
Multilevel Security and Quality of Protection

Simon N. Foley1, Stefano Bistarelli3,4, Barry O’Sullivan1,2, John Herbert1, and
Garret Swart5

1 Department of Computer Science, University College, Cork, Ireland.
2 Cork Constraint Computation Centre, University College Cork, Ireland

3 Dipartimento di Scienze, Università “G. D’Annunzio” di Chieti-Pescara, Italy
4 Istituto di Informatica e Telematica, CNR, Pisa, Italy
5 IBM Almaden Research Center, San Jose, CA, USA

Abstract. Constraining how information may flow within a system is
at the heart of many protection mechanisms and many security policies
have direct interpretations in terms of information flow and multilevel
security style controls. However, while conceptually simple, multilevel
security controls have been difficult to achieve in practice. In this paper
we explore how the traditional assurance measures that are used in the
network multilevel security model can be re-interpreted and generalised
to provide the basis of a framework for reasoning about the quality of
protection provided by a secure system configuration.

1 Introduction

Multilevel security is concerned with controlling the flow of information in sys-
tems. The traditional view of multilevel security is one of ensuring that infor-
mation at a high security classification cannot flow down to a lower security
classification [2, 9, 32]. However, constraining how information may flow within
a system is at the heart of many protection mechanisms and many security
policies have direct interpretations in terms of multilevel security style controls.
These include: Chinese Walls [13, 25]; separation of duties and well formed trans-
actions [13, 14, 18]; Role Based Access Control [26] and a variety of policies where
a degree of data separation is required, for instance, Digital Rights Management
[24] and Multi-applicative Smart Cards [28].

Multilevel security, while conceptually simple, has been notoriously difficult
to achieve in practice [27]. From the earliest models, there have been problems
in reconciling multilevel security models with actual multilevel secure systems,
leading to problems such as covert channels [22] and how to properly interpret
the model [20]. This led to more abstract formal definitions such as [11, 16, 30]
that effectively attempted to capture the meaning of information flow in some
possibilistic information-theoretic sense. These properties of non-interference,
information flow and a great many variations have been extensively studied. De-
signing and verifying security mechanisms that uphold these classes of property
is accepted to be difficult [21, 29].

Using formal methods to analyse and verify information flow properties of se-
cure systems requires considerable specification effort. The cost of such in-depth

2

specification and subsequent analysis may be justified for small critical security
mechanisms such as authentication protocols and security kernels. However, such
in-depth security analysis would not scale to the configuration of a large and/or
complex application system.

We are interested in developing shallow and pragmatic security analysis
methods for systems. This is achieved through the analysis of how a system is
configured, rather than an analysis of its underlying mechanisms and protocols.
Instead of concentrating on detailed semantics and complete formal verification
of components, we are concerned more with the ability to trace, at a practical
level of abstraction, how component security requirements relate to each other
and any overall security requirements. We believe that a complete security ver-
ification of a system is not achievable in practice; we seek some degree of useful
feedback from an analysis that a particular system configuration is reasonable.

We adopt this view when re-visiting the problem of multilevel security. Rather
than seeking ‘beyond A1’ multilevel security [21, 27, 32], we seek to measure the
degree and/or quality of the multilevel protection that is provided by a sys-
tem configuration. Weaker, but reasoned, assurances of security are a pragmatic
way of providing practical multilevel systems, such as [19], that can be built
from Commercial Off-The-Shelf (COTS) components. Systems may be config-
ured from components in which we have varying degrees of confidence in their
security. In [15], confidence rated information flow policies are used to model
interoperation between PDAs and Workstations: we have a higher degree of con-
fidence in the flows that are constrained by the workstation security mechanism
than we have in flows constrained by the PDA application. In [1] we consider
how best to configure Storage Area Networks from components having varying
security guarantees, while ensuring that mandatory security rules are enforced.
These approaches do not consider covert-channels or in-depth formal analysis
of protection mechanisms. Rather, they seek useful feedback that a particular
configuration is reasonable.

In this paper we describe a general framework for measuring quality of protec-
tion for information flow and/or multilevel security. The model builds on earlier
models of information flow security [12–15] by considering the relative risks of
configuring various components into multilevel systems. Risk measurement is
used to characterise the quality of protection that is provided by a multilevel
system configuration. This gives rise to a novel approach to describing multilevel
security policies that combine both risk and information flow. The model that
is developed in this paper is a consistent interpretation of multilevel security,
allowing us to draw on a wide range of existing results from the area.

The model that is proposed in this paper forms a part of our ongoing research
in using constraint solving techniques as a practical approach for reasoning about
security [1, 3–5, 31]. Building on the results in [4] we demonstrate in this paper
that determining whether a particular system configuration meets a quality of
protection measure can be described as a constraint satisfaction problem. Con-
straint solving is an emerging software technology for modelling and solving

3

large-scale optimisation problems [3, 34] and there are many results on solving
this problem for large systems of constraints in a fully mechanised manner.

Section 2 describes the underlying model of multilevel security. As with past
security criteria, this model is extended in Section 3 to support assurance levels.
However, our interpretation of assurance is more general: every system compo-
nent has an assurance level that reflects the degree of confidence that it cannot
be compromised. In Section 4 we illustrate how configurations within our model
can exhibit cascade vulnerabilities [23, 32] and outline in Section 5 a soft con-
straint based framework [4] that can be used in their detection and elimination.
The advantage of taking a soft-constraint approach is that assurance can be de-
scribed in terms of a c-semiring [3] and Section 6 explores how aggregate risk
measurements can be made across configurations. Section 7 provides further
discussion on how this framework provides a basis for quality of protection.

2 Interpreting Multilevel Security

An information flow policy is defined in terms of a lattice ordering (≤) over a
set of security labels L . Given x, y : L then x ≤ y means that information may
flow from level x to level y. The simplest interpretation of an information flow
policy is multilevel security [2] whereby the labels correspond to sensitivity levels,
for example, unclass ≤ secret ≤ topsecret. A more general interpretation [14] is
that a label represents an abstract data type that is used to encode security
relevant characteristics of entities that are subject to flow constraints. With
this interpretation a wide variety of access control policies can be represented
within the multilevel security model. Techniques for specifying more general
(non-lattice) information flow constraints and translating them into lattice based
policies are considered in [12–14].

Let the set of entities E represent the set of all components that can source
and/or sink information. In addition to the conventional ‘subject’ and ’object’
interpretation, entities are regarded as anything that can store, process and/or
manage information [12, 15]. Examples include devices, workstations, controllers,
sessions, datasets and applications (examples can be found in [1, 14, 15]). An
entity is anything that can have an associated security state (and to which the
flow constraints must apply).

Every entity, e, is bound to an interval of the policy lattice, where int(e) =
[x, y] ∈ L × L, and x ≤ y, is interpreted to mean that entity e may sink in-
formation at class y or lower and may source information at class x or higher
[12]. We also write int(e) = [int⊥(e), int>(e)]. If entity e is a ‘subject’ then
int(e) = [x, y] corresponds to a partially trusted subject (in the sense of [8])
that may view/read information at class y and lower and may write/alter infor-
mation at class x and higher; these are defined as vmax and amin, respectively,
in [8]. Conventional objects may be interpreted within this model as entities that
are bound to a point interval [x, x] with a single level. Intuitively, we interpret
[12], int(e) = [x, y] to mean that the entity can be trusted to properly manage
multilevel information within the security interval [x, y].

4

Let A; B represent information flow in our system from entity A to entity
B. We do not consider a semantics for ;; it could be simply based on read-write
access controls (effectively [2, 8]), based on a non-interference interpretation, or
even based on some informal characterisation of what flows are considered to be
possible [15] in a system. Under this interpretation, a system is secure if for all
entities, A,B, such that A; B then int⊥(A) ≤ int>(B) holds [12]. In this paper
we use a variant of this definition to reflect the specific information that can flow.
Let Ax ; By represent a flow of x information in entity A to y information in
entity B. A system is secure, if for all entities A and B then,

Ax ; By ⇒ x ≤ y ∧ int⊥(A) ≤ x ≤ int>(A) ∧ int⊥(B) ≤ y ≤ int>(B)

Example 1 A multilevel secure network is composed of systems A and B. Sys-
tem A is a multilevel secure and configured to manage unclass and secret infor-
mation and is thus partially trusted with int(A) = [u, s]. Similarly, system B is
trusted to manage secret and topsec information, and int(B) = [s, t]. The sys-
tems communicate/share secret information. The flows are defined as As ;Bs

and Bs ; As, and by definition, the configuration is secure. Note that we may
use the initial character(s) of a security level to represent it, if no ambiguity can
arise. In general, a flow between entities need not necessarily be sourced and
sunk at the same level. For example, the flow Fs ; Pt might represent a secret
file F that is read by a single level process P with int(P) = [t, t]. 4

3 Interpreting Assurance

Define a lattice, A, of assurance levels with ordering ≤. Given x, y : A, then x ≤ y

means that a system evaluated at y is no less secure than a system evaluated at
x, or alternatively, that an attacker that can compromise a system evaluated at
y can compromise a system evaluated at x. For example, the ‘Orange’ and ‘Red’
Book security criteria [32, 33] define assurance levels A1 > B3 > B2 > B1 >
This conventional notion of assurance can be generalised to assurance for entities
[15] if we regard assurance as reflecting our degree of confidence that an entity
can be relied upon to properly manage the information that is entrusted to it. For
example, we might have high confidence in a firewall-based email proxy (entity)
managing multilevel information, but have low confidence in a sendmail process
(entity) managing the same information.

We define rating : E → A where rating(e) gives the assurance rating of
entity e, and is also taken to represent the minimum effort that is required by
an attacker to compromise entity e.

Security evaluation criteria [32] also define a minimum required assurance
function req : L × L → A, such that req(l, l′) defines the minimum required
assurance for a system managing information at classes l, l′ : L. For example,
req(unclass, topsec) = B3 means that in order for an entity to manage informa-
tion with labels between unclass and topsec, a B3 assurance rating is needed. In
general a system must meet the minimum required assurance.

∀e ∈ E : req(int⊥(e), int>(e)) ≤ rating(e)

5

This has a similar interpretation for the more general notion of an entity
used in this paper. Entities represent anything that can source and/or sink in-
formation. For example, the rating of an entity may incorporate the methodology
that was used to develop the entity, as in the conventional Orange/Red Book
rating, the level of testing the entity has received, or the level of complexity of
the function the entity is implementing. A general purpose workstation, W , may
be just fine for managing single level of information, like [secret, secret] but be
unacceptable for managing multilevel data such as [secret, topsec]. In the model
this is represented by setting rating(W) to FAIR, and setting req(secret, secret)
to FAIR. But req(secret, topsec) must be set to a higher assurance rating, say
GOOD, to ensure that W and other workstations like it are not used for such
information. Another example, rating(A) could represent how much we can rely
on the user A (given their associated security interval); for example, one would
presume that a CEO has a higher assurance rating than a clerk in the same
organisation.

A further example, rating(S) could represent the rating of application soft-
ware S: a COTS product may have a low rating, while an in-house developed ap-
plication may have a high rating, when handling multilevel information. While it
may be acceptable to trust the high assurance email proxy process with multilevel
information (for example, int(proxy) = [u, t]), it may only be acceptable to trust
sendmail with single-level information (for example, int(sendmail) = [s, s]). This
could be reflected by requirement req(u, t) = hi and req(s, s) = lo, where lo < li,
and so forth.

Example 2 In the Chinese Wall policy a stock market analyst may not ad-
vise an organisation if he has insider knowledge of another competing organ-
isation. Encoding this policy in terms of a multilevel security policy has been
demonstrated elsewhere [13, 14, 25]. In this example we describe a new multilevel
encoding of the Chinese Wall policy in terms of an assurance requirement.

Let L = 2{ibm,hp,sun,elf,shell,...} be the powerset of organisations. Define the
assurance lattice as: audit < cons < over, where audit represents the degree of
trust in an auditor, cons represents the degree of trust in a consultant, and over

represents the degree of trust in a stock exchange partner who is trusted to access
everything for the purposes of oversight. Consultants are trusted to consult for
multiple organisations so long as there is no conflict of interest. We define some
minimum required assurance levels for intervals of trust as follows.

req({}, {hp}) = aud req({}, {ibm, elf}) = cons req({}, {ibm, hp}) = over

req({}, {elf}) = aud req({}, {hp, shell}) = cons req({}, {ibm, hp, elf}) = over

req({}, {ibm}) = aud req({}, {hp, elf}) = cons req({}, {ibm, hp}) = over

Assume that any entity that is controlled by a consultant will never have an
assurance rating higher than cons. While a consultant may be trusted to simul-
taneously manage ibm and elf information (bound to interval [{}, {ibm, elf]), the
minimum assurance rule dictates that a consultant cannot be trusted to access
conflicting ibm and hp data (bound to interval [{}, {ibm, hp]). 4

6

Note that we assume that the execution system will properly classify entities.
For example, a session entity corresponding to a consultant executing low assur-
ance software would have an assurance level equal to the greatest lower bound of
the consultant assurance and the software assurance level. Similar calculations
are necessary to determine the interval for the session (the greatest lower bound
of the intervals of the entities involved). For reasons of space we do not consider
the execution model in this paper, however models such as [14] are applicable in
this case.

4 The Cascade Problem

The cascade vulnerability problem [23, 32] is concerned with secure interopera-
tion, and considers the assurance risk of composing multilevel secure systems
that are evaluated to different levels of assurance according to the criteria spec-
ified in [32]. The transitivity of the multilevel security policy upheld across all
secure systems ensures that their multilevel composition is secure; however, in-
teroperability and data sharing between systems may increase the risk of com-
promise beyond that accepted by the assurance level. For example, it may be an
acceptable risk to store only secret and top-secret data on a medium assurance
system, and only classified and secret data on another medium assurance sys-
tem; classified and top-secret data may be stored simultaneously only on ‘high’
assurance systems. However, if these medium assurance systems interoperate at
classification secret, then the acceptable risk of compromise is no longer adequate
as there is an unacceptable cascading risk from top-secret across the network to
classified.

Example 3 Continuing the Chinese Wall example, consider two consultant ses-
sions (entities) A and B, that are trusted to the following extent.

rating(A) = cons int(A) = [{}, {ibm, elf}]
rating(B) = cons int(B) = [{}, {hp, elf}]

Suppose that the system permits these sessions to share information classified
at {elf}, that is, we have A{elf} ;B{elf} and B{elf} ; A{elf}. While the individual
entities are secure based on the req assurance rule defined above, their inter-
operation is not. There is a cascading path from {ibm} on entity A to {hp}
on entity B via shared channel {elf}. The assurance rules require an assurance
level of at least over in order to be able to simultaneously access both {hp} and
{ibm} information. However, with a configuration that allows A and B share elf

information, entities with an assurance rating of just cons can obtain this access.
This can be interpreted in two ways. The assurance level reflects how much

we can rely on an entity to properly manage the different information. The con-
figuration implies that we have cons level confidence that hp and ibm information
is properly managed, which is contrary to the requirement. The second inter-
pretation is when one regards assurance as representing the degree of confidence
that one can have that an entity cannot be compromised. In this case the effort

7

required by an attacker corresponds to the effort to compromise cons rated sys-
tems to effectively copy hp into ibm data. However, the requirement is that it
must require at least the effort to compromise a level over rated entity. 4

The above example illustrates that avoiding conflict of interest when entities
share information corresponds to detecting and eliminating the cascade vulner-
ability problem. Existing research has considered schemes for detecting these
cascading security vulnerabilities and for eliminating them by reconfiguring sys-
tem interoperation. While the detection of cascade vulnerabilities can be easily
achieved [23, 32], their optimal elimination is NP-complete [17].

5 Soft Constraints and Semirings

In [4], a soft constraint-based framework is described for modelling, detecting
and eliminating the cascade vulnerability problem. A soft constraint may be seen
as a constraint where each instantiation of its variables has an associated value
from a partially ordered set that can be interpreted as a set of preference values.
Combining constraints will then have to take into account such additional values,
and thus the formalism has also to provide suitable operations for combination
(×) and comparison (+) of tuples of values and constraints. This is why this
formalisation is based on the concept of c-semiring, which is just a set plus two
operations.

The framework described in [4] is directly applicable to the information flow
model described in this paper. A network (a system of entities) is modelled in
terms of constraints, reflecting all possible flows as a result of the network con-
figuration (the ; relation). This constraint network also considers the effective
assurance along all possible communication paths in the network. The network
is cascade free if these constraints uphold the overall assurance criteria (the req

relation).
The security label ordering (L,≤) is modelled as a lattice and the assurance

ordering (A,≤) in [4] is modelled as a more general c-semiring structure [3, 6].
While [4] only considered the cascade problem for conventional lattice based
assurance ordering, the framework is applicable for any c-semiring. A semiring
is a tuple 〈S,+,×,0,1〉 such that: S is a set and 0,1 ∈ S; + is commutative,
associative and 0 is its unit element; × is associative, distributes over +, 1

is its unit element and 0 is its absorbing element. A c-semiring is a semiring
〈S,+,×,0,1〉 such that: + is idempotent, 1 is its absorbing element and × is
commutative.

Let us consider the relation ≤S over S such that a ≤S b iff a+ b = b. Then it
is possible to prove that (see [6]): ≤S is a partial order; + and × are monotone
on ≤S ; 0 is its minimum and 1 its maximum; Informally, the relation ≤S gives
us a way to compare semiring values and constraints. In fact, when we have
a ≤S b, we will say that b is better than a. In the following, when the semiring
will be clear from the context, a ≤S b will be often indicated by a ≤ b.

The classical Constraint Satisfaction Problem (CSP) is a Soft CSP (SCSP)
where the chosen c-semiring is: SCSP = 〈{false, true},∨,∧, false, true〉. Fuzzy

8

CSPs (FCSP) can instead be modelled in the SCSP framework by choosing the
c-semiring SFCSP = 〈[0, 1],max,min, 0, 1〉. Many other soft CSPs (probabilistic,
weighted, . . .) can be modelled by using a suitable semiring structure (Sprob =
〈[0, 1],max,×, 0, 1〉, Sweight = 〈R,min,+,+∞, 0〉, . . .). Therefore, a wide range
of ‘soft’ ways to consider degree of assurance can be considered and can be
effectively reasoned about within our model.

6 Interpreting Risk

While conventional assurance ratings are defined in terms of a lattice, the model
proposed in this paper can use any measure that can be defined as a c-semiring.
The assurance rating, rating(A) of an entity A provides a measure of how much
the entity can be relied upon not to be compromised. Whether we use numbers,
enumerations (A1, B3, . . .), and so forth, in the c-semiring is not important;
rather it is the ability to compare different rating which give a measure of how
much we can rely on an entity.

We can interpret an assurance rating as providing an indication of the mini-
mum amount of effort that is required by an attacker to compromise an entity.
By ‘compromise’ we mean that the attacker can force the entity to violate its
interval of trust, that is, to violate the information flow ordering. For example,
compromising the system B in Example 1 corresponds to the attacker break-
ing the protection mechanism, and outputting topsec labelled as secret (copying
topsec information to secret). This corresponds to the usual threat model used in
[32]. In this paper we generalise this to any entity. An attacker could compromise
another user by tricking them into revealing incorrectly labelled information; an
attacker could compromise an application by a stack smashing attack, causing
it to copy information from one file to another, violating the flow policy.

The c-semiring provides a convenient way to measure aggregate threats across
the collections of entities that make up a system. The minimum effort required
to break a series of entities along a path is given by the combination (under
the c-semiring) of the ratings of the individual broken entities. In this case,
the weighted c-semiring Sweight = 〈R,min,+,+∞, 0〉 provides the appropriate
measure. A path that can cause a flow of level x information to level y can start
at any system that is trusted to manage x information and can end at any system
trusted to manager y information. Given a series of possible compromising paths
that facilitate a flow from level x to level y, where x 6≤ y, then the least effort
required to create a compromise from x to y is the shortest path (using Sweight)
from x to y. There is a cascade vulnerability if the value calculated for this
shortest path is more than req(x, y).

This is effectively a characterisation of a cascading path from [32], but defined
in terms of a c-semiring using the model [4]. It is the definition in terms of a
c-semiring that allows the determination of effort along a cascading path as the
combination of the efforts required to break individual systems along the path.
Practical techniques for calculating shortest paths across weighted constraint
networks are considered in [3].

9

Definition 1 Quality of Protection. Let constraint specification CONFIG
represent the flows (and cascades) that are a consequence of entity interoperation
constructed using the model [4]. The assurance requirements function req(x, y)
provides an acceptable lower bound on the quality of protection for this sys-
tem configuration. Let constraint specification QOP represent these ratings for
all permitted flows. A configuration CONFIG meets the quality of protection
requirement QOP if no path in CONFIG violates QOP. 4

The assurance requirements function req(x, y) provides an acceptable lower
bound on the quality of protection for an overall system configuration. The soft-
constraint model described in [4] can be used to encode the quality of protection
problem as a constraint satisfaction problem. For reasons of space we do not
provide the details of the constraint model.

5

C (10)

0

{elf}

{ibm,elf}

{ibm} {elf}

0

5

{elf,hp}

{elf} {hp}

{} {}{}

A (5) B (5)

Fig. 1. Entity Information Flows with Weighted Cascading Path

Example 4 Figure 1 depicts a configuration of the consultant sessions A and
B from Example 3. We introduce a third session entity C, that connects entity
A and entity B, permitting controlled sharing of {elf} information. This is rep-
resented by the flows A{elf} ; C{elf} and C{elf} ; B{elf}. Using the weighted
c-semiring to define assurance ratings, the sessions are trusted to the following
extent.

rating(A) = 5 int(A) = [{}, {ibm, elf}]
rating(B) = 5 int(B) = [{}, {hp, elf}]
rating(C) = 10 int(C) = [{}, {elf}]

and some defined minimum required ratings are as follows.

req({}, {hp}) = 3 req({}, {ibm, elf}) = 5 req({}, {ibm, hp}) = 15
req({}, {elf}) = 3 req({}, {hp, shell}) = 5 req({}, {ibm, hp, elf}) = 18
req({}, {ibm}) = 3 req({}, {hp, elf}) = 5 req({}, {ibm, hp}) = 15

This configuration has a cascading path vulnerability. The effort required to
break entity A and copy {ibm} information to {elf}, copy this to entity C, and
copy it again to a broken entity B which allows it to be copied to {hp} is 5+5=10,
which is less than the minimum effort required, that is, req({}, {ibm, hp}) = 15.

10

Note that it is not necessary to break entity C as the attacker inputs and outputs
{elf} information, and thus, the effort to carry out this copy is 0. This is dealt
within the cascade framework [4] by defining permitted flows as having minimum
rating, the lowest level in the lattice. In the case of Sweight this is the value 0,
that is, req({elf, elf}) = 0. The dashed arcs in Figure 1 represents the weighted
cascading path calculated from {ibm} to {hp}. 4

In suggesting the use of the weighted c-semiring Sweight = 〈R,min,+,+∞, 0〉
as one example of a risk measure, we are assuming that the effort required by
an attacker to compromise one entity is independent of the effort to compro-
mise any other entity. This means that having expended ‘effort’ rating(A) to
compromise system A, an attacker must, in addition, expend ‘effort’ rating(B)
to subsequently compromise system B, regardless of whether lessons learnt in
compromising A can be subsequently used to attack B. This is quite a restrictive
assumption; however, there are examples where this kind of measure is useful.
For example, in practice, the more firewalls/subnets that have to be traversed
to directly access a system, then the more ‘secure’ the system is considered to
be. The notion of security distance is defined in [31] as the minumum number
of servers/firewalls that an attacker on the Internet must compromise to obtain
direct access to some protected service. We conjecture that security distance in
this case is equivalent to using a weighted c-semiring with each system having
an equal rating of ‘1’.

An alternative measure to using the weighted c-semiring is to interpret the
probabilistic c-semiring Sprob = 〈{x| ∈ [0, 1]},max,×, 0, 1〉 [3] in terms of aggre-
gation of risk along a path, which is calculated as combination (multiplication)
of probabilities. As an attacker compromises systems along a cascading path,
then overall, less and less ‘effort’ is required to attack subsequent systems.

These measures are unlike the lattice based assurance measure used by the
Orange/Red Book. This reflects an assumption that once one system rated at
degree x (for example, B2) is compromised then all systems rated at this degree
or lower (for example, B2, B1,. . .) are considered compromised. In practice, we
believe that a practical risk measure will use a variety of such measures; exploring
suitable c-semirings is a topic for future research.

7 Discussion and Conclusion

In this paper we describe how the network multilevel security model can be
generalised to provide an approach to measuring the degree of confidence that
one can have in the security of a system configuration. A system configuration
is modelled as a collection of entities. These entities can represent system com-
ponents, users, COTS components, and so forth, whose potential accesses and
interoperation are articulated abstractly in terms of information flows. It is not
necessary for these components to have an explicit access control mechanism;
the flow relations represents the access limitations that we believe the entities
effectively uphold. Thus, in the sense of [7], every entity in the system can be re-

11

garded as contributing to the overall Trusted Computing Base. In our framework
we can distinguish the merit of each entity’s contribution.

While the results in this paper are presented in terms of a multilevel security
model, we argue that they have wider application. Constraining how information
may flow within a system is at the heart of many protection mechanisms. Many
security policies have direct interpretations in terms of multilevel security style
controls. Furthermore, modelling a configuration in terms of information flows
provides a form of traceability on interoperation that can provide useful feedback
on the quality of protection achieved.

A multilevel security model for Storage Area Networks (SANs) is proposed
in [1]. This SAN model also takes a measurement approach to achieving security.
Hard (crisp) constraints are used to measure the risk associated with SAN con-
figurations. However, the SAN model uses an ad-hoc adaptation of multilevel
security, and does not have the same strict interpretation within the network
security model as does the model proposed in this paper. As a consequence,
the SAN model does not address the cascading channel problem. We are cur-
rently investigating how the risk framework in [1] can be re-coded in terms
of the c-semiring based framework proposed in this paper. The advantage of
this is a simplification of the SAN model that solves the channel cascade prob-
lem, and provides access to a greater range of measures (c-semirings) for risk.
A soft-constraint encoding of the revised SAN model will also provide access
to techniques for exploring and manipulating SAN configurations. This will be
especially useful when making tradeoffs of quality of protection against other at-
tributes such as cost and performance [1, 31]. Exploring how our soft-constraint
framework can facilitate making such tradeoffs is a topic for future research.

Determining whether a system configuration provides quality of protection as
required by req(x, y) is easily achieved as it corresponds to the channel cascade
detection problem. Any solution to the constraint model represents a cascading
path, which provides significantly more information regarding the vulnerabilities
in the network than existing approaches for detecting cascading paths [17, 23].
The set of solutions to the constraint model provides a basis for removing the
cascade vulnerability problem.

Reconfiguring such a system by attempting to eliminate an optimal minimum
number of links (flows) between entities is NP-complete as it corresponds to the
cascade elimination problem [17]. Previous approaches [10, 17, 23] detect a single
cascading path in polynomial time, but eliminating the cascade in an optimal way
is NP-complete. Detecting all paths in the constraint model is NP-hard, however
elimination of a minimal number of links is polynomial. While constraint solving
is NP-complete in general, this has not detracted from its uptake as a practical
approach to solving many real-world problems [34]. Using a constraint model,
we can rely on a significant body of successful techniques for finding the set of
cascading paths, which once found, can be eliminated in polynomial time.

12

Acknowledgements

The authors would like to thank the anonymous referees for their useful com-
ments and feedback on the paper. This work has received partial support from
from Enterprise Ireland under their Basic Research Grant Scheme (SC/02/289
and SC/2003/007) and their International Collaboration Programme (IC/2003/88)
and from the Italian MIUR project “Constraint-Based Verification of Reactive
Systems” (COVER).

References

1. B. Aziz, S.N. Foley, J. Herbert, and G. Swart. Configuring storage area networks
for mandatory security. In Proceedings of the 18th IFIP Annual Conference on
Data and Applications Security. Kluwer, 2004.

2. D. E. Bell and L. J. La Padula. Secure computer system: unified exposition
and MULTICS interpretation. Report ESD-TR-75-306, The MITRE Corporation,
March 1976.

3. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume
LNCS 2962. Springer, 2004.

4. S. Bistarelli, S.N. Foley, and B. O’Sullivan. Detecting and eliminating the cascade
vulnerability problem from multi-level security networks using soft constraints. In
Proceedings of AAAI/IAAI-2004 (16th Innovative Applications of AI Conference),
pages 808–813. AAAI Press San Jose, July 2004.

5. S. Bistarelli, S.N. Foley, and B. O’Sullivan. Reasoning about secure interoperation
using soft constraints. In Proceedings of FAST-2004 Workshop on Formal Aspects
of Security and Trust, 2004.

6. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and
Optimization. JACM, 44(2):201–236, 1997.

7. G.R. Blakley and D.M. Kienzle. Some weaknesses of the TCB model. In IEEE
Symposium on Security and Privacy. IEEE CS Press, May 1997.

8. M. Branstad et al. Trusted Mach design issues. In Proceedings Third Aerospace
Computer Security Conference, 1987.

9. D.E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–243, 1976.

10. J.A. Fitch and L.J. Hoffman. A shortest path network security model. Computers
and Security, 12:169–189, 1993.

11. S.N. Foley. A universal theory of information flow. In Proceedings 1987 IEEE
Symposium on Security and Privacy, pages 116–121, 1987.

12. S.N. Foley. A model for secure information flow. In Proceedings of the Symposium
on Security and Privacy, Oakland, CA, May 1989. IEEE Computer Society Press.

13. S.N. Foley. Aggregation and separation as noninterference properties. Journal of
Computer Security, 1(2):159–188, 1992.

14. S.N. Foley. The specification and implementation of commercial security require-
ments including dynamic segregation of duties. In ACM Conference on Computer
and Communications Security, pages 125–134, 1997.

15. S.N. Foley. Conduit cascades and secure synchronization. In ACM New Security
Paradigms Workshop, 2000.

16. J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proceedings
1984 IEEE Symposium on Security and Privacy, pages 75–86, 1984.

13

17. R.J. Horton et al. The cascade vulnerability problem. Journal of Computer Secu-
rity, 2(4):279–290, 1993.

18. T.M.P. Lee. Using mandatory integrity to enforce ‘commerical’ security. In Pro-
ceedings of the Symposium on Security and Privacy, pages 140–146, 1988.

19. S. Lewis and S.R. Wiseman. Securing an object relational database. In ACSAC,
pages 59–68. IEEE Computer Society, 1997.

20. J. McLean. Reasoning about security models. In Proceedings 1987 IEEE Sympo-
sium on Security and Privacy, pages 123–131, 1987.

21. J.D. McLean. 20 years of formal methods. In IEEE Symposium on Security and
Privacy, pages 113–114, 1999.

22. J.K. Millen. 20 years of covert channel modeling and analysis. In IEEE Symposium
on Security and Privacy, pages 113–114, 1999.

23. J.K. Millen and M.W. Schwartz. The cascading problem for interconnected net-
works. In 4th Aerospace Computer Security Applications Conference, pages 269–
273. IEEE CS Press, December 1988.

24. B.C. Popescu, B Crispo, and A.S. Tanenbaum. Support for multi-level security
policies in drm architectures. In 13th New Security Paradigms Workshop, 2004.

25. R.S. Sandhu. Lattice based access control models. IEEE Computer, 26(11):9–19,
November 1993.

26. R.S Sandhu. Role hierarchies and constraints for lattice-based access controls. In
ESORICS, 1996.

27. M. Schaefer. If A1 is the answer, what was the question? an edgy naif’s retrospec-
tive on promulgating the trusted computer systems evaluation criteria. In Annual
Computer Security Applications Conference, pages 204–228. IEEE Press, 2004.

28. G. Schellhorn, W. Reif, A. Schairer, P.A. Karger, V. Austel, and D. Toll. Verifi-
cation of a formal security model for multiapplicative smart cards. In ESORICS,
pages 17–36, 2000.

29. F.B. Schneider. Enforcable security policies. ACM Transactions on Information
and Systems Security, 3(1):30–50, February 2000.

30. D. Sutherland. A model of information. In Proceedings 9th National Computer
Security Conference, 1986.

31. G. Swart, B. Aziz, S.N. Foley, and J. Herbert. Trading off security in a service
oriented architecture. In 19th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, 2005.

32. TNI. Trusted computer system evaluation criteria: trusted network interpretation.
Technical report, National Computer Security Center, 1987. Red Book.

33. U. S. Department of Defense. Trusted computer system criteria. Technical Report
CSC-STD-001-83, U. S. National Computer Security Center, August 1983.

34. M. Wallace. Practical applications of constraint programming. Constraints, 1(1–
2):139–168, 1996.

