using constraint re-
lated technologies. The constraint programming process consists of the generation of
requirements (constraints) and solution of these requirements, by specialized constraint
solvers. When the requirements of a problem are expressed as a collection of boolean
predicates over variables, we obtain what is called the crisp (or classical) Constraint
Satisfaction Problem (CSP). In this case the problem is solved by finding any assign-
ment of the variables that satisfies all the constraints.

Sometimes, when a deeper analysis of a problem is required, soft constraints are
used instead. Several formalizations of the concept of soft constraints are currently
available. In the following, we refer to the formalization based on c-semirings [5]: a
semiring-based constraint assigns to each instantiation of its variables an associated
value from a partially ordered set. When dealing with crisp constraints, the values are
the boolean true and false representing the admissible and/or non-admissible values;
when dealing with soft constraints the values are interpreted as preferences/costs. The
framework must also handle the combination of constraints. To do this one must take
into account such additional values, and thus the formalism must provide suitable op-
erations for combination (×) and comparison (+) of tuples of values and constraints.
This is why this formalization is based on the mathematical concept of semiring.

Definition 3 (c-semirings [5, 3]). A semiring is a tuple 〈A,+,×,0,1〉 such that: A

is a set and 0,1 ∈ A; + is commutative, associative and 0 is its unit element; × is
associative, distributes over +, 1 is its unit element and 0 is its absorbing element. A
c-semiring (“c” stands for “constraint-based”) is a semiring 〈A,+,×,0,1〉 such that
+ is idempotent with 1 as its absorbing element and × is commutative.

Definition 4 (soft constraints [5, 3]). Given a c-semiring S = 〈A,+,×,0,1〉 and an
ordered set of variables V over a finite domain D, a constraint is a function which,
given an assignment η : V → D of the variables, returns a value of the c-semiring. By
using this notation we define C = η → A as the set of all possible constraints that can
be built starting from S, D and V .

In the following we will always use the word semiring as standing for c-semiring, and
we will explain this very general concept by the point of view of pattern discovery.

Example 2. Consider again the mining query Q. In this context we have that the ordered
set of variables V is 〈supp

D
(X), avg(X.weight), sum(X.price)〉, while the domain

D is: D(supp
D

(X)) = N, D(avg(X.weight)) = R
+, and D(sum(X.price)) = N. If

we consider the classical crisp framework (i.e., hard constraints) we have the semiring
SBool = 〈{true, false},∨,∧, false, true〉. A constraint C is a function V → D → A;
for instance, supp

D
(X) → 1700 → true.

The + operator is what we use to compare tuples of values (or patterns, in our con-
text). Let us consider the relation ≤S (where S stands for the specified semiring) over



A such that a ≤S b iff a + b = b. It is possible to prove that: ≤S is a partial order; +
and × are monotone on ≤S ; 0 is its minimum and 1 its maximum, and 〈A,≤S〉 is a
complete lattice with least upper bound operator +. In the context of pattern discovery
a ≤S b means that the pattern b is more interesting than a, where interestingness is de-
fined by a combination of soft constraints. When using (soft) constraints it is necessary
to specify, via suitable combination operators, how the level of interest of a combina-
tion of constraints is obtained from the interest level of each constraint. The combined
weight (or interest) of a combination of constraints is computed by using the operator
⊗ : C × C → C defined as (C1 ⊗ C2)η = C1η ×S C2η.

Example 3. If we adopt the classical crisp framework, in the mining query Q of Exam-
ple 1 we have to combine the three constraints using the ∧ operator (which is the × in
the boolean semiring SBool). Consider for instance the pattern p1 : 〈1700, 0.8, 19〉 for
the ordered set of variables V = 〈supp

D
(X), avg(X.weight), sum(X.price)〉. The

first and the second constraint are satisfied leading to the semiring level true, while
the third one is not satisfied and has associated level false . Combining the three values
with ∧ we obtain true ∧ true ∧ false = false and we can conclude that the pattern
〈1700, 0.8, 19〉 is not interesting w.r.t. our purposes. Similarly, we can instead compute
level true for pattern p3 : 〈1550, 2.2, 26〉 corresponding to an interest w.r.t. our goals.
Notice that using crisp constraints, the order between values only says that we are inter-
ested to patterns with semiring level true and not interested to patterns with semiring
level false (that is semiring level false ≤SBool

true).

3 Instances of the Semiring

Dividing patterns in interesting and non-interesting is sometimes not meaningful nor
useful. Most of the times we can say that each pattern is interesting with a specific level
of preference. Soft constraints can deal with preferences by moving from the two values
semiring SBool to other semirings able to give a finer distinction among patters (see [3]
for a comprehensive guide to the semiring framework). For our scope the fuzzy and the
weighted semiring are the most suitable.

Example 4 (fuzzy semiring). When using fuzzy semiring [12, 23], to each pair constraint-
pattern is assigned an interest level between 0 and 1, where 1 represents the best value
(maximum interest) and 0 the worst one (minimum interest). Therefore the + in this
semiring is given by the max operator, and the order ≤S is given by the usual ≤
on real numbers. The value associated to a pattern is obtained by combining the con-
straints using the minimum operator among the semiring values. Therefore the × in
this semiring is given by the min operator. Recapitulating, the fuzzy semiring is given
by SF = 〈[0, 1],max,min, 0, 1〉. The reason for such a max-min framework relies on
the attempt to maximize the value of the least preferred tuple. Fuzzy soft constraints
are able to model partial constraint satisfaction [13], so to get a solution even when the
problem is overconstrained, and also prioritized constraints, that is, constraints with dif-
ferent levels of importance [10]. Figure 1 reports graphical representations of possible
fuzzy instances of the constraints in Q. Consider, for instance, the graphical representa-
tion of the frequency constraint in Figure 1(C1). The dotted line describes the behavior
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Fig. 1. Graphical representation of possible fuzzy instances of the constraints in Q.

of the crisp version (where 1 = true and 0 = false) of the frequency constraint,
while the solid line describes a possible fuzzy instance of the same constraint. In this
instance domain values smaller than 1200 yield 0 (uninteresting patterns); from 1200
to 1800 the interest level grows linearly reaching the maximum value of 1. Similarly
the other two constraints in Figure 1(C2) and (C3). In this situation for the pattern
p1 = 〈1700, 0.8, 19〉 we obtain that: C1(p1) = 1, C2(p1) = 1 and C3(p1) = 0.45.
Since in the fuzzy semiring the combination operator × is min, we got that the interest
level of p1 is 0.45. Similarly for p2 and p3:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = min(1, 1, 0.45) = 0.45
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = min(1, 0.6, 1) = 0.6
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = min(1, 1, 0.8) = 0.8

Therefore, with this particular instance we got that p1 ≤SF
p2 ≤SF

p3, i.e., p3 is
the most interesting pattern among the three.

Example 5 (weighted semiring). While fuzzy semiring associate a level of preference
with each tuple in each constraint, in the weighted semiring tuples come with an associ-
ated cost. This allows one to model optimization problems where the goal is to minimize
the total cost (time, space, number of resources, . . . ) of the proposed solution. There-
fore, in the weighted semiring the cost function is defined by summing up the costs of all
constraints. According to the informal description given above, the weighted semiring
is SW = 〈R+,min, sum,+∞, 0〉. Consider, for instance, the graphical representation
of the constraints in the query Q in Figure 2. In this situation we got that:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = sum(50, 20, 205) = 275
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = sum(200, 120, 30) = 350
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = sum(200, 55, 190) = 445

Therefore, with this particular instance we got that p3 ≤SW
p2 ≤SW

p1 (remember
that the order ≤SW

correspond to the ≥ on real numbers). In other terms, p1 is the most
interesting pattern w.r.t. this constraints instance.

The weighted and the fuzzy paradigm, can be seen as two different approaches to
give a meaning to the notion of optimization. The two models correspond in fact to two
definitions of social welfare in utility theory [19]: “egalitarianism”, which maximizes
the minimal individual utility, and “utilitarianism”, which maximizes the sum of the
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Fig. 2. Graphical representation of possible weighted instances of the constraints in Q.

individual utilities. The fuzzy paradigm has an egalitarianistic approach, aimed at max-
imizing the overall level of interest while balancing the levels of all constraints; while
the weighted paradigm has an utilitarianistic approach, aimed at getting the minimum
cost globally, even though some constraints may be neglected presenting a big cost. We
believe that both approaches present advantages and drawbacks, and may preferred to
the other one depending on the application domain. Beyond the fuzzy and the weighted,
many other possible instances of the semiring exist, and could be useful in particular
applications. Moreover, it is worth noting that the cartesian product of semirings is a
semiring [5] and it is possible to use the framework also to deal with multicriteria pat-
tern selection.

Finally, note that the soft constraint framework is very general, and could be instan-
tiated not only to unary constraints (as we do in this paper) but also to binary and k-ary
constraints (dealing with two or more variables). This could be useful to extend the soft
constraint based paradigm to association rules with “2-var” constraints [18].

4 Soft Constraint Based Pattern Mining

In this Section we instantiate soft constraint theory to the pattern discovery framework.

Definition 5 (Soft Constraint Based Pattern Mining). Let P denote the domain of
possible patterns. A soft constraint on patterns is a function C : P → A where A is the
carrier set of a semiring S = 〈A,+,×,0,1〉. Given a combination of soft constraints
⊗C, we define two different problems:

λ-interesting: given a minimum interest threshold λ ∈ A, it is required to mine the set
of all λ-interesting patterns, i.e., {p ∈ P| ⊗ C(p) ≥ λ}.

top-k: given a threshold k ∈ N, it is required to mine the top-k patterns p ∈ P w.r.t.
the order ≤S .

Note that the Soft Constraint Based Pattern Mining paradigm just defined, has many
degrees of freedom. In particular, it can be instantiated: (i) on the domain of pat-
terns P in analysis (e.g., itemsets, sequences, trees or graphs), (ii) on the semiring
S = 〈A,+,×,0,1〉 (e.g., fuzzy, weighted or probabilistic), and (iii) on one of the two
possible mining problems, i.e., λ-interesting or top-k mining.

In the rest of this paper we will focus on concretizing a simple instance of this very
general paradigm: λ-interestingfuzzy on the pattern class of itemsets.



4.1 Mining λ-interesting Itemsets on the Fuzzy Semiring

Definition 6. Let I = {x1, ..., xn} be a set of items, where an item is an object with
some predefined attributes (e.g., price, type, etc.). A soft constraint on itemsets, based
on the fuzzy semiring, is a function C : 2I → [0, 1]. Given a combination of such soft
constraints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, we define the interest level of an itemset X ∈ 2I

as ⊗C(X) = min(C1(X), . . . , Cn(X)). Given a minimum interest threshold λ ∈ ]0, 1],
the λ-interesting itemsets mining problem, requires to compute {X ∈ 2I |⊗C(X) ≥ λ}.

In the following we describe how to build a concrete pattern discovery system for λ-
interestingfuzzy itemsets mining, as a wrapper around a classical constraint pattern min-
ing system. The basic components which we use to build our system are the following:

A crisp constraints solver - i.e., a system for mining constrained frequent itemsets,
where constraints are classical binary functions, and not soft constraints. Or in other
terms, a system for solving the problem in Definition 2. To this purpose we adopt
the system which we have developed at Pisa KDD Laboratory within the P 3D

project1. Such a system is a general Apriori-like algorithm which, by means of data
reduction and search space pruning, is able to push a wide variety of constraints
(practically all possible kinds of constraints which have been studied and charac-
terized so far [9]) into the frequent itemsets computation. Based on the algorithmic
results developed in the last years by our lab (e.g., [6–9, 21]), our system is very
efficient and robust, and to our knowledge, is the unique existing implementation
of this kind.

A language of constraints - to express, by means of queries containing conjunctions
of constraints, what is interesting for the given application. The wide repertoire of
constraints that we admit, comprehends the frequency constraint (supp

D
(X) ≥ σ),

and all constraints defined over the following aggregates2: min,max, count, sum,

range, avg, var,median, std,md.
A methodology to define the interest level - that must be assigned to each pair itemset-

constraint. In other terms, we need to provide the analyst with a simple methodol-
ogy to define how to assign for each constraint and each itemset a value in the
interval [0, 1], as done, for instance, by the graphical representations of constraints
in Figure 1. This methodology should provide the analyst with a knob to adjust the
softness level of each constraint in the conjunction, and a knob to set the importance
of each constraint in the conjunction.

Let us focus on the last point. Essentially we must describe how the user can define the
fuzzy behavior of a soft constraint. We restrict our system to constraints which behave as
those ones in Figure 1: they return a value which grows linearly from 0 to 1 in a certain
interval, while they are null before the interval and equal to 1 after the interval. To
describe such a simple behavior we just need two parameters: a value associated to the
center of the interval (corresponding to the 0.5 fuzzy semiring value), and a parameter
to adjust the width of the interval (and consequently the gradient of the function).

1 http://www-kdd.isti.cnr.it/p3d/index.html
2 range is (max − min), var is for variance, std is for standard deviation, md is for mean

deviation.



Definition 7. A soft constraint C on itemsets, based on the fuzzy semiring, is defined by
a quintuple 〈Agg,Att, θ, t, α〉, where:

– Agg ∈ {supp,min,max, count, sum, range, avg, var,median, std,md};
– Att is the name of the attribute on which the aggregate agg is computed (or the

transaction database, in the case of the frequency constraint);
– θ ∈ {≤,≥};
– t ∈ R corresponds to the center of the interval and it is associated to the semiring

value 0.5;
– α ∈ R

+ is the softness parameter, which defines the inclination of the preference
function (and thus the width of the interval).

In particular, if θ =≤ (as in Figure 1(C2)) then C(X) is 1 for X ≤ (t − αt), is 0 for
X ≥ (t+αt), and is linearly decreasing from 1 to 0 within the interval [t−αt, t+αt].
The other way around if θ =≥ (as, for instance, in Figure 1(C3)). Note that if the
softness parameter α is 0, then we obtain the crisp (or hard) version of the constraint.

Example 6. Consider again the query Q given in Example 1, and its fuzzy instance
graphically described by Figure 1. Such query can be expressed in our constraint lan-
guage as: 〈supp,D,≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉.

Since the combination operator × in min, increasing the importance of a constraint
w.r.t. the others in the combination means to force the constraint to return lower values
for not really satisfactory patterns. By decreasing the softness parameter α, we increase
the gradient of the function making the shape of the soft constraint closer to a crisp
constraint. This translates in a better value for patterns X which were already behaving
well w.r.t. such constraint(C(X) > 0.5), and in a lower value for patterns which were
behaving not so well (C(X) < 0.5). Decreasing the gradient (increasing α) instead
means to lower the importance of the constraint itself: satisfying or not satisfying the
constraint does not result in a big fuzzy value difference. Additionally, by operating
on t, we can increase the “severity” of the constraint w.r.t. those patterns which were
behaving not so well. Therefore, the knob to increase or decrease the importance of a
constraint is not explicitly given, because its role, in the fuzzy semiring, can be played
by a combined action on the two knobs α and t.

Example 7. Consider again the query Q given in Example 1, and its fuzzy instance:
〈supp,D,≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉. As we stated
in Example 4, it holds that p2 ≤SF

p3. In particular, p2 is better than p3 w.r.t. constraint
C3, while p3 is better than p2 w.r.t. constraint C2. Suppose now that we increase the
importance of C3, e.g., 〈sum, price,≥, 28, 0.25〉. We obtain that p3 ≤SF

p2:

– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = min(1, 0.6, 1) = 0.6
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = min(1, 1, 0.35) = 0.35

In [5, 4] it has been proved that, when dealing with the fuzzy framework, computing
all the solution better than a threshold λ can be performed by solving a crisp problem
where all the constraint instances with semiring level lower than λ have been assigned
level false, and all the instances with semiring level greater or equal to λ have been
assigned level true. Using this theoretical result, and some simple arithmetic we can
transform each soft constraint in a corresponding crisp constraint.



Definition 8. Given a fuzzy soft constraint C ≡ 〈Agg,Att, θ, t, α〉, and a minimum
interest threshold λ, we define the crisp translation of C w.r.t. λ as:

Cλ
crisp ≡

{

Agg(Att) ≥ t − αt + 2λαt, if θ =≥
Agg(Att) ≤ t + αt − 2λαt, if θ =≤

Example 8. The crisp translation of the soft constraint 〈sum, price,≥, 20, 0.5〉 is
sum(X.price) ≥ 26 for λ = 0.8, while it is sum(X.price) ≥ 18 for λ = 0.4.

Proposition 1. Given the vocabulary of items I, a combination of soft constraints
⊗C ≡ C1⊗ . . .⊗ Cn, and a minimum interest threshold λ. Let C ′ be the conjunction of
crisp constraints obtained by conjoining the crisp translation of each constraint in ⊗C
w.r.t. λ: C′ ≡ C1λ

crisp ∧ . . .∧Cnλ
crisp. It holds that: {X ∈ 2I |⊗C(X) ≥ λ} = Th(C′).

Proof (sketch). The soundness of the mapping come from the result in [5]. We here
have to only give a justification of the formula in Definition 8. This is done by means
of Figure 3(b), that shows a graphical representation of the simple arithmetic problem
and its solutions.

Therefore, if we adopt the fuzzy semiring, we can fully exploit a classical constraint-
based pattern discovery system (and all algorithmic results behind it), by means of
a simple translation from soft to crisp constraints. This is exactly what we have done,
obtaining a pattern discovery system based on soft constraints built as a wrapper around
a classical constraint-based mining system.

4.2 Experimental Analysis

We have conducted some experiments in order to asses the concrete effects obtained by
manipulating the α, t and λ parameters. To this purpose we have compared 5 different
instances (described in Figure 3(a)) of the query Q :

〈supp,D,≥, t, α〉〈avg, weight,≤, t, α〉, 〈sum, price,≥, t, α〉

where the transactional dataset D, is the well known RETAIL dataset, donated by Tom
Brijs and contains the (anonymized) retail market basket data from an anonymous Bel-
gian retail store3; and the two attributes weight and price have been randomly gener-
ated with a gaussian distribution within the range [0, 150000].

Figure 3(c) reports the number of solutions for the given five queries at different λ

thresholds. Obviously as λ increases the number of solutions shrinks accordingly. This
behavior is also reflected in queries evaluation times, reported in Figure 3(d): the bigger
is the size of the solution set, the longer is the associated computation.

Comparing queries Q1, Q2 and Q3, we can gain more insight about the α param-
eter. In fact, the three queries differ only by the α associated with one constraint (the
frequency constraint). We can observe that, if the λ threshold is not too much selective,
increasing the α parameter (i.e., the size of the soft interval), the number of solutions

3 http://fimi.cs.helsinki.fi/data/



(a)

〈supp,D,≥, t, α〉 〈avg, weight,≤, t, α〉 〈sum, price,≥, t, α〉

t α t α t α

Q1 20 0.8 10000 0.5 20000 0.5
Q2 20 0.5 10000 0.5 20000 0.5
Q3 20 0.2 10000 0.5 20000 0.5
Q4 20 0.8 5000 0.2 20000 0.5
Q5 20 0.8 5000 0.8 20000 0.5
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Fig. 3. (a) description of queries experimented, (b) graphical proof to Proposition 1, (c) and (d)
experimental results with λ ranging in ]0, 1].

grows. Notice however that, when λ becomes selective enough (i.e., λ > 0.5), increas-
ing the softness parameter we obtain an opposite behavior. This is due to the fact that,
if on one hand a more soft constraint is less severe with patterns not good enough, on
the other hand it is less generous with good patterns, which risk to be discarded by an
high λ threshold.
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