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Abstract. We present an extension of the Soft Concurrent Constraint lan-
guage to allow the nonmonotonic evolution of the constraint store. To
accomplish this, we introduce some new operations: the retract(c) reduces
the current store by c, the updateX(c) transactionally relaxes all the con-
straints of the store that deal with the variables in X set, and then adds a
constraint c (usually with support = X); the nask(c) tests if c is not entailed
by the store. We present this framework as a possible solution to the man-
agement of resources (e.g. web services and network resource allocation)
that need a given Quality of Service (QoS). The QoS requirements of all
the parties should converge, through a negotiation process, on a formal
agreement defined as the Service Level Agreement, which specifies the con-
tract that must be enforced. The main advantage is to have a preference
(or cost) measure directly embedded in the language, and to have a highly
flexible and parametric abstraction.

1 Motivations

Many real-life problems require computation mechanisms which are nonmono-
tonic in their nature. Consider for example an everyday scenario where clients
need to reserve some resources, and service providers must allocate those re-
sources providing also a desired Quality of Service (QoS). Negotiation [13] is
the process by which a group of agents communicate among themselves and
try to come to a mutually acceptable agreement on some matter. The means
for achieving this goal consist in offering concessions and retracting propos-
als. When agents are autonomous and cooperation/coordination is attempted
at run-time, automated negotiation represents a complex process [13] . Notice
that this process is continuous because clients and providers can change their
requirements during their execution, and the same QoS can be improved or
degraded for many reasons (e.g. due to the system load).

To model and manage automated negotiation, in this paper we propose the
Nonmonotonic Soft Concurrent Constraint (nmsccp) language, which extends Soft



Concurrent Constraint Programming (sccp) [3, 7] in order to support the nonmo-
notonic evolution of the constraint store. In classical sccp the tell and ask agents
can be equipped with a preference (or consistency) threshold which is used
to determine their success, failure, or suspension: the action is enabled only if
the store is “consistent enough” w.r.t. the threshold. Since constraints can only
be accumulated (via the tell operation), the consistency level of the store can
only monotonically decrease starting from the initial empty store. In fact, the
function used to combine together the constraints, i.e. the × of the semiring, is
intensive [6]. To go further, we propose some new actions that provide the user
with explicit nonmonotonic operations which can be used to retract constraints
from the store (i.e. update and retract), and a particular ask operation (i.e. nask),
enabled only if the current store does not entail a given constraint.

The nmsccp language has two main difference w.r.t. classical sccp: i) the con-
sistency level of the store can be increased by retracting constraints (i.e. it is not
monotonic), and ii) some of the failures are transformed in suspension because
of the nonmonotonicity of the store. According to i), we have extended the se-
mantics of the actions to include also an upper bound on the store consistency
(since it can be increased by a retract, for example), in order to prune also “too
much good” computations obtained at a given step. In this way, now we are
able to model intervals of acceptability, while in sccp there is only a check on
“not good enough” computations, i.e. decreasing too much the consistency w.r.t
the lower threshold. This leads to ii): in sccp an agent fails if the resulting store
is not consistent enough w.r.t. the threshold (i.e. a given semiring value or soft
constraint); in nmsccp the same agent simply suspends waiting for a possible
consistency increase of the current store, which enables the pending action.

We apply these extensions to model Service Level Agreements (SLAs) [2, 14]
and their negotiation: soft constraints represent the needs of the agents on the
traded resources and the consistency value of the store represents a feedback
on the current agreement. In words, how much all the requirements are consis-
tent among themselves, or how much the global satisfaction is being met. The
thresholds on the actions are used to check this interval of preference values,
and having a feedback value which is not a plain “yes or no” (i.e. true or false,
as in crisp constraints) is clearly more informative. Using soft constraints (e.g.
“at most around 10 Mbyte of bandwidth”) gives the service provider and clients
more flexibility in expressing their requests w.r.t. crisp constraints (e.g. “exactly
10 Mbyte”), and therefore there are more chances to reach a shared agreement.
Moreover, the cost model is very adaptable to the specific problem, since it
is parametric with the chosen semiring, and its semantics is directly embed-
ded in the requirement definition itself (i.e. the constraint) and in the language
modeling the agent (e.g. the thresholds on the tell and retract actions).

The remainder of this paper is organized as follows. In Sec.2 we summarize
the background information . Section 3 features the nonmonotonic language,
its operational semantics and how the consistency intervals are managed. In
Sec. 4 we show how the language can be used to represent preference-driven
negotiations. At last, Sec. 5 concludes by indicating future research directions.



2 Background

Absorptive Semiring. An absorptive semiring [5] can be represented as a tuple
〈A,+,×, 0, 1〉 such that: i) A is a set and 0, 1 ∈ A; ii) + is commutative, associative
and 0 is its unit element; iii) × is associative, distributes over +, 1 is its unit
element and 0 is its absorbing element. The absorptive property is due to the
fact that the semiring is commutative and 1 is the unit element for + (i.e. a+1 = 1).
A c-semiring is an absorptive semiring 〈A,+,×, 0, 1〉 such that: + is idempotent,
1 is its absorbing element and × is commutative. Let us consider the relation ≤S
over A such that a ≤S b iff a + b = b. Then it is possible to prove that (see [6]): i)
≤S is a partial order; ii) + and × are monotonic on ≤S; iii) 0 is its minimum and 1
its maximum; iv) 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a + b = lub(a, b)
(where lub is the least upper bound). Informally, the relation ≤S gives us a way
to compare semiring values and constraints. In fact, when we have a ≤S b (or
simply a ≤ b when the semiring will be clear from the context), we will say that
b is better than a. Moreover, in [5] the authors extended the semiring structure
by adding the notion of division, i.e. ÷, as a weak inverse operation of ×. For a
full explanation and properties of ÷, please refer to [5].

Definition 1 ([5]). LetK be an absorptive semiring. Then

– K is invertible if for all elements a, b ∈ A such that a ≤ b there exists an element
c ∈ A such that b × c = a ;

– it is weakly uniquely invertible if c is unique whenever a < b;
– it is uniquely invertible if c is unique whenever b , 0.

Definition 2 ([5]). LetK be an absorptive, invertible semiring. Then,K is invertible
by residuation if the set {x ∈ A | b×x = a} admits a maximum for all elements a, b ∈ A
such that a ≤ b.

Definition 3 ([5]). LetK be an absorptive semiring. Then,K is residuated if the set
{x ∈ A | b × x ≤ a} admits a maximum for all elements a, b ∈ A, denoted a ÷ b.

With an abuse of notation, the maximal element among solutions is denoted
a ÷ b. This choice is not ambiguous: if an absorptive semiring is invertible and
residuated, then it is also invertible by residuation, and the two definitions yield
the same value. Then, the following theorem can be proved:

Theorem 1 ([5]). Let K be a absorptive semiring. If K is complete4, then it is resid-
uated. Since all classical soft constraint instances, i.e. Classical CSPs, Fuzzy CSPs,
Probabilistic CSPs and Weighted CSPs, are complete and consequently residuated,
the notion of semiring division can be applied to all of them.

4 IfK is a absorptive semiring, then K is complete if it is closed with respect to infinite
sums, and the distributivity law holds also for an infinite number of summands.



Constraint System. A soft constraint [6, 3] may be seen as a constraint where each
instantiation of its variables has an associated preference. Given a semiring
S = 〈A,+,×, 0, 1〉 and an ordered set of variables V over a finite domain D, a soft
constraint is a function which, given an assignment η : V → D of the variables,
returns a value of the semiring. Using this notation C = η → A is the set of all
possible constraints that can be built starting from S, D and V.

Any function in C involves all the variables in V, but we impose that it
depends on the assignment of only a finite subset of them. So, for instance, a
binary constraint cx,y over variables x and y, is a function cx,y : V → D → A,
but it depends only on the assignment of variables {x, y} ⊆ V (the support of
the constraint, or scope). Note that cη[v := d1] means cη′ where η′ is η modified
with the assignment v := d1. Note also that cη is the application of a constraint
function c : V → D→ A to a function η : V → D; what we obtain, is a semiring
value cη = a.

Given the set C, the combination function ⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η × c2η (see also [6, 3, 7]). Having defined the operation ÷ on
semirings, the constraint division function 	÷ : C × C → C is instead defined
as (c1 	÷ c2)η = c1η ÷ c2η [5]. Informally, performing the ⊗ or the 	÷ between two
constraints means building a new constraint whose support involves all the
variables of the original ones, and which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying
or, respectively, dividing the elements associated by the original constraints to
the appropriate sub-tuples. The partial order ≤S over C can be easily extended
among constraints by defining c1 v c2 ⇐⇒ c1η ≤ c2η. Consider the set C and
the partial order v. Then an entailment relation `⊆ ℘(C) × C is defined s.t. for
each C ∈ ℘(C) and c ∈ C, we have C ` c ⇐⇒

⊗
C v c (see also [3, 7]).

Given a constraint c ∈ C and a variable v ∈ V, the projection [6, 3, 7] of c over
V − {v}, written c ⇓(V−{v}) is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d]. Informally,

projecting means eliminating some variables from the support. This is done by
associating with each tuple over the remaining variables a semiring element
which is the sum of the elements associated by the original constraint to all
the extensions of this tuple over the eliminated variables. To treat the hiding
operator of the language, a general notion of existential quantifier is introduced
by using notions similar to those used in cylindric algebras. For each x ∈ V, the
hiding function [3, 7] is defined as (∃xc)η =

∑
di∈D cη[x := di].

To model parameter passing, for each x, y ∈ V a diagonal constraint [3, 7] is
defined as dxy ∈ C s.t., dxyη[x := a, y := b] = 1 if a = b and dxyη[x := a, y := b] = 0
if a , b. Now it is possible to define a constraint systems “a la Saraswat” [7]:
notice that in sccp, algebricity is not required, since the algebraic nature of C
strictly depends on the properties of the semiring [7]:

Theorem 2 (cylindric system [7]). Consider a semiring S = 〈A,+,×, 0, 1〉, a domain
of the variables D, an ordered set of variables V, the corresponding structure C. Then,
SC = 〈C,⊗, 0̄, 1̄,∃x, dxy〉5, is a cylindric constraint system.

5 0̄ and 1̄ respectively represent the constraints associating 0 and 1 to all the assignment
of domain values; in general, the ā function returns the semiring value a.



3 The Language

The retract(c) operation is at the basis of our nonmonotonic extension of the sccp
language, since it permits to remove the constraint c from the current store. It is
worth to notice that our retract can be considered as a “relaxation” of the store,
and not only as a strict removal of the token representing the constraint, because
in soft constraints we do not have the concept of token. Thus if c (parameter
of retract) satisfies σ v c then can be removed, even if c is different from any
other constraints previously added to the store σ. To use a metaphor describing
the sequence of actions, imagine to pour a liquid into and out a bowl with a
spoon. The content of the bowl represents the store, and the liquid in the spoon
represents the soft constraint we want to add and retract from the store; as the
two liquids are mixed, we lose the identity of the added soft constraint, which
can worsen the condition of the store by raising the level of the liquid in the
bowl. When we want to relax the store, we remove some of the liquid with
the spoon, and that corresponds to the removed constraint: the consistency is
incremented because the level of the bowl is lowered. This “bowl example” is
appropriate when × is not idempotent, otherwise pouring the same constraint
multiple times would not increase the liquid level.

The updateX(c) primitive has been inspired by the work in [11]. It consists in a
sort of “assignment” operation, since it transactionally relaxes all the constraints
of the store that deal with variables in the X set, and then adds a constraint c
(usually with support = X). This operation is variable-grained w.r.t. our retract,
and for many applications (as ours, on SLA negotiation), it is very convenient to
have a remove operation that is focused on one (or some) variable: the reason is
that it could be required to completely renew the knowledge about a parameter
(e.g. the bandwidth of the example in Sec. 4).

The nask(c) operation (crisp examples are in [9, 16]) is enabled only if the
current store does not entail c; it is the negative version of ask, since it detects
absence of information. Note that, in general, ask(¬c) is different from nask(c), so
it is necessary to introduce a completely new primitive. Consider for example
the store {x ≤ 10}: while the action nask(x < 5) succeeds, ask(x ≥ 5) would
block the computation. Consider also that the notion of ¬c (i.e. the negation
of a constraint) is not always meaningful with preferences based on semirings,
except, for instance, for the Boolean semiring (i.e. 〈{0, 1},∨,∧, 0, 1〉). It would
be difficult to define ¬c when using Weighted semirings [3, 6]. This operation
improves the expressivity of the language, since it allows to check facts not
already derivable from the store (it can be valuable to add them), or no longer
derivable (to check if some constraints have been removed), or facts that we do
not want to be implied by the store.

The Syntax of the Language. Given a soft constraint system as defined in The-
orem 2 and any related constraint c, the syntax of agents in nmsccp is given
in Fig. 1. P is the class of programs, F is the class of sequences of procedure
declarations (or clauses), A is the class of agents, c ranges over constraints, X is
a set of variables and Y is a tuple of variables.



P F F.A
F F p(Y) :: A | F.F
A F success | tell(c)� A | retract(c)� A | updateX(c)� A | E | A‖A | ∃x.A | p(Y)
E F ask(c)� A | nask(c)� A | E + E

Fig. 1. Syntax of the nmsccp language.

In addition to the new operations, the other most important variation w.r.t.
sccp is the action prefixing symbol � in the syntax notation, which can be
considered as a general “checked” transition of the type→ϕ2

ϕ1
, where ϕi = ai (i.e.

the threshold is a semiring element) or ϕi = φi (i.e. the threshold is a constraint)
with i = 1, 2. In words, two conditions must be checked at the same time: a1
or φ1 (one of the two) will be used as a cut level to prune computations that
at this point are not good enough (i.e. a lower bound), while a2 or φ2 to prune
computations that are too much good (i.e. an upper bound). The four possible
instantiation of� are given in Fig. 2, i.e.→a2

a1
,→φ2

a1
,→a2

φ1
and→φ2

φ1
(the semantics

of these checked transitions will be better explained in Sec. 3.1). Therefore,
we can now model intervals of acceptability during the computation, while in
classical sccp this is not possible: sccp being monotonic, since the consistency
level of the store can only be decreased during the executions of the agents, it is
only meaningful to prune those computations that decrease this level too much.
On the other hand, in nmsccp there is the possibility to remove constraints from
the store, and thus the level can be increased again (this leads to the absence
of a fail agent). For this reason we claim the importance of checking also that
the consistency level of the store will not exceed a given threshold. Having
an interval of preferences, and not only a lower bound, is very important in
negotiation, since it allows to improve the expressivity of requests and results.
For instance, consider the preference as a cost for a given resource: the lower
threshold of the interval will prevent us from paying that resource too much
(i.e. a high cost means a low preference), while the upper threshold models a
clause in the contract that forces us to pay at least a minimum price.

As in classical sccp, the semiring values a1 and a2 represent two cut levels that
summarize the consistency of the store into a plain value. On the other hand,
the constraints φ1 and φ2 represent a finer check of the store, since a pointwise
comparison between the store and these constraints is performed.

Moreover, � simplifies the writing of the language syntax (Fig. 1) and
operational semantics rules (Fig. 3), by avoiding to replicate the same rules
differentiating among themselves only on the a or φ check (as tell/valued-tell
and ask/valued-ask in sccp [7]). Notice that the classical ask and tell operations
in sccp (where only the lower bound is present) are preserved also in nmsccp:
e.g. ask/tell(c)→1̄

φ A represent classical sccp ask/tell, and ask/tell(c)→1̄
a represent

their sccp valued versions (with 1̄ defined as in the footnote of Theorem 2).



3.1 The Operational Semantics

To give an operational semantics to our language we need to describe an ap-
propriate transition system 〈Γ,T,→〉, where Γ is a set of possible configurations,
T ⊆ Γ is the set of terminal configurations and→⊆ Γ × Γ is a binary relation be-
tween configurations. The set of configurations is Γ = {〈A, σ〉}, where σ ∈ Cwhile
the set of terminal configurations is instead T = {〈success, σ〉}. The transition rule
for the nmsccp language are defined in Fig. 3.

The� is a generic checked transition used by several actions of the language.
Therefore, to simplify the rules in Fig. 3 we define a function check� : σ →
{true, f alse} (where σ ∈ C), that, parametrized with one of the four possible
instances of� (C1-C4 in Fig. 2), returns true if the conditions defined by the
specific instance of� are satisfied, or false otherwise. The conditions between
parentheses in Fig. 2 claim that the lower threshold of the interval cannot clearly
be “better” than the upper one, otherwise the condition is intrinsically wrong.

C1:�=→a2
a1

check(σ)� = true i f


σ ⇓∅≯S a2

σ ⇓∅≮S a1

(with a1 ≯ a2)

C2:�=→φ2
a1

check(σ)� = true i f


σ b φ2

σ ⇓∅≮S a1

(with a1 ≯ φ2 ⇓∅)

C3:�=→a2
φ1

check(σ)� = true i f


σ ⇓∅≯S a2

σ a φ1

(with φ1 ⇓∅≯ a2)

C4:�=→φ2

φ1
check(σ)� = true i f


σ b φ2

σ a φ1

(with φ1 b φ2)

Otherwise, within the same conditions in parentheses, check(σ)� = f alse

Fig. 2. Definition of the check function for each of the four checked transitions.

Notice that in Fig. 2 we use ≮S a1 instead of ≥S a1 because we can possibly
deal with partial orders. Similar considerations can be done for a instead of w.

Some of the intervals in Fig. 2 (C1, C2 and C3) are checked by considering the
least upper bound among the values yielded by the solutions of a Soft Constraint
Satisfaction Problem (SCSP) [3] defined as P = 〈C, con〉 (C is the set of constraints
and con ⊆ V, i.e. a subset od the problem variables). This is called the best level of
consistency and it is defined by blevel(P) = Sol(P) ⇓∅, where Sol(P) = (

⊗
C) ⇓con;

notice that supp(blevel(P)) = ∅. We also say that: P is α-consistent if blevel(P) = α;
P is consistent iff there exists α >S 0 such that P is α-consistent; P is inconsistent
if it is not consistent. In Fig. 2, for example, C1 checks if the α-consistency of the
problem is between a1 and a2.

In words, C1 states that we need at least a solution as good as a1 entailed by
the current store, but no solution better than a2; therefore, we are sure that some
solutions satisfy our needs, and none of these solutions is “too much good”.
The semantics of these checks can easily be changed in order to model different



requirements on the preference interval, e.g. to guarantee that all the solutions in
the store (and not at least one) have a preference contained in the given interval.

R1 check(σ ⊗ c)�
〈tell(c)� A, σ〉 −→ 〈A, σ ⊗ c〉 Tell

R2 σ ` c check(σ)�
〈ask(c)� A, σ〉 −→ 〈A, σ〉 Ask

R3 〈A, σ〉 −→ 〈A′, σ′〉
〈A ‖ B, σ〉 −→ 〈A′ ‖ B, σ′〉
〈B ‖ A, σ〉 −→ 〈B ‖ A′, σ′〉

Parall1

R4 〈A, σ〉 −→ 〈success, σ′〉
〈A ‖ B, σ〉 −→ 〈B, σ′〉
〈B ‖ A, σ〉 −→ 〈B, σ′〉

Parall2

R5
〈E j, σ〉 −→ 〈A j, σ

′〉 j ∈ [1,n]
〈Σn

i=1Ei, σ〉 −→ 〈A j, σ′〉 Nondet

R6 σ 6` c check(σ)�
〈nask(c)� A, σ〉 −→ 〈A, σ〉 Nask

R7 σ v c σ′ = σ	÷ c check(σ′)�
〈retract(c)� A, σ〉 −→ 〈A, σ′〉 Retract

R8
σ′ = (σ ⇓{V−X}) ⊗ c check(σ′)�
〈updateX(c)� A, σ〉 −→ 〈A, σ′〉 Update

R9
〈A[x/y], σ〉 −→ 〈B, σ′〉
〈∃x.A, σ〉 −→ 〈B, σ′〉 with y fresh Hide

R10 〈A, σ〉 −→ 〈B, σ′〉
〈p(Y), σ〉 −→ 〈B, σ′〉 p(Y) :: A ∈ F P-call

Fig. 3. The transition system for nmsccp.

Here is a description of the transition rules in Fig. 3. In the Tell rule (R1),
if the store σ ⊗ c satisfies the conditions of the specific� transition of Fig. 2,
then the agent evolves to the new agent A over the store σ ⊗ c. Therefore the
constraint c is added to the store σ. Notice that the conditions are checked on
the (possible) next-step store: i.e. check(σ′)�.

To apply the Ask rule (R2), we need to check if the current store σ entails the
constraint c and also if the current store is consistent w.r.t. the lower and upper
thresholds set by the programmer, defined by the specific� transition arrow:
i.e. if check(σ)� is true.

Parallelism and nondeterminism: the composition operators + and ‖ are
not modified w.r.t. [7]. A parallel agent (rules R3 and R4) will succeed when all
the agents succeed the parallel. This operator is modelled in terms of interleaving
(as in the classical ccp): each time, the agent A ‖ B can execute only one between
the initial enabled actions of A and B (R3); a parallel agent will succeed if all the
composing agents succeed (R4). The nondeterministic rule R5 chooses one of the
agents whose guard succeeds, and clearly gives rise to global non-determinism.

The Nask rule is needed to infer the absence of a statement whenever it
cannot be derived from the current state: the semantics in R6 shows that the
rule is enabled when the consistency interval satisfies the current store (as for
the ask), and c is not entailed by the store: i.e. σ @ c.

Retract: with R7 we are able to remove the constraint c from the store σ,
using the 	÷ constraint division function defined in Sec. 2. According to R7, we
require that the constraint c is entailed by the store, i.e. σ v c. Notice that in [5]
the division is instead always defined, but for the nmsccp language we decided
to be able to remove a quantity c only if the store is “big” enough to permit the



removal of c, i.e. we want that a÷b is possible only if a ≤S b. For example, consider
the three weighted constraints in Fig. 4: the domain of the variable x isN and the
adopted semiring is instead the classical Weighted semiring 〈R+,min,+,+∞, 0〉.
It is possible to perform c2 	÷ c1 because c2 v c1 (the c1 function is completely
dominated by c2 for every x ∈ N, and thus c1 is better), but it is not possible to
perform c3 	÷ c1 because, for x = 1 (for instance), c3(x) = 2 is better than c1(x) = 4:
thus 2 ≤ 4 and the semiring division 2 ÷ 4 cannot consequently be performed
because of the R7 definition. Finally, R7 requires that the consistency interval
satisfies σ′ = σ	÷ c. Clearly, it is also possible to completely remove a constraint
as if using tokens: i.e. 〈tell(ci)� retract(ci)� A, σk〉 is equivalent (for every ci, σk
and� if enabled) to 〈A, σk〉 due to the properties explained in [5], i.e. a×b÷b = a
always holds (where a and b are any two values of the semiring set).

c1 : {x} →N→ R+ s.t. c1(x) = x + 3 c2 : {x} →N→ R+ s.t. c2(x) = 2x + 8

c3 : {x} →N→ R+ s.t. c3(x) = 2x c4 : {x} →N→ R+ s.t. c4(x) = x + 5

Fig. 4. Four weighted soft constraints c1, c2, c3 and c4, where c4 = c2 	÷ c1.

The semantics of Update rule (R8) resembles the assignment operation in
imperative programming languages: given an updateX(c), for every x ∈ X it
removes the influence over x of each constraint in which x is involved, and
finally a new constraint c is added to the store. To remove the information
concerning all x ∈ X, we project (see Sec. 2) the current store on V\X, where V
is the set of all the variables of the problem and X is a parameter of the rule
(projecting means eliminating some variables). If X = V, this operation finds
the blevel of the problem defined by the store, before adding c. At last, the levels
of consistency are checked on the obtained store, i.e. check(σ′)�. Notice that all
the removals and the constraint addition are transactional, since are executed in
the same rule. Moreover, notice that the removal semantics of the update is quite
different from that of the retract: the update operation can always be applied,
while the retract can be applied only when σ v c. In addition, performing an
update is different from sequentially performing one (or some) retract and then
a tell: the retract relaxes the store in a “clear” way, while the update “releases”
one (or more) variable x by choosing the best semiring value for each constraint
c supported by x (i.e. σ ⇓V−x=

∑
di∈D cη[x := di], where D is the domain of

x). Therefore, if c is supported also by another variable y, c is somewhat still
constraining y after the update operation.

Hidden variables: the semantics of the existential quantifier in R9 is similar
to that described in [18] by using the notion of freshness of the new variable
added to the store.



Procedure calls: the semantics of the procedure call (R10) is not modified
w.r.t. the classical one: as usual, we use the notion of diagonal constraints (as
defined in Sec. 2) to model parameter passing.

Given the transition system proposed in Fig. 3, we define for each agent A
the set of final stores that collects the results of successful computations that A
can perform (i.e. the observables): SA = {σ ⇓var(A)| 〈A, 1̄〉 →∗ 〈success, σ〉}
A First Example. To exemplify the rules in Fig. 3, now we show an example where
we evaluate a nmsccp agent in the starting empty store 1̄ (i.e. the store with empty
support). All the checked transitions of the agent are of the type C1 in Fig. 2. The
weighted constraints c1 and c2 of this example are those represented in Fig. 4,
and the chosen semiring is still the Weighted one: 〈R+,min,+,+∞, 0〉, where +
is the arithmetic operator. The agent and the initial store are represented in (1).
According to rule R1, the store then becomes 0̄ ⊗ c2 = c2 because +∞ ≮ c2 ⇓∅≮ 8
is true (refer to C1); the reason is that c2 ⇓∅= 8, when x = 0. Thus the first tell
succeeds and the agent reach the state in (2). To execute the ask, according to
R2 and C1, we must check if both c1 is entailed by the store (i.e. if c2 ` c1) and
18 ≮ c2 ⇓∅≮ 7. These two conditions are satisfied because, respectively, c2 v c1
and c2 ⇓∅= 8. Thus, the state in (3) is reached; here, the first precondition of rule
R7 (i.e. of the retract) is true since c2 v c1. Thus, the agent can retract c1 from the
store (i.e. c2): the resulting store is c4 (defined in Fig. 4) because the instantiation
of÷ for Weighted semirings [5] is the arithmetic difference between two semiring
values a and b, i.e. a ÷b ≡ a − b if a > b, or 0 otherwise. Following the definition
of constraint division given in Sec. 2, for every η assignment of x (the domain of
x isN), we have (c2 	÷ c1)η = c2η÷ c1η = (2x + 8)− (x + 3) = x + 5 ≡ c4. Notice that
c4 satisfies the second precondition of R7 (concerning C1) since 18 ≮ c4 ⇓∅≮ 3
(when x = 0, then c4(x) = 5 and 18 ≮ 5 ≮ 3), and then the agent can execute the
retract action becoming the success agent in (4).

〈tell(c2)→8
+∞ ask(c1)→7

18 retract(c1)→3
18 success, 0̄〉 (1)

〈ask(c1)→7
18 retract(c1)→3

18 success, c2〉 (2)

〈retract(c1)→3
18 success, c2〉 (3)
〈success, c4〉 (4)

Difference between retract and update operations. We would like to highlight that
the retract and update consist in two quite different actions and some important
benefits derive from including both these primitives: the update is large-grained
from the constraint point of view but, at the same time, is fine-grained from
the variables point of view; the retract is instead fine-grained for what concerns
the constraint relaxation, but cannot directly deal with variables. With the next
very simple example we clarify this concept by using the c1 constraint in Fig. 4.
Starting under the same conditions, the two actions show a different behaviour
(final states (7) and (10)): the reason is that in (10) the best semiring value
depending on x for c1 is found (i.e.σ ⇓x=

∑
di∈D cη[x := di]. Therefore, c1 continues

to be somewhat present in the store.



〈tell(c1)→0
+∞ retract(c1)→0

+∞ success, 0̄〉 (5)
〈retract(c1)→0

+∞ success, c1〉 (6)
〈success, 0̄〉 (7)

〈tell(c1)→0
+∞ updatex(0̄)→0

+∞ success, 0̄〉 (8)
〈updatex(0̄)→0

+∞ success, c1〉 (9)
〈success, 5̄〉 (10)

No Failures. One fundamental property of the agents behaviour can be spotted:
their computations can only be successful or can suspend waiting for a change
of the store in which it is possible to execute the action on which an agent
is suspended on. This represents a further difference w.r.t. sccp where, when
trying to execute a (valued or not) ask/tell, if the resulting level of the store
consistency is lower than the threshold labeled on the transition arrow, then
this is considered a failure (see [7]): in sccp the store consistency can only be
monotonically decreased (starting from the initial store 1̄), and therefore a better
level can never be reached during the successive steps. In nmsccp, another agent
in parallel can instead perform a retract (or an update) and can consequently
increase the consistency level of the store, enabling the idle action.

Preference Representation and Operations The representational and computational
issues are complex and would deserve a deep discussion [10]. However, some
different considerations can be provided whether or not the language adopted
to represent the constraints preference is finitary.

As a practical example of (a specific subset of) soft constraints that have
a finitary representation, consider the Weighted semiring and consider a class
of constraints whose soft preference (or cost) is represented by a polynomial
expression over the variables involved in the constraints. In this case, adding
a constraint to the store means to obtain a new polynomial form that is the
sum of the new preference and the polynomial representing the current store;
retracting a constraint means just to subtract the polynomial form from the
store. Suppose we have three constraints c1(x, y) = x2 − 3x + 4y, c2(x) = 3x + 2
and c3(y) = 3y − 2: if the initial store contains c1(x, y), tell(c2) gives (c1 ⊗ c2) =
x2 − 3x + 4y + 3x + 2 = x2 + 4y + 2, and then a retract(c3) would result in the
store preference (c1 ⊗ c2 	÷ c3) = x2 + 4y + 2 − (3y − 2) = x2 + y. To compute the
result of an update{y}(c4) we need to project over {V− y} (see Sec. 2) before adding
c4: therefore, if the store preference is x2 + y, we must find the minimum of
this polynomial by assigning y = 0 and obtaining x2 as result (in the Weighted
semiring, to maximize the preference means to minimize the polynomial).

Otherwise, if soft constraints have not a finitary representation, we can
model the store as an ordered list of constraints and actions. For examples, if the



agents have chronologically performed the actions tell(c1), tell(c2) retract(c3) and
updateX(c4), the store will be c1 ⊗ c2 	÷ c3 ⇓{V−X} ⊗ c4 (whose composition is left-
associative). Therefore, at each step it is possible to compute the actual store in
order to verify the entailments among constraints and the consistency intervals.
In nmsccp, the actions ordering is important when dealing with an idempo-
tent ×: e.g. 〈tell(c1) � retract(c1) � tell(c1) � A, 1̄〉 ≡ 〈A, c1〉 but 〈tell(c1) �
tell(c1)� retract(c1)� A, 1̄〉 ≡ 〈A, 1̄〉 if × is idempotent. This representation (i.e.
keeping also the sequence of operations) differs from the classical one given by
Saraswat [18] or in [8], since in these works a retract removes from the store only
one instance of the token: 〈tell(c1)→ tell(c1)→ retract(c1)→ A, 1̄〉 ≡ 〈A, c1〉, even
if × is idempotent. Therefore, the ordering of the actions is useless and the store
can be seen only as a set of tokens.

4 The Negotiation of Service Level Agreement

One of the most meaningful application of the nmsccp language is on the mod-
elling procedure of generic entities negotiating a formal agreement, i.e. a SLA.
The main task consists in accomplishing the requests of all the agents by satisfy-
ing the needs of everybody and then allocating the resources. The agreement is
reached by considering multiple QoS indicators, as fault tolerance, availability,
scalability, time performance or other attributes of the service like billing.

The example we describe here (the program is in Fig. 6) is based on a ne-
gotiation with an associated preference between a provider P and a client C
asking for a dynamic internet connection. The variables of our SCSP are x and y,
which respectively represent the bandwidth and the latency of the connection
measured on Mbps and msec (the domain of both x and y is R+).

Since the cartesian product of multiple c-semirings is still c-semiring [3],
this can be fruitfully used to have a multi-criteria negotiation. Our first cost is
represented by the money cost at which the service is sold: thus we use the
classical Weighted semiring (see Sec. 3.1). The second QoS feature is availability,
i.e. the probability that the service is up. Therefore, the Probabilistic semiring
is chosen: 〈[0, 1],max,×, 0, 1〉; a ÷ b is defined as a

b if a < b (i.e. the arithmetic
division) or as 1 otherwise [5]. Their composition produces the semiring used
in the example: SNeg = 〈〈R+, [0, 1]〉, 〈min,max〉, 〈+,×〉, 〈+∞, 0〉, 〈0, 1〉〉. Therefore,
any preference value (related to the store, constraints and thresholds) now
corresponds to a pair given by 〈money, availability〉 (i.e. 〈AC,%〉). Moreover, the +
and × of the semiring are now vectorized and deal with pairs of values.

Some of the constraints used in the example in Fig. 6 are described in Fig. 5
(i.e. c1, c2 and c3) just to give the idea; c4 (Fig. 6) is defined as c4 = c1 ⊗ c2 and it is
used as an alias name (a shortcut) for the initial offer of P. In words, c1 constraints
only bandwidth (i.e., x) and has the fixed cost 〈5, 0.98〉when 1Mbps ≤ x ≤ 4Mbps,
and then, as the bandwidth increases (i.e. 4 < x ≤ 8), the cost worsens according
to the two polynomials 〈2x, x−8

4−8 〉; c2 binds together the preferences for x and y,
while c3 represents the initial requirements of C about money and availability:



c1 : {x} → R+ → 〈R+, [0, 1],R+〉 s.t. c1(x) =



〈5, 0.98〉 if 1 ≤ x ≤ 4,
〈2x, x−8

4−8 〉 if 4 < x ≤ 8,
〈+∞, 0〉 otherwise.

c2 : {x, y} → R+ ×R+ → 〈R+, [0, 1],R+〉 s.t. c2(x, y) =



〈1, 0.99〉 if (1 ≤ x ≤ 8) ∧ (150 < y ≤ 200),
〈4, 0.97〉 if (1 ≤ x ≤ 4) ∧ (100 ≤ y ≤ 150),
〈10, 0.96〉 if (4 < x ≤ 8) ∧ (100 ≤ y ≤ 150),
〈+∞, 0〉 otherwise.

c3 : {x} → R+ → 〈R+, [0, 1],R+〉 s.t. c3(x) = 〈4, 0.99〉 if 1 ≤ x ≤ 4

Fig. 5. Some of the constraints used in Fig. 6 (x is bandwidth and y is latency).

C is only interested in having a connection with a bandwidth between 1Mbps
and 4Mbps with an availability ≮ 0.99% and a cost ≯ 4AC (no concern about y).

The Negotiation and Acquisition interaction is described in Fig. 6 and is
given by the parallelization of P and C starting from the store with empty
support 〈0̄, 1̄〉. P makes its initial offer about the service, by adding c4 = c1⊗ c2 to
the store. It is the seller and must be the first proposer. Clearly, for each pair of
〈x, y〉 domain values, the global cost of this offer is given by summing together
the money-costs and multiplying together the availability values defined by c1
and c2: e.g. for (1 ≤ x ≤ 4) ∧ (150 < y ≤ 200) the cost is 〈5 + 1, 0.98 × 0.99〉 =
〈6, 0.9702〉. The checked transitions of the example in Fig. 6 are all of C1 type
(see Fig. 2) and represent the preference interval requested by the actions; for
sake of example simplicity, all the P actions are labeled with the same interval,
and same consideration applies to C actions: �̇ ≡→〈5,0.99〉

〈∞,0〉 means P does not

want to sell with a price better than 〈5, 0.99〉, and �̈ ≡→〈0,1〉〈20,0.9〉 means C does not
want to buy at a price worse than 〈20, 0.9〉. From Fig. 2, we remind that these
checks are on the best possible solution of the store.

In Fig. 6, C waits for presence of the P offer in the store (i.e., ask(c4)); we
can consider c4 as a constraint global name, thus C knows the name without
having the details of the constraint (belonging to P). Then, C checks whether
its requirements are satisfied or not (nask(c3) + ask(c3)). From Fig. 5 we can see
that c4 v c3 (with σ = c4) and then ask(c3) is enabled, since when 1 ≤ x ≤ 4
then 〈5, 0.98〉 <SNeg 〈4, 0.99〉; this means that P offers conditions worse than
those demanded by C, i.e. P offers a higher cost and a lower availability for
the requested bandwidth. Therefore, C needs to make a counter-offer to reach a
shared agreement, and it relaxes the P offer (i.e. retract(c5), c5 is left generic) to ask
for a better treatment. Otherwise, if nask(c3) had been enabled instead, C needs
to refine its request through the REFINE agent, since some of its requirements
are met but some may be not (the nask is enabled when the σ 6` c, but we do
not know if c v σ). Then it can buy the service. Describing P in Fig. 6, it checks
if C wants to immediately buy (i.e. ask(c7)) or if the store has been relaxed
(i.e. nask(c4)); in this case, P checks if an acceptable cost is still implied by the



store (i.e. if ask(c6) is enabled), otherwise it makes a counter-counter-offer (with
tell(c8)). The c6 and c8 are left generic but can be considered similar to those in
Fig. 5.

SYNCHROC and SYNCHROP are dual agents that are used to synchronize P
and C on the end of the renegotiation after the retract(c5) and tell(c8) actions, and
also to perform a final check on the store before buying and selling; synchro-
nization could be achieved via a synchronization variable. USE and MONITOR
are generic agents that model the use and the supervision of the resources, while
the presence of c7 in the store implies the acquisition of the service, i.e. it is a
synchronization variable (its name is shared between P and C, as c4). All these
agents, as well as some of used constraints, are not detailed in order to have a
more intuitive program.

P H tell(c4) �̇ (ask(c7) �̇ sell() + nask(c4) �̇ (ask(c6) �̇ SYNCHROP �̇ sell()+
nask(c6) �̇ tell(c8) �̇ SYNCHROP �̇ sell()))

C H ask(c4) �̈ (nask(c3) �̈ REFINE �̈buy() + ask(c3) �̈ retract(c5) �̈ SYNCHROC

�̈ buy())

sell() :: ask(c7) �̇MONITOR �̇ nask(c7) �̇ success

buy() :: tell(c7) �̈ USE �̈ retract(c7) �̈ success

Negotiation and Acquisition H 〈Provider || Client, 〈0̄, 1̄〉〉

Fig. 6. Negotiating and acquiring an internet connection by using nmsccp agents. P is the
provider agent and C is the client. The c4 constraint is an alias name for the initial offer
P, i.e. c4 = c1 ⊗ c2. Moreover, �̇ ≡→〈5,0.99〉

〈∞,0〉 and �̈ ≡→〈0,1〉〈20,0.9〉.

4.1 Related Work

Nonmonotonicity has been extensively studied for crisp constraints in the so-
called linear cc programming [17] and in following works as [9, 11, 16, 1]. Regard-
ing related SLA negotiation models, the process calculus introduced in [12] is
focused on controlling and coordinating distributed process interactions while
respecting QoS parameters expressed as c-semiring values; however, the model
does not cover negotiation. SLAng [15] and WSLA [14] are XML-based languages
for defining SLAs, therefore, at a lower level of abstraction.

The most direct comparison for nmsccp, since the the two languages are
used for SLA negotiation, is with the work in [8], in which soft constraints are
combined with a name-passing calculus (even if all the examples in the paper
are then developed using crisp constraints). However, w.r.t our language there
are some important differences: i) in nmsccp we do not have the concept of
constraint token and it is possible to remove every c that is entailed by the store
(i.e. σ v c), even if c is syntactically different from all the c previously added. For



example, even the removal of the c1 ⊗ c2 composition from a store containing
both c1 and c2 cannot be performed in [8], because it is a derived constraint.
Therefore our retract is more like a “relaxation” operation, and not a “physical”
removal of a token as in [8]; this relaxation feature is in the nature of negotiation,
when a step back must be taken to reach a shared agreement. When having an
idempotent ×, a further difference w.r.t. the retract semantics in [8] is explained
in the last paragraph of Sec. 3.1, describing the preference representation.

Then, ii) with nmsccp we can model the negotiation procedure and reach a
final agreement among the parties, knowing also “how consistently” (or “how
expensively”) the claimed needs are being satisfied. This is accomplished by
checking the preference level of the store and the consistency intervals condi-
tioning the actions (Fig. 2). In this way, each of the agents can specify its desired
preference for the final agreement. This is a relevant improvement w.r.t. [8],
where the final store collects all the consistent solutions without any distinc-
tion, i.e. each solution that satisfies σ ⇓∅= αi, for every αi >S 0.

At last, iii) we introduced the update operation which is a variable-grained
relaxation, and the nask, that is very useful to have in a nonmonotonic framework
to check absence of information. Notice that we do not need the check operation
defined in [8] in order to verify if a given constraint is consistent with the store
(without adding it). The reason is that we have the checked transitions of Fig. 2
to prevent the store from becoming not consistent “enough”.

5 Conclusions and Future Work

Monotonicity is one the mayor drawbacks for practical use of concurrent con-
straint languages in reactive and open systems. In this paper we have proposed
some new primitives (nask, update and retract) that allow the nonmonotonic evo-
lution of the store. We have chosen to extend sccp because soft constraints [3,
6] enhance the classical constraints in order to represent consistency levels, and
to provide a way to express preferences, fuzziness, and uncertainty. We think
that having preference values directly embedded in the language represents a
valuable solution to manage SLA negotiation, particularly when a given QoS
is associated with the resources. Soft constraints can be used to model different
problems by only parameterizing the semiring structure.

We are currently extending the language with timing mechanisms as “time-
out” and “interrupt” to further improve the expressiveness of the language [4].
These capabilities can be useful during complex interactions, e.g. to interrupt a
long wait for pending conditions or to trigger some urgent and critical actions.

At last, we plan to provide the language with other formal tools, as a deno-
tational semantics, a study on agent equivalences in order to prove when two
providers offer the same service.
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