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Abstract. Preferences and uncertainty are common in many real-life problems.
In this paper, we focus on bipolar preferences and on uncertainty modelled via
uncontrollable variables. However, some information is provided for such vari-
ables, in the form of possibility distributions over their domains. To tackle such
problems, we eliminate the uncertain part of the problem, making sure that some
desirable properties hold about the robustness of the problem’s solutions and its
relationship with their preference. We also define semantics to order the solu-
tions according to different attitudes with respect to the notions of preference and
robustness.

1 Introduction

Bipolar preferences and uncertainty are present in many application fields, such as satel-
lite scheduling, logistics, and production planning. For example, in multi-agent prob-
lems, agents may express their preferences in a bipolar way, and variables may be under
the control of different agents. To give a specific example, just consider a conference re-
viewing system, where usually preferences are expressed in a bipolar scale. Uncertainty
can arise for the number of available conference rooms at the time of the acceptance
decision, and the goal could be to select the best papers while ensuring that they all can
be presented. In general, in many real-life situations agents express what they like and
what they dislike, thus often preferences are bipolar.

In this paper, bipolarity is handled via the formalism in [3]. Other formalisms can
be found in [8, 1, 4, 5]. We choose to generalize to bipolar preferences the soft con-
straints formalism [2] which is able to model problems with one kind of preferences
(i.e., the negative preferences). Thus, each partial instantiation within a constraint will
be associated to either a positive or a negative preference.

Another important feature, which arises in many real world problems, is uncertainty.
We model uncertainty by the presence of uncontrollable variables. This means that the
value of such variables will not be decided by us, but by Nature or by some other agent.
Thus a solution will not be an assignment to all the variables but only to the controllable
ones. A typical example of uncontrollable variable, in the context of satellite schedul-
ing, is a variable representing the time when clouds will disappear. Although we cannot
choose the value for such uncontrollable variables, we have some information on the
plausibility of the values in their domains. In [7] this information, which is not bipolar,



is given by probability distributions. In this paper, we model this information by a pos-
sibility distribution over the values in the domains of such variables. Possibilities are
useful when probability distributions are not available [11].

After defining formally bipolar preference problems with possibilistic uncertainty,
we define the notion of preference and robustness for the solutions of such problems,
as well as properties that they should respect, also in relation to the solution ordering.
We then concentrate on problems with totally ordered preferences defined over real in-
tervals, and we show how to eliminate the uncontrollable part of the problem by adding
new constraints on the controllable part to recall part of the removed information. This
approach is a generalization of the approach used in [9] to remove uncertainty from
problems with negative preferences only. The additional constraints are then consid-
ered to define the robustness of the solutions. We define formally the preference and
robustness of the solutions, and we define some desirable properties related to such no-
tions that the solution ordering should have. Moreover, we introduce semantics that use
such notions to order the solutions, and we show that they satisfy the desired proper-
ties on the solution ordering. In particular, they allow us to distinguish between highly
preferred solutions which are not robust, and robust but not preferred solutions. Also,
they guarantee that, if there are two solutions with the same robustness (resp., the same
preference), then the ordering is given by their preference (resp., robustness).

2 Background: bipolar preference problems

Bipolar preference problems [3] are based on a bipolar preference structure, which al-
lows to handle both positive and negative preferences. This structure contains two sub-
structures, one for each kind of preferences.

When dealing with negative preferences, two main properties should hold: combi-
nation should bring to worse preferences, and indifference should be better than all the
other negative preferences. These properties can be found in a c-semiring [2], which is
the structure used to represent soft constraints. A c-semiring is a tuple (A, +,×,0,1)
where: A is a set, 0,1 ∈ A, + and × are the additive and the combination operators.
Operator + induce a partial order, written ≤S , over A: a ≤S b iff a+b = b, 0 is its min-
imum and 1 its maximum. When a ≤S b, we will say that b is better than a. Element 1
acts as indifference (in fact, ∀a ∈ A, a×1 = a), and ∀a, b ∈ A, a×b ≤ a, b. This inter-
pretation is natural when considering the weighted c-semiring (R+, min, +, +∞, 0),
where preferences are real positive numbers interpreted as costs, and thus as negative
preferences. Such costs are combined via the sum (+) and the best costs are the lower
ones (min). From now on, a c-semiring will be denoted as: (N, +n,×n,⊥n,>n).

When dealing with positive preferences, combination should bring to better prefer-
ences, and indifference should be lower than all the other positive preferences. These
properties can be found in a positive preference structure [3], that is a tuple (P, +p,×p,

⊥p, >p), which is just like a negative one above, except that the combination operator
×p returns a better element rather than a worse one. An example of a positive prefer-
ence structure is (<+,max,sum,0,+∞), where preferences are positive real numbers
aggregated with sum and ordered bymax (i.e., the best preferences are the highest
ones).



When we deal with both positive and negative preferences, the same properties
described above for a single kind of preferences should continue to hold. Moreover, all
the positive preferences must be better than all the negative ones and there should exist
an operator allowing for the compensation between positive and negative preferences.
A bipolar preference structure links a negative and a positive structure by setting the
highest negative preference to coincide with the lowest positive preference to model
indifference. More precisely, a bipolar preference structure [3] is a tuple (N , P, +, ×,

⊥, 2, >) where, (P, +|P , ×|P , 2, >) is a positive preference structure; (N, +|N , ×|N ,

⊥, 2) is a c-semiring; + : (N ∪ P )2 −→ (N ∪ P ) is an operator s.t. an + ap = ap,
∀an ∈ N and ap ∈ P ; it induces a partial ordering on N ∪ P : ∀a, b ∈ P ∪ N , a ≤ b

iff a + b = b; × : (N ∪ P )2 −→ (N ∪ P ) (called the compensation operator) is
a commutative and monotonic operator. In the following, we will write +n instead of
+|N and +p instead of +|P . Similarly for ×n and ×p. When × is applied to a pair
in (N × P ), we will sometimes write ×np. An example of bipolar structure is the
tuple (N=[−1, 0], P=[0, 1], +=max, ×, ⊥=−1, 2=0, >=1), where × is s.t. ×p= max,
×n=min and×np=sum. Negative preferences are between -1 and 0, positive preferences
between 0 and 1, compensation is sum, and the order is given by max.

A bipolar constraint is a constraint where each assignment of values to its variables
is associated to one of the elements in a bipolar preference structure. A bipolar CSP
(BCSP) 〈S, V, C〉 is a set of bipolar constraints C over a set of variables V defined on
the bipolar structure S.

We will sometimes need to distinguish between two kinds of constraints in a BCSP.
For this reason, we will use the notion of RBCSP, which is a tuple 〈S, V, C1, C2〉 such
that 〈S, V, C1 ∪ C2〉 is a BCSP.

Given a subset of variables I ⊆ V , and a bipolar constraint c = 〈def, con〉, the
projection of c over I , written c ⇓I , is a new bipolar constraint 〈def ′, con′〉, where
con′ = con ∩ I and def(t′) =

∑
{t|t↓con′=t′} def(t). In particular, the preference

associated to each assignment to the variables in con′, denoted with t′, is the best one
among the preferences associated by def to any completion of t′, t, to an assignment
to con. The notation t ↓con′ indicates the subtuple of t on the variables of con′.

A solution of a bipolar CSP 〈S, V, C〉 is a complete assignment to all variables in V ,
say s. Its overall preference is ovpref(s) = ovprefp(s)×ovprefn(s) = (p1×p . . .×p

pk)× (n1 ×n . . . ×n nl), where, for i := 1, . . . , k, pi ∈ P , for j := 1, . . . , l, nj ∈ N ,
and ∃〈defi, coni〉 ∈ C s.t. pi = defi(s ↓coni

) and ∃〈defj , conj〉 ∈ C s.t. nj =
def(s ↓conj

). This is obtained by combining all the positive preferences associated to
its subtuples on one side, all the negative preferences associated to its subtuples on the
other side, and then compensating the two preferences so obtained. This definition is
in accordance with cumulative prospect theory [10] used in bipolar decision making.
A solution s is optimal if there is no other solution s′ with ovpref(s′) > ovpref(s).
Given a bipolar constraint c = 〈def, con〉 and one of its tuple t, it is possible to define
two functions pos and neg as follows: pos(c)(t) = def(t) if def(t) ∈ P , otherwise
pos(c)(t) = 2, and neg(c)(t) = def(t) if def(t) ∈ N , otherwise neg(c)(t) = 2.



3 Uncertain bipolar problems

Uncertain bipolar problems (UBCSPs) are characterized by a set of variables, which can
be controllable or uncontrollable, and by a set of bipolar constraints. Thus, a UBCSP is
a BCSP where some of the variables are uncontrollable. Moreover, the domain of every
uncontrollable variable is equipped with a possibility distribution, that specifies, for
every value in the domain, the degree of plausibility that the variable takes that value.
Formally, a possibility distribution π associated to a variable z with domain AZ is a
mapping from AZ to a totally ordered scale L (usually [0, 1]) s.t. ∀a ∈ AZ , π(a) ∈ L

and ∃ a ∈ AZ s.t. π(a) = 1, where 1 the top element of the scale L [11].

Definition 1 (UBCSP). An uncertain bipolar CSP is a tuple 〈S, Vc, Vu, Cc, Ccu〉, where

– S = (N, P, +,×, ⊥, 2,>) is a bipolar preference structure and≤S is the ordering
induced by operator +;

– Vc = {x1, . . . xn} is a set of controllable variables;
– Vu = {z1, . . . zk} is a set of uncontrollable variables, where every zi ∈ Vu has

possibility distribution πi with scale [0, 1];
– Cc is the set of bipolar constraints that involve only variables of Vc

– Ccu is a set of bipolar constraints that involve at least a variable in Vc and a
variable in Vu and that may involve any other variable of (Vc ∪ Vu).

In a BCSP, a solution is an assignment to all its variables. In a UBCSP, instead, a
solution is an assignment to all its controllable variables.
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Fig. 1. How to handle a UBCSP.

An example of a UBCSP is presented in Figure 1 (a). It is defined by the tuple
〈S, Vc = {x, y}, Vu = {z1, z2}, Cc, Ccu}〉, where S is the bipolar structure considered
before, i.e., 〈[−1, 0], [0, 1], max, ×, −1, 0, 1〉, where × is s.t. ×p = max, ×n = min

and ×np = sum. The set of controllable variables is composed by x and y, while the
set of uncontrollable variables is composed by z1 and z2, which are characterized by
the possibility distributions π1 and π2. The set of constraints Cc contains 〈f, {x, y}〉,
while Ccu contains 〈q, {x, z1}〉 and 〈t, {x, z2}〉. Figure 1 (a) shows the positive and the
negative preferences within such constraints and the possibility distributions π1 and π2

over the domains of z1 and z2. Other parts of Figure 1 will be described later.



4 Preference, robustness, and desirable properties

Given a solution s of a UBCSP, we will associate a preference degree to it, written
pref(s), which summarizes all the preferences in the controllable part and that can be
obtained for some assignment to the uncontrollable variables decided by the Nature. It
is reasonable to assume that pref(s) belongs to the set of preferences in the considered
bipolar preference structure.

When we deal with UBCSPs, we have to consider another interesting aspect that
characterizes a solution, that is, its robustness with respect to the uncertainty, which
measures what is the impact of Nature on the preference obtained by choosing that
solution. The robustness of s will depend both on the preferences in the constraints
connecting both controllable and uncontrollable variables to s and on such possibility
distributions and it is also reasonable that it will be an element of the bipolar preference
structure. This will allow us to use the operators of such a structure over the robustness
values. Before giving our definition of robustness of a solution s, that we will denote
with rob(s), we define two properties that such a definition should satisfy as in [6, 9].
The first one states that, if we increase the preferences of any tuple involving uncon-
trollable variables, solution should have a higher value of robustness, the second one
states that the same result should hold if we lower the possibility of any value of the
uncontrollable variables.

Property 1 Given solutions s and s′ of a UBCSP, 〈S, Vc, Vu, Cc, Ccu〉, where every vi

in Vu is associated to a possibility distribution πi, if ∀ 〈def, con〉 ∈ Ccu and ∀a assign-
ment to the uncontrollable variables in con, def((s, a) ↓con) ≤S def((s′, a) ↓con),
then it should be that rob(s) ≤S rob(s′).

Property 2 Given a solution s of a UBCSP Qi = 〈S, Vc, Vu, Cc, Ccu〉. Assume vari-
ables in Vu are described by a possibility distribution πi, for i = 1, 2 s.t. ∀a assignment
to variables in Vu, π2(a) ≤ π1(a). Then it should be that robπ1

(s) ≤S robπ2
(s), where

robπi
is the robustness computed in the problem with possibility distribution πi.

To understand which solutions are better than others in a UBCSP, it is reasonable to
consider a solution ordering, which should be reflexive and transitive. The notions of
robustness and preference should be related to this solution ordering, say �, by the
following properties 3, 4, and 5. Properties 3 and 4 state that two solutions which are
equally good with respect to one aspect (robustness or preference degree) and differ on
the other should be ordered according to the discriminating aspect. Property 5 states
that, if two solutions s and s′ are s.t. the overall preference of the assignment (s, a) to
all the variables is better than the one of (s′, a), ∀a assignment to the uncontrollable
variables, then s should be better than the other one.

Property 3 Given two solutions s and s′ of a UBCSP, if rob(s) = rob(s′) and pref(s)
>S pref(s′), then it should be that s � s′.

Property 4 Given two solutions s and s′ of a UBCSP s.t. pref(s) = pref(s′), and
rob(s) >S rob(s′), then it should be that s � s′.

Property 5 Given two solutions s and s′, a UBCSP Q = 〈S, Vc, Vu, Cc, Ccu〉, s.t.
ovpref(s, a) >S ovpref(s′, a), ∀a assignment to Vu, then it should be that s � s′.



5 Removing uncertainty: preference, robustness and semantics

We now propose a procedure that extends to a bipolar context a common approach used
to deal with uncertainty, that eliminates uncontrollable variables preserving as much
information as possible [6, 9]. Starting from this procedure, we define the robustness
and preference degrees that satisfy the desirable properties mentioned above.

The procedure, that we call Algorithm B-SP, generalizes to the case of positive
and negative totally ordered preferences defined over intervals of Z, Q, R (or struc-
tures isomorphic to them), Algorithm SP [9] for handling problems with fuzzy pref-
erences and uncontrollable variables associated to possibility distributions. The algo-
rithm takes as input a UBCSP Q = 〈S, Vc, Vu, Cc, Ccu〉, where every variable zi ∈ Vu

has a possibility distribution πi and where S = 〈N, P, +, ×, ⊥, 2, >〉 is any bipo-
lar preference structure with N and P totally ordered intervals of Z, Q, R (or struc-
tures isomorph to them). Then, the algorithm translates the UBCSP Q in the RBCSP
Q′ = 〈S, Vc, Cc ∪ Cproj , Crob〉 (that is, in the BCSP 〈S, V, C ∪ Crob〉). This problem
Q′ is obtained from Q by eliminating its uncontrollable variables and the bipolar con-
straints in Ccu relating controllable and uncontrollable variables, and by adding new
bipolar constraints only among these controllable variables. These new constraints can
be classified in two sets, that we call Crob (robustness constraints) and Cproj (projection
constraints), that we describe in the following. Starting from this problem Q′, we then
define the preference degree (resp., the robustness degree) of a solution considering the
preference functions of the constraints in Cc ∪ Cproj (resp., in Crob).

The set of robustness constraints Crob is composed by the constraints obtained by
reasoning on preference functions of the constraints in Ccu and on the possibilities asso-
ciated to values in the domains of uncontrollable variables involved in such constraints.
Crob is built in three steps.

In the first step, that we denote normalization, every constraint c = 〈def, con〉
in Ccu s.t. con ∩ Vc = X and con ∩ Vu = Z, is translated in two bipolar constraints
〈defp, con〉 and 〈defn, con〉, with preferences in [0, 1], where, ∀(tX , tZ) assignment to
X ×Z, defp(tX , tZ) = gp(pos(c)(tX , tZ)) and defn(tX , tZ) = gn(neg(c)(tX , tZ)).
If the positive (resp., negative) preferences are defined in the interval of R (or Q, Z),
P = [ap, bp] (resp., N = [an, bn]) then gp: [ap, bp] → [0, 1] (resp., gn: [an, bn] →

[0, 1]) is s.t. x 7→
x−ap

bp−ap
(resp., x 7→ x−an

bn−an
) by using the classical division and subtrac-

tion operation of R.
In the second step, denoted uncontrollability elimination, the constraint 〈defp, con〉

(resp., 〈defn, con〉) obtained before is translated in 〈defp′, X〉 (resp., 〈defn′, X〉),
where, ∀tX assignment to X , defp′(tX ) = inftZ∈AZ

sup(defp(tX , tZ), cS(πZ(tZ))),
and defn′(tX ) = inftZ∈AZ

sup(defn(tX , tZ), cS(πZ (tZ))), where cS is an order
reversing map w.r.t. ≤S in [0, 1], s.t. cS(cS(p)) = p and inf , which is the opposite of
the sup operator (derived from operator + of S), applied to a set of preferences, returns
its worst preference w.r.t. the ordering ≤S.

In the third step, denoted denormalization, the constraint 〈defp′, X〉 (resp., 〈defn′,

X〉) is translated in 〈defp′′, X〉 (resp., 〈defn′′, X〉), where ∀tX assignment to X ,
defp′′(tX) = g−1

p (defp′(tX)), and defn′′(tX) = g−1
n (defn′(tX)). The map g−1

p :[0, 1]
→ [ap, bp] is s.t. y 7→ [y(bp − ap) + ap], and g−1

n :[0, 1] → [an, bn] is s.t. y 7→



[y(bn − an) + an]. Summarizing, given c = 〈def, X ∪ Z〉 ∈ Ccu, its corresponding
robustness constraints in Crob are the constraints 〈defp′′, X〉 and 〈defn′′, X〉 above.

Projection constraints are added to the problem in order to recall part of the infor-
mation contained in the constraints in Ccu that will be removed later. They are useful to
guarantee that the preference degree of a solution, say pref(s), that we will define later,
is a value that can be obtained in the given UBCSP. The set of projection constraints
Cproj is defined as follows. Given a bipolar constraint c = 〈def, con〉 in Ccu, s.t.
con ∩ Vc = X and con ∩ Vu = Z, then the corresponding bipolar constraints in Cproj

are 〈defp, X〉 and 〈defn, X〉, where defp(tX) = inf{tZ∈AZ} pos(c) (tX , tZ) and
defn(tX) = sup{a∈AZ} neg(c) (tX , tZ). in other words, defn(tX) (resp., defp(tX))
is the best negative (resp., the worst positive) preference that can be reached for tX in c

for the various values tZ in the domain of the uncontrollable variables in Z.
Let us show via an example how B-SP works. Consider the UBCSP Q = 〈S, Vc =

{x, y}, Vu = {z1, z2}, Cc, Ccu〉 in Figure 1 (a). Figure 1 (b) shows the RBCSP Q′ =
〈S, Vc = {x, y}, Cc∪Cproj , Crob〉, built by algorithm B-SP. Cc is composed by 〈f, {x, y}〉.
Cproj is composed by p1 = 〈qp, {x}〉, p2 = 〈qn, {x}〉, p3 = 〈tp, {x}〉 and p4 = 〈tn,

{x}〉, while Crob by r1 = 〈qp′′, {x}〉, r2 = 〈qn′′, {x}〉, r3 = 〈tp′′, {x}〉 and r4 =
〈tn′′, {x}〉. Constraints in Crob are obtained by assuming gp the identity map, and
gn : [−1, 0] → [0, 1] s.t. n 7→ n + 1.

Starting from the RBCSP Q′ = 〈S, Vc, Cc ∪ Cproj , Crob〉, obtained applying al-
gorithm B-SP to the BCSP Q, we associate to each solution of Q, a pair composed by
a degree of preference and a degree of robustness. The preference of a solution is ob-
tained by compensating a positive and a negative preference, where the positive (resp.,
the negative) preference is obtained by combining all positive (resp., negative) prefer-
ences of the appropriate subtuples of the solution over the constraints in Cc∪Cproj , i.e.,
over initial constraints of Q linking only controllable variables and over new projection
constraints. The robustness is obtained similarly, but considering only the constraints
in Crob, i.e., in the robustness constraints. It is possible to prove that this definition of
robustness satisfies Properties 1 and 2.

Definition 2 (preference and robustness). Given a solution s of a UBCSP Q, let
Q′ = 〈S, Vc, Cc ∪ Cproj , Crob〉 the RBCSP obtained from Q by algorithm B-SP.
The preference of s is pref(s) = prefp(s) × prefn(s), where × is the compen-
sation operator of S, prefp(s) = Π{〈def,con〉∈Cc∪Cproj} pos(c)(s ↓con), prefn(s)
= Π{〈def,con〉∈Cc∪Cproj} neg(c)(s ↓con). The robustness of s is rob(s) = robp(s) ×
robn(s), where robp(s) = Π{〈def,con〉∈Crob} pos(c)(s ↓con), robn(s) = Π{〈def,con〉∈Crob}

neg(c)(s ↓con).

A solution of a BCSP is associated to a preference and a robustness degree. We here
define semantics to order the solutions which depend on our attitude w.r.t. these two no-
tions. Assume to have A1 = (pref1, rob1) and A2 = (pref2, rob2). The first seman-
tics, which is called Risky, states that A1 �Risky A2 iff pref1 >S pref2 or (pref1 =
pref2 and rob1 >S rob2). The idea is to give more relevance to the preference de-
gree. The second semantics, called Safe, states that A1 �Safe A2 iff rob1 >S rob2 or
(rob1 =S rob2 and pref1 >S pref2). It represents the opposite attitude w.r.t. Risky se-
mantics, since it considers the robustness degree as the most important feature. The last



semantics, called Diplomatic, aims at giving the same importance to preference and ro-
bustness. A1 �Dipl A2 iff (pref1 ≥S pref2 and rob1 ≥S rob2) and (pref1 >S pref2

or rob1 >S rob2). By definition, the Risky, Safe and Diplomatic semantics satisfy
Properties 3 and 4. Additionally, Risky satisfies Property 5, if × in the bipolar structure
is strictly monotonic. Property 3, 4 and 5 are desirable. However, there are semantics
that don’t satisfy them. For example, this happens with a semantics, that we denote
Mixed, that generalizes the one adopted in [6]: A1 �Mixed A2 iff pref1 × rob1 >S

pref2 × rob2, where × is the compensation operator in the bipolar structure.

6 Conclusions

We have studied problems with bipolar preferences and uncontrollable variables with a
possibility distribution over such variables. Our technical development, although being
an extension of two previous lines of work, which dealt with bipolarity only, or only
uncertainty, was not strighforward, since it was not clear if it was possible to deal si-
multaneously with possibilistic uncertainty and bipolar preferences, making sure that
desirable properties hold. In fact, such a task could have required a bipolarization of the
possibility scale. Our results instead show that it is possible, without any added bipo-
larization, to extend the formalism in [3] to bipolar preferences and the one in [9] to
uncertainty, preserving the desired properties.
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