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Abstract. Substitutability and interchangeability in constraint satisfac-
tion problems (CSPs) have been used as a basis for search heuristics, so-
lution adaptation and abstraction techniques. In this paper, we consider
how the same concepts can be extended to soft constraint satisfaction
problems (SCSPs).
We introduce two notions: threshold α and degradation δ for substi-
tutability and interchangeability, (αsubstitutability/interchangeability

and δsubstitutability/interchangeability respectively). We show that
they satisfy analogous theorems to the ones already known for hard
constraints. In αinterchangeability, values are interchangeable in any
solution that is better than a threshold α, thus allowing to disregard
differences among solutions that are not sufficiently good anyway. In
δinterchangeability, values are interchangeable if their exchange could
not degrade the solution by more than a factor of δ.
We give efficient algorithms to compute (δ/α)interchangeable sets of val-
ues for a large class of SCSPs.

1 Introduction

Substitutability and interchangeability in CSPs have been introduced by
Freuder ([12]) in 1991 with the intention of improving search efficiency for solving
CSP. Interchangeability has since found other applications in abstraction frame-
works ([14, 20, 12, 8]) and solution adaptation ([19, 15]). One of the difficulties
with interchangeability has been that it does not occur very frequently.
In many practical applications, constraints can be violated at a cost, and

solving a CSP thus means finding a value assignment of minimum cost. Various
frameworks for solving such soft constraints have been proposed [13, 10, 16, 11,
18, 5, 6, 2]. The soft constraints framework of c-semirings [5, 2] has been shown
to express most of the known variants through different instantiations of its
operators, and this is the framework we are considering in this paper.
The most straightforward generalization of interchangeability to soft CSP

would require that exchanging one value for another does not change the qual-
ity of the solution at all. This generalization is likely to suffer from the same
weaknesses as interchangeability in hard CSP, namely that it is very rare.



Fortunately, soft constraints also allow weaker forms of interchangeabil-
ity where exchanging values may result in a degradation of solution quality
by some measure δ. By allowing more degradation, it is possible to increase
the amount of interchangeability in a problem to the desired level. We define
δ
substitutability/interchangeability as a concept which ensures this quality. This
is particularly useful when interchangeability is used for solution adaptation.
Another use of interchangeability is to reduce search complexity by group-

ing together values that would never give a sufficiently good solution. In

αsubstitutability/interchangeability, we consider values interchangeable if they
give equal solution quality in all solutions better than α, but possibly different
quality for solutions whose quality is ≤ α.
Just like for hard constraints, full interchangeability is hard to com-

pute, but can be approximated by neighbourhood interchangeability which
can be computed efficiently and implies full interchangeability. We define
the same concepts for soft constraints, and prove that neighborhood implies
full (δ/α)substitutability/interchangeability. We give algorithms for neighbor-
hood (δ/α)substitutability/interchangeability, and we prove several interesting
and useful properties of the concepts. Finally, we give two examples where
(δ/α)interchangeability is applied to solution adaptation in configuration prob-
lems with two different soft constraint frameworks: delay and cost constraints,
and show its usefulness in these practical contexts.

2 Background

2.1 Soft CSPs

Several formalization of the concept of soft constraints are currently available.
In the following, we refer to the one based on c-semirings [2, 4, 5, 7], which can
be shown to generalize and express many of the others [3]. A soft constraint
may be seen as a constraint where each instantiations of its variables has an
associated value from a partially ordered set which can be interpreted as a set of
preference values. Combining constraints will then have to take into account such
additional values, and thus the formalism has also to provide suitable operations
for combination (×) and comparison (+) of tuples of values and constraints.
This is why this formalization is based on the concept of c-semiring, which is
just a set plus two operations.

Semirings. A semiring is a tuple 〈A,+,×,0,1〉 such that: 1. A is a set and 0,1 ∈
A; 2. + is commutative, associative and 0 is its unit element; 3. × is associative,
distributes over +, 1 is its unit element and 0 is its absorbing element. A c-
semiring is a semiring 〈A,+,×,0,1〉 such that: + is idempotent, 1 is its absorbing
element and × is commutative. Let us consider the relation ≤S over A such that
a ≤S b iff a+ b = b. Then it is possible to prove that (see [5]): 1. ≤S is a partial
order; 2. + and × are monotone on ≤S ; 3. 0 is its minimum and 1 its maximum;
4. 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a + b = lub(a, b) (where
lub is the least upper bound). Moreover, if × is idempotent, then: + distributes
over ×; 〈A,≤S〉 is a complete distributive lattice and × its glb (greatest lower
bound). Informally, the relation ≤S gives us a way to compare semiring values



and constraints. In fact, when we have a ≤S b, we will say that b is better than
a. In the following, when the semiring will be clear from the context, a ≤S b will
be often indicated by a ≤ b.

Constraint Problems. Given a semiring S = 〈A,+,×,0,1〉 and an ordered set
of variables V over a finite domain D, a constraint is a function which, given an
assignment η : V → D of the variables, returns a value of the semiring. By using
this notation we define C = η → A as the set of all possible constraints that can
be built starting from S, D and V .

Note that in this functional formulation, each constraint is a function (as
defined in [7]) and not a pair (as defined in [4, 5]). Such a function involves
all the variables in V , but it depends on the assignment of only a finite subset
of them. So, for instance, a binary constraint cx,y over variables x and y, is a
function cx,y : V → D → A, but it depends only on the assignment of variables
{x, y} ⊆ V . We call this subset the support of the constraint. More formally,
consider a constraint c ∈ C. We define its support as supp(c) = {v ∈ V |
∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the assignment
v := d1 (that is the operator [ ] has precedence over application). Note also that
cη is the application of a constraint function c : V → D → A to a function
η : D → A; what we obtain, is a semiring value cη = a.

A soft constraint satisfaction problem is a pair 〈C, con〉 where con ⊆ V
and C is a set of constraints: con is the set of variables of interest for the
constraint set C, which however may concern also variables not in con. Note
that a classical CSP is a SCSP where the chosen c-semiring is: SCSP =
〈{false, true},∨,∧, false, true〉. Fuzzy CSPs [17] can instead be modeled in the
SCSP framework by choosing the c-semiring SFCSP = 〈[0, 1],max,min, 0, 1〉.
Many other “soft” CSPs (Probabilistic, weighted, . . . ) can be modeled by
using a suitable semiring structure (Sprob = 〈[0, 1],max,×, 0, 1〉, Sweight =
〈R,min,+,+∞, 0〉, . . . ).

Fig. 1 shows the graph representation of a fuzzy CSP. Variables and con-
straints are represented respectively by nodes and by undirected (unary for c1

and c3 and binary for c2) arcs, and semiring values are written to the right of the
corresponding tuples. The variables of interest (that is the set con) are repre-
sented with a double circle. Here we assume that the domain D of the variables
contains only elements a and b and c.

Combining and projecting soft constraints. Given the set C, the combination
function ⊗ : C×C→ C is defined as (c1⊗c2)η = c1η×S c2η. In words, combining
two constraints means building a new constraint whose support involves all the
variables of the original ones, and which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying
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Fig. 1: A fuzzy CSP.

the elements associated by the original constraints to the appropriate subtuples.
It is easy to verify that supp(c1 ⊗ c2) ⊆ supp(c1) ∪ supp(c2).

Given a constraint c ∈ C and a variable v ∈ V , the projection of c over V −{v},
written c ⇓(V−{v}) is the constraint c

′ s.t. c′η =
∑

d∈D cη[v := d]. Informally,
projecting means eliminating some variables from the support. This is done
by associating with each tuple over the remaining variables a semiring element
which is the sum of the elements associated by the original constraint to all the
extensions of this tuple over the eliminated variables. In short, combination is
performed via the multiplicative operation of the semiring, and projection via
the additive one.

Solutions. A solution of an SCSP P = 〈C, con〉 is the constraint Sol(P ) =
(
⊗

C) ⇓con. That is, we combine all constraints, and then project over the
variables in con. In this way we get the constraint with support (not greater than)
con which is “induced” by the entire SCSP. Note that when all the variables are
of interest we do not need to perform any projection.

For example, the solution of the fuzzy CSP of Fig. 1 associates a semiring
element to every domain value of variable x. Such an element is obtained by
first combining all the constraints together. For instance, for the tuple 〈a, a〉
(that is, x = y = a), we have to compute the minimum between 0.9 (which is
the value assigned to x = a in constraint c1), 0.8 (which is the value assigned
to 〈x = a, y = a〉 in c2) and 0.9 (which is the value for y = a in c3). Hence,
the resulting value for this tuple is 0.8. We can do the same work for tuple
〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0, 〈b, b〉 → 0, 〈b, c〉 → 0.1, 〈c, a〉 → 0.8,
〈c, b〉 → 0.2 and 〈c, c〉 → 0.2. The obtained tuples are then projected over variable
x, obtaining the solution 〈a〉 → 0.8, 〈b〉 → 0.1 and 〈c〉 → 0.8.

2.2 Interchangeability

Interchangeability in constraint networks was first proposed by Freuder [12] to
capture equivalence among values of a variable in a discrete constraint satisfac-
tion problem. Value v = a is substitutable for v = b if for any solution where
v = a, there is an identical solution except that v = b. Values v = a and v = b
are interchangeable if they are substitutable both ways.

Interchangeability offers three important ways for practical applications:
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Fig. 2: An example of CSP with interchangeable values.

– by pruning the interchangeable values, which are redundant in a sense, the
problem space can be simplified.

– interchangeability can be used as a solution updating tool; this can by used
for user-interaction, can help users in taking decisions by offering alterna-
tives, planning, scheduling ...

– can structure and classify the solution space.
Full Interchangeability considers all constraints in the problem and checks if

a value a and b for a certain variable v can be interchanged without affecting
the global solution. In the CSP in Fig. 2 (taken from [9]), d, e and f are fully
interchangeable for v4. This is because we inevitably have v2 = d, which implies
that v1 cannot be assigned d in any consistent global solution. Consequently, the
values d, e and f can be freely permuted for v4 in any global solution.
There is no efficient algorithm for computing full Interchangeability, as it

may require computing all solutions. The localized notion of Neighbourhood In-
terchangeability considers only the constraints involving a certain variable v. In
this notion, a and b are neighbourhood interchangeable if for every constraint
involving v, for every tuple that admits v = a there is an otherwise identical
tuple that admits v = b, and vice-versa. In Fig. 2, e and f are neighbourhood
interchangeable for v4.
Freuder showed that neighbourhood interchangeability always implies full in-

terchangeability and can therefore be used as an approximation. He also provided
an efficient algorithm (Algorithm 1) for computing neighborhood interchange-
ability [12], and investigated its use for preprocessing CSP before searching for
solutions [1]. Every node in the discrimination tree (Fig. 1) corresponds to a
set of assignments to variables in the neighbourhood of v that are compatible
with some value of v itself. Interchangeable values are found by the fact that
they follows the same path and fall into the same ending node. Fig. 3 shows an
example of execution of Algorithm 1 for variable v4. Domain values e and f are
shown to be interchangeable.

3 Interchangeability in Soft CSPs

In soft CSPs, there is not any crisp notion of consistency. In fact, each tuple
is a possible solution, but with different level of preference. Therefore, in this
framework, the notion of interchangeability becomes finer: to say that values a
and b are interchangeable we have also to consider the assigned semiring level.



Create the root of the discrimination tree for variable vi;
Let Dvi = {the set of domain values dvi for variable vi};
Let Neigh({vi}) = {all neighborhood variables vj of variable vi};
for all dvi ∈ Dvi do

for all vj ∈ Neigh({vi}) do

for all dvj ∈ Dvj s.t. dvj is consistent with dvi for vi do

if there exists a child node corresponding to vj = dvj then

move to it,
else

construct such a node and move to it;
Add vi, {dvi} to annotation of the node;
Go back to the root of the discrimination tree.

Algorithm 1: Discrimination Tree for variable vi.

root

V1 = a

V1 = b

V1 = d

V3 = a

V3 = b

V3 = a

V3 = b

V3 = c

V3 = c
V4 = {c}

V4 = {e, f}

V4 = {d}

Fig. 3: An example of CSP with computation of neighborhood interchangeable values.

More precisely, if a domain element a assigned to variable v can be substi-
tuted in each tuple solution with a domain element b without obtaining a worse
semiring level we say that b is full substitutable for a.

Definition 1 (Full Substitutability (FS)). Consider two domain values b
and a for a variable v, and the set of constraints C; we say that b is Full Sub-
stitutable for a on v (b ∈ FS v(a)) if and only if

⊗

Cη[v := a] ≤S

⊗

Cη[v := b]

When we restrict this notion only to the set of constraints Cv that involves
variable v we obtain a local version of substitutability.

Definition 2 (Neighborhood Substitutability (NS)). Consider two do-
main values b and a for a variable v, and the set of constraints Cv involving
v; we say that b is neighborhood substitutable for a on v (b ∈ NS v(a)) if and
only if

⊗

Cvη[v := a] ≤S

⊗

Cvη[v := b]

When the relations hold in both directions, we have the notion of
Full/Neighborhood interchangeability of b with a.



Definition 3 (Full and Neighborhood Interchangeability (FI and NI )).
Consider two domain values b and a, for a variable v, the set of all constraints C
and the set of constraints Cv involving v. We say that b is fully interchangeable
with a on v (FI v(a/b)) if and only if b ∈ FS v(a) and a ∈ FS v(b), that is

⊗

Cη[v := a] =
⊗

Cη[v := b].

We say that b is Neighborhood interchangeable with a on v (NI v(a/b)) if and
only if b ∈ NS v(a) and a ∈ NS v(b), that is

⊗

Cvη[v := a] =
⊗

Cvη[v := b].

This means that when a and b are interchangeable for variable v they can be
exchanged without affecting the level of any solution.
Two important results that hold in the crisp case can be proven to be

satisfied also with soft CSPs: transitivity and extensivity of interchangeabil-
ity/substituability.

Theorem 1 (Extensivity: NS =⇒ FS and NI =⇒ FI ). Consider two
domain values b and a for a variable v, the set of constraints C and the set of
constraints Cv involving v. Then, neighborhood (substituability) interchangeabil-
ity implies full (substituability) interchangeability.

Theorem 2 (Transitivity: b ∈ NS v(a), a ∈ NS v(c) =⇒ b ∈ NS v(c)). Con-
sider three domain values a, b and c, for a variable v. Then,

b ∈ NS v(a), a ∈ NS v(c) =⇒ b ∈ NS v(c).

Similar results hold for FS ,NI and FI .

As an example of interchangeability and substitutability consider the fuzzy
CSP represented in Fig. 1. The domain value c is neighborhood interchangeable
with a on x (NI x(a/c)); in fact, c1 ⊗ c2η[x := a] = c1 ⊗ c2η[x := c] for all
η. The domain values c and a are also neighborhood substitutable for b on x
({a, c} ∈ NS v(b)). In fact, for any η we have c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := c]
and c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := a].

3.1 Degradations and Thresholds

In soft CSPs, any value assignment is a solution, but may have a very bad
preference value. This allows broadening the original interchangeability concept
to one that also allows degrading the solution quality when values are exchanged.
We call this δinterchangeability, where δ is the degradation factor.
When searching for solutions to soft CSP, it is possible to gain efficiency by

not distinguishing values that could in any case not be part of a solution of
sufficient quality. In αinterchangeability, two values are interchangeable if they
do not affect the quality of any solution with quality better than α. We call α
the threshold factor.



Both concepts can be combined, i.e. we can allow both degradation and
limit search to solutions better than a certain threshold (δαinterchangeability).
By extending the previous definitions we can define thresholds and degradation
version of full/neighbourhood substitutability/interchangeability.

Definition 4 (δFull Substitutability (δFS)). Consider two domain values b
and a for a variable v, the set of constraints C and a semiring level δ; we say that
b is δfull Substitutable for a on v (b ∈

δ
FS v(a)) if and only if for all assignments

η,
⊗

Cη[v := a]×S δ ≤S

⊗

Cη[v := b]

Definition 5 (αFull Substitutability (αFS)). Consider two domain values
b and a, for a variable v, the set of constraints C and a semiring level α; we
say that b is αfull substitutable for a on v (b ∈ αFS v(a)) if and only if for all
assignments η,

⊗

Cη[v := a] ≥ α =⇒
⊗

Cη[v := a] ≤S

⊗

Cη[v := b]

Similarly all the notion of δ/αNeighborhood Substitutability (
δ/αNS ) and

of
δ
/αFull/Neighborhood Interchangeability (

δ
/αFI /NI ) can be defined (just

considering the relation in both directions and changing C with Cv).
As an example consider Fig. 1. The domain values c and b for variable y are

0.2Neighborhood Interchangeable. In fact, the tuple involving c and b only differ
for the tuple 〈b, c〉 that has value 0.1 and for the tuple 〈b, b〉 that has value 0. Since
we are interested only to solutions greater than 0.2, these tuples are excluded
from the match. The meaning of degradation assume different meanings when
instantiated to different semirings:
1. fuzzy CSP: b ∈

δ
FS v(a) gets instantiated to:

min(minc∈C(cη[v := a]), δ) ≤ minc∈C(cη[v := b])

which means that changing v := b to v := a does not make the solution worse
than before or worse than δ. In the practical case where we want to only
consider solutions with a quality better than δ, this means that substitution
will never put a solution out of this class.

2. weighted CSP: b ∈
δ
FS v(a) gets instantiated to:

∑

c∈C

cη[v := a] + δ ≥
∑

c∈C

cη[v := b]

which means that the penalty for the solution does not increase by more than
a factor of δ. This allows for example to express that we would not want to
tolerate more than δ in extra cost. Note, by the way, that ≤S translates to
≥ in this version of the soft CSP.

3. probabilistic CSP: b ∈
δ
FS v(a) gets instantiated to:

(
∏

c∈C

cη[v := a]) · δ ≤
∏

c∈C

cη[v := b]



which means that the solution with v = b is not degraded by more than a
factor of δ from the one with v = a.

4. crisp CSP: b ∈
δ
FS v(a) gets instantiated to:

(
∧

c∈C

cη[v := a]) ∧ δ ⇒ (
∧

c∈C

cη[v := b])

which means that when δ = true, whenever a solution with v = a satisfies
all constraints, so does the same solution with v = b. When δ = false, it is
trivially satisfied (i.e. δ is too loose a bound to be meaningful).

3.2 Properties of Degradations and Thresholds

As it is very complex to determine full interchangeability/substitutability, we
start by showing the fundamental theorem that allows us to approximate
δ
/αFS/FI by

δ
/αNS/NI :

Theorem 3 (Extensivity). δneighbourhood substitutability implies δfull sub-
stitutability and αneighbourhood substitutability implies αfull substitutability.

This theorem is of fundamental importance since it gives us a way to approx-
imate full interchangeability by neighborhood interchangeability which is much
less expensive to compute.

Theorem 4 (Transitivity using thresholds and degradations). Consider
three domain values a, b and c, for a variable v. Then,

b ∈
δ1NS v(a), a ∈

δ2NS v(c) =⇒ b ∈
δ1×δ2NS v(c) and

b ∈ α1
NS v(a), a ∈ α2

NS v(c) =⇒ b ∈ α1+α2
NS v(c)

Similar results holds for FS ,NI ,FI .

In particular when α1 = α2 = α and δ1 = δ2 = δ we have:

Corollary 1 (Transitivity and equivalence classes). Consider three do-
main values a, b and c, for a variable v. Then,

– Threshold interchangeability is a transitive relation, and partitions the set of
values for a variable into equivalence classes, that is

b ∈ αNS v(a), a ∈ αNS v(c) =⇒ b ∈ αNS v(c)

αNI v(b/a), αNI v(a/c) =⇒ αNI v(b/c)

– If the ×S-operator is idempotent, then degradation interchangeability is a
transitive relation, and partitions the set of values for a variable into equiv-
alence classes, that is

b ∈
δ
NS v(a), a ∈

δ
NS v(c) =⇒ b ∈

δ
NS v(c)

δ
NI v(b/a),

δ
NI v(a/c) =⇒

δ
NI v(b/c)



By using degradations and thresholds we have a nice way to decide when
two domain values for a variable can be substituable/interchangeable. In fact,
by changing the α or δ parameter we can obtain different results.
In particular we can show that an extensivity results for the parameters hold.

In fact, it is straightforward to notice that if two values are δ
αsubstitutable, they

have to be also δ′

α′substitutable for any δ′ ≤ δ and α′ ≥ α.

Theorem 5 (Extensivity for α and δ). Consider two domain values a and
b, for a variable v, two thresholds α and α′ s.t. α ≤ α′ and two degradations δ
and δ′ s.t. δ ≥ δ′. Then,

a ∈
δ
NS v(b) =⇒ a ∈

δ′
NS v(b) and a ∈ αNS v(b) =⇒ a ∈ α′NS v(b)

Similar results holds for FS ,NI ,FI .

As a corollary when threshold and degradation are 0 or 1 we have some
special results.

Corollary 2. When α = 0 and δ = 1, we obtain the non approximated versions
of NS. When α = 1 and δ = 0, all domain values are substitutable.

∀a, b, a ∈
0
NS v(b) and a ∈

1
NS v(b) ⇐⇒ a ∈ NS(b)

∀a, b, a ∈
1
NS v(b) and a ∈

0
NS v(b)

Similar results holds for FS ,NI ,FI .

3.3 Computing δ/α-substitutability/interchangeability

The result of Theorem 1 is fundamental since it gives us a way to approx-
imate full substituability/interchangeability by neighbourhood substituabil-
ity/interchangeability which is much less costly to compute.
The most general algorithm for neighborhood substituabil-

ity/interchangeability in the soft CSP framework is to check for each pair
of values whether the condition given in the definition holds or not. This
algorithm has a time complexity exponential in the size of the neighbourhood
and quadratic in the size of the domain (which may not be a problem when
neighbourhoods are small).
Better algorithms can be given when the times operator of the semiring

is idempotent. In this case, instead of considering the combination of all the
constraint Cv involving a certain variable v, we can check the property we need
(NS/NI and their relaxed versions

δ
αNS/NI ) on each constraint itself.

Theorem 6. Consider two domain values b and a, for a variable v, and the set
of constraints Cv involving v. Then we have:

∀c ∈ Cv.cη[v := a] ≤S cη[v := b] =⇒ b ∈ NS v(a)

(∀c ∈ Cv.cη[v := a] ≥ α =⇒ cη[v := a] ≤S cη[v := b]) =⇒ b ∈ αNS v(a)



If the times operator of the semiring is idempotent we also have:

∀c ∈ Cv.cη[v := a]×S δ ≤S cη[v := b] =⇒ b ∈
δ
NS v(a)

By using Theorem 6 (and Corollary 1 for δ/αNS ) we can find substitu-
able/interchangeable domain values more efficiently. Algorithm 2 shows an al-
gorithm that can be used to find domain values that are Neighborhood Inter-
changeable. It uses a data structure similar to the discrimination trees, first
introduced by Freuder in [12] . Algorithm 2 can compute different versions of

1: Create the root of the discrimination tree for variable vi
2: Let Cvi = {c ∈ C | vi ∈ supp(c)}
3: Let Dvi = {the set of domain values dvi for variable vi}
4: for all dvi ∈ Dvi do

5: for all c ∈ Cv do

6: execute Algorithm NI -Nodes(c, v, dvi) to build the nodes associated with c
7: Add vi, {dvi} to annotation of the last build node,
8: Go back to the root of the discrimination tree.

Algorithm 2: Algorithm to compute neighbourhood interchangeable sets for variable
vi.

neighbourhood interchangeability depending on the algorithm NI−nodes used.
Algorithm 3 shows the simplest version without threshold or degradation. The

1: for all assignments ηc to variables in supp(c) do

2: compute the semiring level β = cηc[vi := dvi ],
3: if there exists a child node corresponding to 〈c = ηc, β〉 then

4: move to it,
5: else

6: construct such a node and move to it.

Algorithm 3: NI-Nodes(c, v, dvi) for Soft-NI .

algorithm is very similar to that defined by Freuder in [12], and when we consider
the semiring for classical CSPs SCSP = 〈{false, true},∨,∧, false, true〉 and all
constraints are binary, it computes the same result. Notice that for each node
we add also an information representing the cost of the assignment ηc.
When all constraints are binary, considering all constraints involving variable

v is the same as considering all variables connected to v by a constraint, and our
algorithm performs steps as that given by Freuder.
We can determine the complexity of the algorithm by considering that the

algorithm calls NI − Nodes for each k − ary constraint exactly once for each
value of each the k variables; this can be bounded from above by k ∗ d with d
the maximum domain size. Thus, given m constraints, we obtain a bound of

O(m ∗ k ∗ d ∗O(AlgorithmNI−nodes)).



The complexity of AlgorithmNI−nodes strictly depends on the size of the do-
main d and from the number of variables k involved in each constraint and is
given as

O(AlgorithmNI−nodes) = dk−1.

For complete constraint graphs of binary constraints (k = 2), we obtain the same
complexity bound of O(n2d2) as Freuder in [12].

1: for all assignments ηc to variables in supp(c) s.t. β = cηc[vi := dvi ] and α ≤S β
do

2: if there exists a child node corresponding to 〈c = ηc, β〉 then

3: move to it,
4: else

5: construct such a node and move to it.

Algorithm 4: NI-Nodes(c, v, dvi) for Soft αNI .

1: for all assignments ηc to variables in supp(c) do

2: compute the semiring level β = cηc[vi := dvi ],
3: if there exists a child node corresponding to 〈c = ηc, β

′, β̄〉 with (β̄ ≤ β)∧(β×δ ≤
β′) then

4: move to it and change the label to 〈c = ηc, glb(β
′, β), β̄ + (β × δ)〉,

5: else

6: construct the node 〈c = ηc, β, β × δ〉 and move to it.

Algorithm 5: NI-Nodes(c, v, dvi) for Soft
δNI .

Algorithms for the relaxed versions of NI are obtained by substituting dif-
ferent versions of Algorithm 3. For αNI , the algorithm needs to only consider
tuples whose semiring value is greater than α, as shown in Algorithm 4. For
δNI , the algorithm needs to only consider tuples that can cause a degradation
by more than δ, as shown in Algorithm 5. The idea here is to save in each node
the information needed to check at each step δNS in both directions. In a semi-
ring with total order, the information represent the ”interval of degradation”. As
both algorithms consider the same assignments as Algorithm 3, their complexity
remains unchanged at O(dk−1).

4 An Example

Fig. 4 shows the graph representation of a CSP which might represent a car
configuration problem. A product catalog might represent the available choices
through a soft CSP. With different choices of semiring, the CSP of Fig. 4 can
represent different problem formulations; a possible example follows:

Example 1 An optimization criterion might be the time it takes to build the
car. Delay is determined by the time it takes to obtain the components and to



M:{s,m,l} E:{s,l,d}

T:{a,m} A:{y,n}

C1

C2

C4
C3

Fig. 4: Example of a CSP modeling car configuration. It has 4 variables: M = model,
T = transmission, A = Air Conditioning, E = Engine.

reserve the resources for the assembly process. For the delivery time of the car,
only the longest delay would matter. This could be modelled by the semiring
< <+,min,max,+∞, 0 >1, with the binary constraints:

C1 =

M
s m l

T a ∞ 3 4
m 2 4 ∞

C2 =

M
s m l

s 2 3 ∞
E l 30 3 3

d 2 3 ∞

C3 =

E
s l d

A y 5 4 7
n 0 30 0

C4 =

E
s l d

T a ∞ 3 ∞
m 4 10 3

and unary constraints CM , CE , CT and CA that model the time to obtain the
components:

CM =
s m l

2 3 3
CE =

s l d

3 2 3
CT =

a m

1 2
CA =

y n

3 0

4

Let us now consider the variable E of Example 1 and compute
δ
/αNS/NI

between its values by using Definition 4 and Definition 5. In Fig. 5 directed arcs
are added when the source can be δ/αsubstituted to the destination node. It is
easy to see how the occurrences of δ/αNS change, depending on δ and α degrees.
We can notice that when δ takes value 0 (the 1 of the optimization semiring),

small degradation is allowed in the CSP tuples when the values are substituted;
thus only value s can be substituted for value d. As δ increases in value (or
decreases from the semiring point of view) higher degradation of the solutions
is allowed and thus the number of substitutabilities increase with it.
In the second part of Fig. 5 we can see that for α = 0 all the values are

interchangeable (in fact, since there are no solutions better than α = 0, by
definition all the elements are αinterchangeable).
For a certain threshold (α = 4) values s and d are αinterchangeable and value

l can substitute values s and d. Moreover, when α is greater than 5 we only have
that s can substitute d.
We will show now how to compute interchangeabilities by using the Discrimi-

nation Tree algorithm. In Fig. 6 the Discrimination Tree is described for variable

1 This semiring and the fuzzy one are similar, but the first uses an opposite order. Let
us call this semiring opposite-fuzzy.



s l s s sl l l

 = 0  = 7  = 30  =  

s s s sl l l l

 = 0  = 4  = 5  =  

d d d d

d d d d

Fig. 5: Example of how δ-substitutability and α-substitutability varies in the opposite-
fuzzy CSP over the values of variable E.

M when α = 2 and α = 3. We can see that values m and l for variable M are

2interchangeable whilst there are no interchangeabilities for α = 3 .
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CM( =
CM( =

CM( =

CM( =

CM( =
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Fig. 6: Example of a search of α-interchangeability computing by the use of discrimi-
nation trees.

5 Conclusions

Interchangeability in CSPs has found many applications for problem abstraction
and solution adaptation. In this paper, we have shown how the concept can be
extended to soft CSPs in a way that maintains the attractive properties already
known for hard constraints.



The two parameters α and δ allow us to express a wide range of practical
situations. The threshold α is used to eliminate distinctions that would not
interest us anyway, while the allowed degradation δ specifies how precisely we
want to optimize our solution. We are now conducting a detailed investigation on
how variation of these parameters affects interchangeability on random problems.
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