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Abstract— Securing distributed communications from ma-

licious tampering is of capital importance. There exist a

number of techniques addressing this issue but, to the best

of our knowledge, an account for what Information Assur-

ance means in this context is currently unavailable. A no-

tion is advanced in this paper reducing Information Assur-

ance for secure distributed communications to a threefold

requirement for the protocols securing the communications.

The protocols ought to be analysed accurately, realistically and

formally. General considerations and specific examples are

presented to enlighten the intuitive meaning of these terms

exhaustively. This contribution aims at drawing attention

to an important niche in computer security.

I. Overview

Computer Security became a science (and an art) with
the development of large-scale computer networks, that is
in the late 1960s. Before those years, security merely meant
to limit physical access to the sensitive nodes of the net-
work. Technology progressed fast, thus the figure of a new
expert became necessary, the security architect. We are not
going to survey the history of computer security here, but
a few observations are necessary to set the ground for our
discussion on Information Assurance for secure distributed
communications.

Security architects are concerned with security problems
that require solutions, and the existing technology where to
derive those solutions from. Until the 1980s, their decisions
where only taken on the basis of informal reasoning. In
practice, teams of architects used to brain-storm together
for months or years in the hope to account for all possible
strengths or weaknesses of a certain security measure. Only
if ideas converged on the strengths would that measure be
put in place.

But convergence of ideas very rarely derives from unani-
mous agreement. Indeed, enforcing certain measures in the
real world may signify weakening others, which means that
what was expected as a solution turns out to be in fact a
tradeoff. An enormous number of examples can be made
to support the claim that enforcing most security measures
may still require acceptance of some level of risk, but we
only sketch a couple here.
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“Security” installations. There exists empirical evidence
that protecting a WWW server by allowing only SSH con-
nections has decreased the number of external break-ins.
Tolerable drawbacks are the cost of the new software, the
time of installing SSH clients on all remote machines, and
the efforts to create people’s mentality to use the new soft-
ware. But since the number of attacks has at times been
too far from zero yet, many academic sites have decided
to even restrict SSH access to principals within the local
domain [1].

Analogous caution must be taken with security proto-
cols, sets of of prescribed message exchanges between re-
mote principals. Each protocol aims securing distributed
communications by enforcing specific goals, such as confi-
dentiality and authentication. Paulson has proved formally
that the BULL recursive protocol meets its goals if encryp-
tion is perfect, that is if cryptanalysis is impossible [2]. This
may have favoured the use of the protocol for some time,
but Ryan and Schneider soon found an attack on the proto-
col if encryption is bit-wise exclusive or [3]. At installation
time, the security architect would hopefully have the op-
tion of choosing a stronger encryption function, which in
any case would be far from perfect in the sense of Paulson’s.
No boolean statement about the strengths of the installed
software would be conceivable.

Semi-trusted code. Code downloaded from the Internet
should not be entirely trusted. A number of viruses spread
through the world as email attachments for example. A
possible strategy to control the behaviour of the code and
limit its potential damages is to execute it in a sandbox,
as is the case of Java applets. The principal is granted
fine-grained access control for each potentially dangerous
call, so he can take informed decisions. But experience
shows that to run code in a sandbox may result lengthy
and tedious, so that the principal ends up giving many
too permissions to the code anyway. Even more crucial is
the problem of executing code from different origins, hence
with different levels of trust, in the same runtime. Some
levels may have to be lowered or decreased. Techniques
based on inspection of the execution stack or on execution
history are currently being developed [4].

The third Millennium seems to be favouring an increas-
ing awareness about the issues sketched above, which sup-
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port the claim that “Security is not a simple boolean pred-
icate” [5]. Worse yet, complete security still seems out of
reach or perhaps impossible. Modern security architects
normally build their arguments on top of such postulates.
As from the late 1980s they have also started to take into
account insights derived from formal analyses, which were
just beginning to be conceived, as opposed to the merely in-

formal analyses they relied on before. Skepticism has gone
up and down throughout the years, but the contribution
of formal reasoning in general is nowadays unquestionable.
This can be seen throughout nearly all niches of computer
security, ranging from policies [6, 7] to protocols [8, 9].

Our purpose here is to provide an account for Informa-
tion Assurance (“IA” in the following) in the field of secure
distributed communications, which the literature appears
to be lacking. We advance a tentative notion stating that

IA for secure distributed communications is re-

liance on security protocols that have undergone

accurate, realistic and formal analysis.

The general impossibility of making strong boolean
claims in the field of security, which we have exemplified
above, convinces that protocol analyses must be accurate

and capture some notion of ”level” of the goals achieved
by a protocol. Likewise, protocol analyses must be realis-

tic and admit that the present ratio cost/technology allows
every Internet principal to be a potential attacker — each
attacker is in a condition to exploit attacks mounted by
other principals for his own sake. Also, security architects
require formal assurance that a protocol meets its goals in
the real world, which is intrinsically difficult because for-
mal models somewhat idealise reality. Hence, an expressive
formalism is needed.

The definition is purposely abstract so as to suscitate
different views among different researchers, and hopefully
give occasion to the international debate on a niche of com-
puter security that at present deserves consideration. Our
own views of the three provisos of accuracy, realism and
formalism are given in the following sections respectively
(§II, §III, §IV). The last section (§V) draws some conclu-
sions.

II. Accuracy

We concentrate on the goals of confidentiality and au-
thentication. Confidentiality of a message means that the
message remains undisclosed to those not intended to learn
it. Authentication of a principal means that we truly are
communicating with that principal.

We observe that neither of these two properties is
boolean in the real world: only certain levels of confiden-
tiality or authentication are achieved in practice. Levels
are known as a means to conduct reasoning, as is the case
of Abadi’s types [10], which means they are in fact meta-
levels. By contrast, we are introducing object-levels. This
section provides the basis for accurate protocol analyses,

the first aspect of our notion of IA for secure distributed
communications.

Confidentiality. To set about this goal, let us consider ses-

sion keys for example. One or two of them are invented per
each session (that is, execution) of a protocol, the reason
being that each key is only meant to be used for a short
lifetime. Clearly one such key is less sensitive information
than a principal’s password or PIN number, whose lifetimes
usually are considerably long. That is to say that the ac-
ceptable level of confidentiality on a session key is lower
than the acceptable level of confidentiality on a password.
Most protocols follow this proviso. While session keys may
be sent within message bodies on repeated occasions, pass-
words are only used as encryption keys typically once or
twice. Indeed, sending a secret over the network exposes
it to risks. The more the secret is used to form messages,
the higher the risks that an attacker tampers with it —
the longer the secret is on the network, the higher the risks
it runs. Also, we may have chains of session keys, each
encrypting the next one. The confidentiality levels of the
keys decrease along the chain, as confidentiality of each
key rests on confidentiality of all preceding keys. In prac-
tice, one would prefer to rely on cipher-texts sealed under
the first key in the chain rather than under the last one.
Kerberos [11] and the Yahalom protocol [12], for example,
have dependency chains of length two. SET features an
even longer chain [13].

Such a dependency chain is a didactic example, but we
remark that all protocols exchange components some of
which are more sensitive than others.

Once fixed criteria are established to manipulate the se-
curity levels, the protocol analyser could even compare the
security level achieved by different protocols on sensitive
message components. For example, the analyser could
consider two different key-distribution protocols, such as
Otway-Rees and Kerberos as they are presented by Bur-
rows et al. [14], and study what confidentiality levels they
achieve on the session key. This would give security ar-
chitects deeper insights than current analyses do. As men-
tioned above, a secret runs risks of leaking that are propor-
tional to the time it has been on the network. Therefore,
one appropriate criterion to manipulate the security levels
is to decrease the level associated to a message component
every time that component is manipulated by any of the
operations on messages (concatenation, splitting, encryp-
tion and decryption) — see §IV.

A message that has been disclosed to the attacker can
be seen as having the minimum confidentiality level. This
inspires a strategy to compare confidentiality attacks. For
example, if we use Roman numbers, then leaking a mes-
sage that was I-confidential reports a more significant at-
tack than leaking a message that was V-confidential. To
the best of our knowledge, such accuracy is missing to ex-
isting protocol analyses, but we find it an indispensable
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prerequisite of appropriate IA for secure distributed com-
munications.

Authentication. Analogous considerations apply to the au-
thentication goal. Classifications of the different kinds of
authentication exist [15, 16] but each of them should be
studied in terms of the levels we introduce here.

Authentication (of whatever kind) of a principal is nor-
mally established by means of a message that expresses
the principal’s presence. The more the message is confi-
dential, the stronger the achieved authentication. For ex-
ample, sending Alice’s identity on the network to Bob is
the weakest form of authentication of Alice to Bob because
message “Alice” is in fact public (all principals know each
other’s identities). It is however the most common form
adopted at present, if we think that e-mail traffic routinely
is in the clear. Clearly, a much stronger authentication
Alice would achieve by sending Bob a cipher-text sealed
under Alice’s private key, which has a high confidentiality
level. And some intermediate level of authentication Al-
ice would get by sealing a cipher-text under some session
key. The existence of a dependency chain generalises these
observations.

It also is desirable to have a strategy to compare authen-
tication attacks. A possible strategy is based on the fol-
lowing observation. If an attacker impersonates Alice with
Bob, the significance of the attack is proportional to the
confidentiality level of the message used by the attacker to
impersonate Alice. For example, if the attacker gets hold
of Alice’s private signature key, he can mount a more sig-
nificant authentication attack on Bob (and on any other
principal) than if he gets hold of Alice’s session key shared
with Bob (in which case he could only cheat on that ses-
sion).

III. Realism

Dolev and Yao’s famous paper [17] has substantially in-
fluenced security protocol analyses during the entire last
decade, regardless of whether they were informal or formal.
Their contribution is essentially evidence that collusion of
a number of principals to subvert a protocol is equivalent
to the hostility of a single, powerful attacker. “Powerful”
means the ability to monitor the entire network traffic,
to break down messages by the conventional operations of
splitting and decryption, to build up new messages by the
conventional operations of concatenation and encryption,
and to engage in unlimited protocol sessions. The only
constraint is that the attacker cannot mount brute-force
cryptanalysis attacks, hence he can only rely on the keys
that become available by any interleaving of the four al-
lowed operations.

These simplifications to the threat model characterise
essentially all approaches to analysing security protocols
formally. What has never been considered in this context
is a threat model where each principal is malicious and

is wishing to make his own profit in every way Dolev and
Yao’s attacker would. In other words, no principal colludes
with any-one else, but they are all separate attackers, as
we can see in the real world. The model is inspired to
recent fair-exchange protocols [18]. The second aspect of
our notion of IA for secure distributed communications, is
the use of realistic threat models in the sense described
above.

Here is one example of a previously unknown insight that
our threat model allows us to get. Figure 1 presents the
simple protocol due to Needham and Schroeder [19], a mile-
stone in the field. This is the variant that relies on asym-
metric cryptography, that is each principal owns a private
key and a corresponding public key. A nonce is a “number
that is used only once” [19]. The protocol assumes that
principals can invent truly-random nonces, so that, given a
nonce N invented by an principal P , the probability that
principals other than P guess N is negligible.

1. A → B : {|Na,A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A → B : {|Nb|}Kb

Fig. 1. The asymmetric Needham-Schroeder protocol

The first step sees an initiator A initiate the protocol
with a responder B. Principal A invents a nonce Na and
encrypts it along with her identity under B’s public key.
Upon reception of that message, B decrypts it and extracts
A’s nonce. Then, he invents a nonce Nb and encrypts it
along with Na under A’s public key. When A receives
message 2, she extract Nb and sends it back to B, encrypted
under his public key.

The goal of the protocol is authentication: at comple-
tion of a protocol session initiated by A with B, A should
get evidence to have communicated with B and, likewise,
B should get evidence to have communicated with A. We
emphasise how confidentiality of the nonces is here used
to achieve authentication. Indeed, upon reception of Na

inside message 2, A would conclude that she is interacting
with B, the only principal who could retrieve Na from mes-
sage 1, since Na is a truly-random nonce and encryption
is perfect. In the same fashion, when B receives Nb inside
message 3, he would conclude that A was at the other end
of the network because Nb must have been obtained from
message 2, and no-one but A could perform this operation.
However, Lowe shows that this protocol is flawed [20] by
exhibiting the attack we present in figure 2.

Notice that C could be a registered principal of the net-
work, so no-one could suspect his tampering. Since A initi-
ates with C, she encrypts her nonce and her identity under
C’s public key. Once obtained these data, C initiates an-
other session (indicated by the primes) with another prin-
cipal B, quoting A’s data rather than his own. From this
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1. A → C : {|Na,A|}Kc

1′. C → B : {|Na,A|}Kb

2′. B → A : {|Na,Nb|}Ka

2. C → A : {|Na,Nb|}Ka

3. A → C : {|Nb|}Kc

3′. C → B : {|Nb|}Kb

Fig. 2. Lowe’s attack to the Needham-Schroeder Protocol

message, B deduces that A is trying to communicate with
him. Therefore, B replies to A, quoting her nonce and
his own, Nb. Since the entire network is under C’s con-
trol, C intercepts this message before it is delivered to A

but cannot decrypt it because encryption is perfect. So,
C forwards it to A. The message is of the form that A

was expecting, hence A extracts Nb and sends it to the
principal with whom she had initiated the first session, C.
This hinders the confidentiality of Nb, so C can use it to
complete the session with B by issuing message 3’, which
is of the form that B was expecting.

As a result, B believes to have communicated with A,
while A was in fact communicating with C. In other words,
C impersonates A with B: the protocol has ultimately
failed achieve authentication because it has failed to keep
Nb confidential. Lowe observes that this may have drastic
consequences, such as the following. If B is a bank, C can
steal money from A’s account as in figure 3. The bank
B would honour the request believing it came from the
account holder A.

C → B : {|Na,Nb, “Transfer
£1000 from A’s account to C’s”|}

Fig. 3. Lowe’s fraud to bank B

This terminates Lowe’s study, which is sound within
Dolev and Yao’s threat model. We studied the protocol
within our own threat model and highlighted an indelib-

erate attack [21] whereby B learns A’s nonce Na, which
is meant for use with C, not with B. ”Indeliberate” here
means that B obtains the nonce without any deliberate
action. Still, this contrasts the protocol policy and indeed
may have another drastic consequence. If A is a bank, B

can steal money from C’s account as in figure 4. The bank
A would honour the request believing it came from the
account holder C.

The threat model given here allows retaliation of B

against C, a novel concept that has been recently devel-
oped [22]. It appears realistic at present.

B → A : {|Na,Nb, “Transfer
£1000 from C’s account to B’s”|}

Fig. 4. Our fraud to bank A

IV. Formalism

At present, it is well known that formal analyses of se-
curity protocols certainly get more impact than informal
analyses. The former have been conducted using a vari-
ety of approaches, ranging from state enumeration [9], to
provable security [23], to induction [24]. These efforts have
led to the discovery of a number protocol attacks (and of
the corresponding patches), or to the formal establishment
that certain goals are achieved.

However, we observe that the exhibition of an attack
raises more interest among the security architects than the
exhibition of a proof that a goal is met. While it is easy to
verify that the former can take place, it is less easy to be-
lieve that a formal proof would still hold in the real world.
Such skepticism is motivated by the idealised models within
which any formal proof is conducted. Although it is virtu-
ally impossible to bridge the gap between a formal model
and the real world, following our second requirement (§III)
certainly is an improvement. Reluctance towards formal
proofs that goals are met also comes from the nature of
the offered insights. These are firm boolean claims of the
form “session key K is confidential” or “principal A au-
thenticates principal B”, while security architects in prac-
tice rely on levels of those goals, whose importance was
stated above by our first requirement (§II).

The third aspect of our notion of IA for secure dis-
tributed communications is therefore formal analysis,
which, as remarked above, is severely limited on its own,
but can be powered with the other two requirements. It
was not obvious in the beginning what approach to proto-
col analysis could embed all three requirements, but Con-
straint Solving soon seemed to be an appropriate candi-
date [25]. We present here only the basics of our approach,
which is at the same time accurate, realistic and formal.
The complete description can be found elsewhere [26]. It
should be remarked that ours is one possible approach
that embeds all three features, but certainly others may
be taken. We expect that some existing formal approaches
can be extended to accommodate our first two requirements
(§II, §III).

A. Basics of Soft Constraint Programming

Informally speaking, given a set of variables V and a set
of domain values D, a constraint is a law that associates
n-tuples of domain elements to n-tuples of variables. A
soft constraint is a constraint where each association of its
variables has an associated value from a partially ordered
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set A. On this set, two operations are defined that allow
for combination, ×, and comparison, +. If 0 is the unit
element of +, and 1 is the unit element of ×, we can require
appropriate properties on the two operations so that the
tuple 〈A,+,×,0,1〉 is a c-semiring [27].

Let us consider the relation ≤S over A such that a ≤S b

iff a + b = b. Then it is possible to prove that:

• ≤S is a partial order;
• + and × are monotone on ≤S ;
• 0 is its minimum and 1 its maximum;
• 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a+b =
lub(a, b).

The relation ≤S gives us a way to compare (some of the)
tuples of values and constraints. In fact, when we have
a ≤S b, we will say that b is better than a. Below, a ≤S b

will be often indicated by ≤.

A constraint system is a tuple CS = 〈S,D,V〉 where
S is a c-semiring, D is a finite set (the domain of the
variables) and V is an ordered set of variables. Given
a semiring S = 〈A,+,×,0,1〉 and a constraint system
CS = 〈S,D,V〉, a constraint is a pair 〈def , con〉 where
con ⊆ V and def : D|con| → A. Therefore, a constraint
specifies a set of variables (the ones in con), and assigns
to each tuple of values of these variables an element of the
semiring.

A soft constraint satisfaction problem (SCSP) is a pair
〈C, con〉 where con ⊆ V and C is a set of constraints: con

is the set of variables of interest for the constraint set C,
which however may concern also variables not in con.

Combining and projecting soft constraints. Given two con-
straints c1 = 〈def 1 , con1 〉 and c2 = 〈def 2 , con2 〉, their
combination c1 ⊗ c2 is the constraint 〈def , con〉 defined by
con = con1∪con2 and def (t) = def 1 (t ↓con

con1
)×def 2 (t ↓con

con2

), where t ↓X
Y denotes the tuple of values over the variables

in Y , obtained by projecting tuple t from X to Y . In words,
combining two constraints means building a new constraint
involving all the variables of the original ones, and which
associates to each tuple of domain values for such variables
a semiring element which is obtained by multiplying the
elements associated by the original constraints to the ap-
propriate subtuples.

Given a constraint c = 〈def , con〉 and a subset I of
V, the projection of c over I, written c ⇓I is the con-
straint 〈def ′, con ′〉 where con′ = con ∩ I and def ′(t ′) =∑

t/t↓con
I∩con

=t′ def (t). Informally, projecting means elimi-

nating some variables. This is done by associating to each
tuple over the remaining variables a semiring element which
is the sum of the elements associated by the original con-
straint to all the extensions of this tuple over the eliminated
variables.

Solutions. The solution of an SCSP problem P = 〈C, con〉
is the constraint Sol(P) = (

⊗
C) ⇓con. That is, we com-

bine all constraints, and then project over the variables in

con. In this way we get the constraint over con which is
“induced” by the entire SCSP.

B. Soft Constraint Programming to analysing security pro-

tocols

We define the security semiring to specify each princi-
pal’s trust on the confidentiality of each message, that is
each principal’s security level on each message. The secu-
rity levels form the career set L of the security semiring.

L = {unknown ≡ traded−1,

private ≡ traded0,

traded1,

traded2,

. . . ,

tradedn,

public ≡ tradedn+1}

They range from the most secure (highest) level
unknown (double named as traded−1) to the least secure
(lowest) level public (double named as tradedn+1). Intu-
itively, if A’s security level on m is unknown, then no prin-
cipal (included A) knows m according to A, and, if A’s se-
curity level on m is public, then all principals potentially
know m according to A. The lower A’s security level on m,
the higher the number of principals knowing m according
to A. For simplicity, we state no relation between the gran-
ularity of the security levels and the number of principals.
We define +sec and×sec by the following axioms.
Ax. 1: tradedi +sec tradedj = tradedmin(i,j)

Ax. 2: tradedi ×sec tradedj = tradedmax(i,j)

The structure
Ssec = 〈L,+sec,×sec, public, unknown 〉 can be easily
proved to be a c-semiring.

Using the security semiring, we define the network con-

straint system, which represents the computer network on
which the security protocols can be executed. It does
not depend on any specific protocol. It is expressed as
CSn = 〈Ssec,D,V〉 where:
• Ssec is the security semiring just mentioned;
• V is a bounded set of variables, each standing for a prin-
cipal;
• D is a bounded set of values including the empty mes-
sage {||} and all atomic messages, as well as all messages
recursively obtained by concatenation and encryption.

The development of the principals’ security levels from
manipulation of the messages seen during the protocol ses-
sions can be formalised as a security entailment, which is
an entailment relation between constraints [21]. The re-
lation is defined by four rules, one for each operation on
the messages (splitting, decryption, concatenation and en-
cryption). In brief, every time a principal invents a se-
cret message, the principal’s security level on the message
decreases from unknown to private; every time the mes-
sage is sent on the network the secret level of the message
is decreased (for example from private to traded1, from
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traded1 to traded2, etc.) to represent exposure to the net-
work risks. This influences the principal’s security levels
on all messages that feature that secret, whose new (de-
creased) levels are computed by entailment. For example,
encryption and concatenation build up new messages from
known ones. The new messages must not get a worse secu-
rity level than the known ones have. So, the corresponding
rules choose the better of the given levels [26]. Precisely,
if messages m1 and m2 have security levels v1 and v2 re-
spectively, then the encrypted message {|m1|}m2

and the
compound message {|m1,m2|} get a new level that is the
better of v1 and v2, that is v1 +sec v2.

At this stage, given a specific protocol, we represent the
policy that accompanies the protocol as an SCSP called the
policy SCSP. It formalises all admissible network configu-
rations arising from the protocol execution as prescribed by
the protocol designers. Therefore, any interleaving of pro-
tocol sessions in which no principal has acted maliciously is
represented in the policy SCSP for the given protocol. The
exact construction is done algorithmically, but is irrelevant
to our discussion. Then, a particular network configuration
arising from the protocol execution in the real world can be
represented as another SCSP, an imputable SCSP. We have
designed another algorithm for this task. There exists one
such SCSP per each possible network configuration under
the given protocol, while there exists one policy SCSP per
each protocol [26].

Given a security level l, we use l-confidentiality and l-

authentication to formally capture the level of achievement
of the goal. In case of confidentiality of a message for a
principal in an SCSP, that level is the principal’s security
level on the message. It is computed by calculating the
solution of the SCSP, projecting it on the principal and
evaluating it on the message.

Definition 1 (l-confidentiality) Given an SCSP p, let
Sol(p) ⇓{A}= 〈def A, {A}〉; l-confidentiality of m for A in

p holds iff def A(m) = l .

By comparing the solutions of the policy and the given
imputable SCSPs we can formally define a confidentiality
attack.

Definition 2 (Confidentiality attack)
Given the policy SCSP P for a given protocol, and an im-
putable SCSP p for the same protocol, that there is a con-

fidentiality attack by A on m in p iff l-confidentiality of m

in P for A holds, l′-confidentiality of m in p for A holds,
and l′ < l.

Therefore, if Sol(P) ⇓{A}= 〈Def A, {A}〉, there is a con-
fidentiality attack by A on m in p iff def A(m) < Def A(m).
Attacks can be realistically compared: the more an at-
tack lowers a security level allowed by the policy SCSP,
the worse that attack.

We exemplify this treatment on the Needham-Schroeder
protocol seen above (§III). Figure 5 presents the fragment
of policy SCSP for the protocol pertaining to a single ses-

sion between principals A and B. Notice the unary con-
straints formalising each principal’s security levels prior to
the beginning of any protocol session, and the binary con-
straints each formalising a session step. In particular, while
A’s security level on her nonce Na was initially private

before any session began, it is lowered to traded1 by en-
tailment as soon as A invents it and sends it off in step
2 of the protocol. Similarly, B’s security level on Nb is
traded2 though it was originally private. The figure omits
all details that are irrelevant to the session. For example all
other principals’ security levels on Na and Nb are unknown

because the policy prescribes that no-one acts maliciously.

Figure 6 formalises the network configuration defined by
Lowe’s attack. The solution of this SCSP projected on vari-
able C is a constraint that associates security level traded4

to the nonce Nb. Following definition 1, Nb is traded4-
confidential for C in this SCSP. Hence, by definition 2,
there is a confidentiality attack by C on Nb in this prob-
lem, because Nb got level unknown in the policy SCSP.

The problem solution projected on variable B associates
security level traded2 to the nonce Na, which instead got
level unknown in the policy SCSP. This signifies that B has
learnt a nonce that he was not allowed to learn by policy,
hence there is an indeliberate confidentiality attack by B

on Na. Notice that the two attacks (the deliberate [20] and
the indeliberate [21]) are uniformly formalised.

Our approach is accurate, realistic and formal. It is
amenable to mechanization by model checking if we bound
all quantities, hence the possible network configurations are
finite [28].

V. Conclusions

We have laid the ground towards the development of a
definition of Information Assurance for secure distributed
communications. We require reliance on security protocols
previously analysed accurately, realistically and formally.

“Accurately” means that the protocol goals should not
be considered mere boolean properties because security
never is a boolean feature. By contrast, we advocate rea-
soning about levels of confidentiality or authentication.
“Realistically” means that the model underlying the analy-
sis should exceed the limits of the classical Dolev and Yao’s
model. We showed how this highlights another consequence
of Lowe’s attack on the popular asymmetric Needham-
Schroeder protocol. “Formally” means that the analysis
should be conducted within a formal framework.

The literature seems to be missing an approach to proto-
col analysis that embeds all the three features, so we have
sketched a new approach based on Constraint Solving. Ad-
mittedly, some details had to be hidden from the presen-
tation of the approach. But rather than convincing that
this is the best approach, our purpose was to convince the
reader that the three requirements we set towards Informa-
tion Assurance for secure distributed communications can
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BA

〈a〉 → public〈a〉 → public

〈b〉 → public〈b〉 → public

〈Ka〉 → public〈Ka〉 → public

〈Kb〉 → public〈Kb〉 → public

〈Ka−1 〉 → private 〈Kb−1 〉 → private

〈Na〉 → private

〈Nb〉 → private

〈Nb〉 → traded1

〈Nb〉 → traded2

〈Na〉 → traded1

〈Na〉 → traded1

〈{||}, {|Na, a|}Kb〉 → traded1

〈{|Na, Nb|}Ka , {||}〉 → traded1

〈{||}, {|Nb|}Kb〉 → traded2

Fig. 5. Fragment of the policy SCSP for the Needham-Schroeder protocol

C

A B

〈a〉 → public

〈a〉 → public
〈a〉 → public

〈b〉 → public

〈b〉 → public
〈b〉 → public

〈c〉 → public

〈c〉 → public
〈c〉 → public

〈Ka〉 → public

〈Ka〉 → public
〈Ka〉 → public

〈Kb〉 → public

〈Kb〉 → public
〈Kb〉 → public

〈Kc〉 → public

〈Kc〉 → public
〈Kc〉 → public

〈Ka−1 〉 → private
〈Kb−1 〉 → private

〈Kc−1 〉 → private

〈Na〉 → private
〈Nb〉 → private

〈{||}
, {|N

a, a|}
K
c 〉

→
traded

1

〈{
||}

,
{|
N
a
,
a
|} K

b
〉
→

tr
a
d
ed
2

〈{|N
a,N

b|}
K
a , {||}〉

→
traded

3

〈{
|N

a
,
N
b
|} K

a
,
{|
|}
〉
→

tr
a
d
ed
3

〈{||}
, {|N

b|}
K
c 〉

→
traded

4

〈{
||}

,
{|
N
b
|} K

b
〉
→

tr
a
d
ed
4

〈Na〉 → traded1

〈Na〉 → traded2

〈Na〉 → traded3

〈Nb〉 → traded3

〈Nb〉 → traded4

〈Nb〉 → traded4

{|Na, Nb|}Ka → traded3

Fig. 6. Fragment of the Imputable SCSP corresponding to Lowe’s attack

coexist together within a single approach to analysing the
underlying security protocols.

Acknowledgements

We are grateful to Simon Foley, Michael Leuschel and
Fabio Massacci for useful discussions on the topic of this
paper.

References

[1] W. Cheswick, S. M. Bellovin, and A. D. Rubin, Firewalls and
Internet Security: Repelling the Wily Hacker. Addison-Wesley,
2004.

[2] L. C. Paulson, “Mechanized Proofs for a Recursive Authentica-
tion Protocol,” pp. 84–95, 1997.

[3] P. Y. A. Ryan and S. A. Schneider, “An Attack on a Recursive
Authentication Protocol: A Cautionary Tale,” in Information
Processing Letters 65, 1998.

[4] M. Abadi and C. Fournet, “Mobile Values, New Names, and
Secure Communication,” pp. 104–115, 2001.

[5] R. Anderson, “Why Cryptosystems Fail,” pp. 217–227, 1993.
[6] L. Cholvy and F. Cuppens, “Analyzing Consistency of Security

Policies,” 1997.
[7] J. Y. Halpern and V. Weissman, “Using First-Order Logic to

Reason about Policies,” 2003.
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