
Modeling and selecting countermeasures
using CP-net and Answer Set Programming

Stefano Bistarelli1,2, Fabio Fioravanti1, Pamela Peretti1, and Irina Trubitsyna3

1 Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara, Italy
{bista,fioravanti,peretti}@sci.unich.it

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@iit.cnr.it

3 DEIS Università della Calabria, Rende, Italy
irina@deis.unical.it

Abstract. In this paper, we present CP-defense trees for modelling se-
curity scenarios and for expressing qualitative preferences over attacks
and countermeasures, and we show how to select the set of preferred
countermeasures able to protect a system by translating CP-defense trees
to Answer Set Optimization programs which contains preferences among
attacks and countermeasures. By computing the optimal answer set of
the ASO program corresponding to the CP-defense tree we are able to
automatically select the set of preferred countermeasure able to mitigate
all the vulnerabilities in the modeled security scenario.

1 Introduction

Providing an adequate level of protection to an enterprise’s IT assets is be-
coming increasingly important. As a consequence, security spending constitutes
a conspicuous part of an enterprise budget for IT. In order to focus the real
and concrete threats that could affect an enterprise’s assets, a risk management
process is needed in order to identify, describe and analyze the possible vulner-
abilities that must be eliminated or reduced. The final goal of the process is to
make security managers aware of the possible risks, and to guide them towards
the adoption of a set of countermeasures which can bring the overall risk under
an acceptable level, while minimizing the total cost of the security investment.

An instrument that can be used to determine the possible attacks that can
harm a system, and the necessary countermeasures are defense trees. Defense
trees, DT [1], an extension of attack trees [12], have been introduced as a method-
ology for the analysis of attack/defense security scenarios. A DT is an and/or
tree, where leaf nodes represent the vulnerabilities and the set of countermea-
sures available for their mitigation, and-nodes represent attacks composed of a
set of actions that have to be performed as a whole to damage the system, or-
nodes represent attacks composed of a set of alternative actions that damage the
system. Notice that to defeat and attacks it is enough to patch one of the vul-
nerabilities (by selecting a single countermeasure), whilst to stop or attacks, one
countermeasure for each of the actions composing the attack has to be selected.



The overall goal is to use the defense tree representation of attacks and coun-
termeasures for the selection of the best set of countermeasures (w.r.t. specific
preference criteria such as cost, efficiency, etc.), that can stop all the attacks to
the system.

Several works in literature [8, 11] address this problem by following a quanti-
tative approach: the security manager must provide economic quantitative esti-
mates to attacks and countermeasures which are then used to compute the cost-
optimal set of countermeasures. However, the use of quantitative evaluations in
the analysis of an IT system is often very difficult and expensive because many
factors can influence the attacks and the selection of countermeasures. In most
cases such a quantitative evaluation is not possible or reliable, and as a conse-
quence security managers tend to take decisions according to their experience
and intuition alone, without following any kind of structured process.

In these situations, it seems reasonable to provide qualitative estimates,
which are usually easier to elicit, rather than quantitative ones. In [2] a method
has been proposed to model preferences over attacks and countermeasures using
CP-nets, but no implementation was provided, making the method unfeasible
for big and complex scenarios.

The preference among countermeasures and the dependency between attacks
and countermeasures are modeled in [6] by an answer set optimization (ASO)
program. The and and or composition of a branch is then obtained by a syn-
tactic composition of the ASO programs, whose semantics completely respects
the intended meaning given in [2]. The semantics of the obtained ASO program
provides a set of ordered answer sets representing the ordered sets of counter-
measure to be adopted. In order to deal with ordered attacks (from the more
to the less dangerous), the model is extended by introducing a corresponding
rank (meta-preferences) among the preference rules of an ASO program. The
introduction of this kind of meta-preferences allows us to prefer the adoption of
countermeasures covering the more dangerous of the attacks.

The paper is structured as follows: we introduce CP-defense trees in Sec. 2.
In Sec. 3 we propose two different methods to compose preferences: the and-
composition and the or-composition. In Sec. 4 we present a method for trans-
lating - under suitable conditions - the CP-defense tree into an Answer Set
Optimization (ASO) program.

2 CP-defense trees

The CP-defense tree structure allows a system administrator to determine, in a
qualitative manner, the attack strategies that an attacker can follow to damage a
system, the different actions that compose each attack and the security measures
that can be introduced into the system. CP-defense trees are based on two
different instruments: the defence tree and the CP-network.

Defense tree [1] are an instrument that can be used to determine and to graph-
ically represent the possible attacks that can harm the assets of an IT system,



Fig. 1. An example of defense tree.

and the necessary countermeasures. They are an extension of attack trees [12],
a formal way of describing how attacks against a system can be performed. An
attack tree is built as follows:

– the root of the tree is associated with an asset of the IT system under
consideration,

– leaf nodes represent simple subgoals which lead the attacker to (partially)
damage the asset by exploiting a single vulnerability,

– non-leaf nodes (including the tree root) represent attack subgoals and can
be of two different types: or-nodes: are used to represent subgoals that are
completed as soon as any of its child nodes is achieved; and-nodes: are used
to represent subgoals which require all of its child nodes to be completed.
In the following we draw an horizontal line across the arcs connecting an
and-node to its children to distinguish it from an or-node.

Each path from leaf nodes to the root ending in an achieved subgoal represents
a different attack strategy in the considered scenario.

A defense tree is built by labeling each leaf node of an attack tree with a set of
possible countermeasures able to stop that particular attack action. The attack
tree is represented by using round nodes and solid edges, then it is enriched by
labeling each leaf node with a set of possible countermeasures, represented by
square nodes and connected by means of dotted lines.

Fig. 1 shows an example of a defense tree to model an attack/defense scenario
for an enterprise’s server used to store information about customers: rounded-
box nodes denote the attack strategies and the different actions the attacker
needs to perform, while square box nodes denote the different countermeasures
the system administrator can adopt.

CP-networks [3–5] are a graphical formalism for specifying and representing
qualitative conditional preference relations.
CP-nets capture ceteris paribus preference statements like, for example, “I prefer
red wine to white wine if vegetable soup is served”. This preference statement



(a) (b)

Fig. 2. An example of CP-net and the corresponding induced preference graph.

means that, given two meals both containing a vegetable soup, the meal with
red wine is preferred to the meal with white wine, all else being equal.

The conditional ceteris paribus semantics, adopted in CP-nets, requires that
for each variable x in the variable set V , a user specifies the parent variable
Pa(x) that can affect his preferences over the values of x. This information is
used to create the CP-net graph in which each node x has Pa(x) as its immediate
predecessor. For instance, in the example above the variable set V consists of
two variables S and W , representing the soup and the wine choice respectively.
Pa(W ) = S as the assignment of S (the choice of soup) can impact the preference
over the values of W (wine choice).

So, given a particular value assignment to Pa(x), the user can determine a
preference order over the domain of x, denoted as D(x), all other things being
equal. This conditional preference over the values of X is collected in a condi-
tional preference table (CPT ). For each assignment to Pa(X), CPT (X) specifies
a strict partial order over D(X). Notice that the right side of a conditional pre-
ference table is composed of a set of admissible values and by a partial order
over these values. When the set is not specified, we assume that it is composed
only of the values used in the partial order. Thus in the example above the con-
ditional table associated with variable W contains only one line Sv : Wr Â Ww,
representing the preference of red wine (Wr) to white wine (Ww) in the case of
the vegetable soup (Sv).

Example 1. Consider a preference specification described by the following sentences:
“I prefer vegetable soup to another type of soup”, “I prefer red wine to white wine
if vegetable soup is served” and “If another type of soup is served the white wine is
preferred to the red wine”. This preference specification extends the above-discussed
one and can be modeled by using a CP-net presented in Fig. 2(a). The variable set is
V = {S, W}, D(S) = {Sv, Su}, D(W ) = {Wr, Ww}, where Sv and Su represent the
vegetable and the another type of soup, while Wr and Ww state for red and white wine.
Pa(W ) = S because the type of soup influences the selection of wine. The CPT (S)
and CPT (W ) reports the preference over soup choice, described by the first sentence,
and wine choice, described by the two latter sentences, respectively. 4

The CP-net can be used to build an induced preference graph [4], that is an
acyclic directed graph where the nodes correspond to the complete assignments
of the variables of the CP-net, and there is an edge from node o′ to node o
if and only if the assignments at o′ and o differ only in the value of a single
variable X and o is preferred to o′. For instance, Fig. 2(b) reports the induced



A

C

G

(a) (b)

Fig. 3. A CP-defense tree.

preference graph corresponding to the CP-net presented in Ex. 1. It shows that
the assignment Su ∧ Wr, corresponding to the root of the induced preference
graph, is the less preferred assignment, while the assignment Sv ∧ Wr is the
most preferred assignment.

CP-defense trees. The integration of defense trees and CP-nets has been recently
proposed in [2] as a methodology to help the system administrator to analyze
a security scenario and to give him a model to represent preferences among
countermeasures. The resulting structure, called CP-defense tree, extends the
defense tree representation with preference specification.

The idea is to use the defense tree representation for the selection of the best
set of countermeasures (w.r.t. specific preference criteria such as cost, efficiency,
etc.) that can stop all the attacks to the system. To guide this selection, a CP-
net structure, able to model preferences over attacks and countermeasures can
be used.

As an example consider the integration of the defense tree of Fig. 1 and the
CP-net of Fig. 3(a). The variables A and C represent the (attack) action and
the countermeasure selection respectively. The preference over countermeasures
is conditioned by the type of action, so Pa(C) = A. CPT (A) describes the prefe-
rences over actions ai ∈ D(A), ordered according to the impact produced on the
system. For instance, the system administrator prefers to protect from the action
a2 rather than from the action a1 because action a2 is more dangerous than ac-
tion a1. CPT (C) collects the preference among countermeasures ck ∈ D(C) for
each type of action. The reason for the preference specification can be different:
efficiency, price, etc. In this example, for a given attack action a the application
of the countermeasure c is preferable to c′ when c is less expensive than c′.
The corresponding CP-defense tree is presented in Fig. 3(b).
Observe, that the preference order over actions described in CPT (A) is repre-
sented with dotted arrows, while conditional preferences over countermeasures
described in CPT (C) are represented by using solid arrows. The arrows are
directed from the less preferred to the more preferred outcome.

The final goal of a system administrator is to determine the best defense
strategy. Thus, he has to derive the minimal sets of countermeasures able to stop
all actions and the partial order among them. In particular, using the preference



tables CPT (C) and CPT (A), he has to combine the preference orders among
countermeasures, described in CPT (C), and obtain a new preference order over
sets of countermeasures able to stop all actions.

3 Composition of preferences

The composition of preference orders can be performed by using two composition
operations corresponding to the cases of and-attack and or-attack.

3.1 and-composition

An and-attack is an attack composed of a set of actions that an attacker has
to successfully achieve to obtain his goal. To protect the system from this type
of attack the system administrator can select a countermeasure for any of the
actions composing the and-attack. In fact, it is enough to stop one of the actions
to stop the attack.

In the following we say that a set of countermeasures S covers an and-attack
A if there exists a countermeasure c ∈ S covering at least an attack action a ∈ A.

Given an and-attack, denoted u1 ∧ ... ∧ un, composed of n actions u1, ..., un,
with sets of countermeasures Cu1 , ..., Cun respectively, the minimal sets of coun-
termeasures able to cover all actions (u1∧ ...∧un) have just one countermeasure
from Cu1 ∪ ...∪Cun . The new partial order Âu1∧...∧un , describing the preference
among countermeasures for u1∧...∧un, can be obtained by combining the orders
Âu1 , ...,Âun describing the preference orders among countermeasures associated
with actions u1, ..., un respectively.
The and-composition operator ∧, modelling this situation, is defined as follows:

Definition 1. (and-composition) Let N = (V, E) be a CP-net, V = {x1, ..., xn}
be a set of variables, and u1, ...uk be instantiations of the variable xj = Pa(xi).

The and-composition ∧(Âi
u1

, ...,Âi
uk

) of the partial orders Âi
u1

, ...,Âi
uk

, de-
scribed by CPT (xi), is a new partial order Âi

u1∧...∧uk
among elements in D(xi),

such that ∀a, b ∈ D(xi):

a Âi
u1∧...∧uk

b ⇐⇒
{
∃j ∈ [1..k] s.t. a Âi

uj
b or

∃j, l ∈ [1..k] s.t. ∀x, y : a 6Âi
uj

x and y 6Âi
ul

b and uj Â ul.

For the sake of simplicity, let consider now the and-composition of two partial
orders. Suppose N = (V, E) be a CP-net, with V = {A,C} and Pa(C) = A,
describing the preferences of CP-defense tree. Suppose also that u1, u2 ∈ D(A)
are two attack actions. The and-composition operator can be applied to the
partial orderings Âu1 and Âu2 described in CPT (C) in order to obtain a new
partial order Âu1∧u2 among countermeasures. In particular, given two counter-
measures a, b ∈ D(C), the countermeasure a is preferred to the countermeasure
b in Âu1∧u2 , if

– a is preferred to b in, at least, one of the partial orders Âu1 , Âu2 ;



(a) x

c

a

(b) y

b

a

(c) z

c

b

a

(d) z Â x Â y

c

b

a

(e) y Â z Â x

c

b

a

(f)

Fig. 4. An example of and-composition.

– a is a minimal (i.e. one of the worst) countermeasures in Âu1 , b is a maximal
(i.e. one of the best) countermeasures in Âu2 and the attack u1 is more
dangerous than u2, i.e. u1 Â u2.

Thus, the and-composition preserves the partial orderings among the counter-
measures, corresponding to each attack action and introduces the bridge prefe-
rence relation, connecting the corresponding orderings, by considering the pre-
ferences over the values of the parent variable A = Pa(C): if u1 Â u2 then the
countermeasures able to mitigate the risk of u1 are preferable to the counter-
measures able to mitigate the risk of u2.

As an example consider the and-attack x ∧ y, in the case than CPT (C) =
{x : a Â b Â c, y : b Â c} and CPT (A) = ∅. The preference order Âx∧y= ∧(Âx,
Ây) = {a Â b Â c}. The countermeasure a is the best choice for this situation.

Suppose now that CPT (C) = {x : a Â b, y : c Â d}, whereas CPT (A) =
{y Â x}. Observe that in this case the actions have disjoint sets of countermea-
sures. By applying the bridge preference relation d Â a we obtain the preference
order Âx∧y: c Â d Â a Â b, so c is the best countermeasure for x ∧ y .

It should be noted that, by applying the and-composition operator, we may
introduce cycles in the induced preference graph. There are two possible solutions
to this problem:

1. if there is some preference order between the parents Pa(xi) of the variable
xi, then we can use it to delete some edges from the induced preference graph.
For example, if we know that an action is more dangerous than another one,
we can say that the countermeasures for the first action are preferable;

2. if two actions are not comparable then there is no preference order between
the assignment of Pa(xi). In this case we can use some algorithms like,
for example the Floyd’s algorithm [9] for remove cycles from the induced
preference graph (by randomly removing an edge).

The following example shows how to use both these solutions.

Example 2. Consider a set of (attack) actions A = {x, y, z}, a set of countermeasures
C = {a, b, c} and CPT (C) = {x : a Â b Â c, y : c Â a, z : a Â b}, describing the partial
orders Âx,Ây and Âz depicted in Fig. 4(a), 4(b) and 4(c) respectively.
The and-composition ∧(Âx,Ây,Âz) returns the preference order among the counter-
measures able to stop the and-attack x ∧ y ∧ z: Âx∧y∧z= {a Â b Â c Â a}, which
introduces a cycle in the graph. If a preference order over actions exists, we can use



it to delete some edges from the network. For instance, if we know that z, is more
dangerous than x and that x is more dangerous than y (z Â x Â y), we can remove the
less preferred edge (a, c), generating the cycle. Consequently, we obtain the preference
order Â1= {a Â b Â c}, presented in Fig. 4(d). Vice-versa, if we know that the action y
is more dangerous than z and that z is more dangerous than x (y Â z Â x), we prefer
the countermeasure associated with the actions y. Thus, we can delete the edge (c, b),
as shown in Fig. 4(e), and obtain a different order: Â2= {c Â a Â b}. If there is no
preference relation between actions, we have to randomly choose and delete an edge
for removing the cycle. In this way we could obtain another order of preference like,
for instance, Â3= {b Â c Â a}, reported in Fig. 4(f). 4

3.2 or-composition

An or-attack is an attack that can be performed with different and alternative
actions: the attacker can complete successfully any of its actions to obtain his
goal. To protect the system from this type of attack, the system administrator
has to select one countermeasure for each of the actions composing the or-attack.

In the following we say that a set of countermeasures S covers an or-attack
A if for each action a ∈ A there exists a countermeasure c ∈ S covering such
attack.

Example 3. Consider an or-attacks A composed of three actions x, y and z. Suppose
that CPT (C) = {x : a Â b Â c, y : c Â a and z : a Â b}. The set {a} covers the
or-attack A because it is able to mitigate the risk associated with actions x, y and
z. The set {b}, on the contrary, doesn’t cover A because it is not able to protect the
system from the attack action y. 4

Given an or-attack u1 ∨ ... ∨ uk, composed of k actions u1, ..., uk, with sets
of countermeasures C1, ..., Ck respectively, the sets of countermeasures able to
cover all actions u1, ..., uk can be derived by considering the combinations of
countermeasures from C1, ..., Ck. The partial order among these sets can be
obtained by taking into account (i) the minimality condition (redundant coun-
termeasures should be avoided) and (ii) the partial orders Âu1 , ...,Âuk

describing
the preference orders among countermeasures associated with actions u1, ..., uk

respectively.

Definition 2. (or-composition) Let N = (V, E) be a CP-net, where V =
{x1, ..., xn} is a set of variables, u1, ..., uk be instantiations of the variable xj =
Pa(xi) and Âi

u1
, ...,Âi

uk
be partial orders, described by CPT (xi), over the sets

C1, ..., Ck ⊆ D(xi) respectively.
We say that the or-composition of the partial orders Âi

u1
, ...,Âi

uk
denotes a

partial order Ât over tuples 〈c1, ..., ck〉 of C1 × ...× Ck defined as follows: ∀c̄ =
〈c1, . . . , ck〉, c̄′ = 〈c′1, . . . , c′k〉

c̄ Ât c̄′ ⇐⇒ ∃j ∈ [1..k], cj Âi
uj

c′j and ∀h ∈ [1..k]s.t.h 6= j, (c′h 6Âi
uh

ch or uj Â uh)

Let us denote by Set(c̄) the set of countermeasures occurring in a tuple c̄, and
let us denote by Cm(S) the set of tuples of countermeasures c̄ s.t. Set(c̄) = S.



(a) x

c

a

(b) y

b

a

(c) z (d) x ∨ y ∨ z

Fig. 5. An example of or-composition.

The or-composition ∨(Âi
u1

, ...,Âi
uk

) of the partial orders Âi
u1

, ...,Âi
uk

denotes a
partial order Âi

u1∨...∨uk
over sets of countermeasures defined as follows:

S Âu1∨···∨uk
S′ ⇐⇒





S ⊂ S′ or

∃c̄ ∈ Cm(S), c̄′ ∈ Cm(S′) c̄ Ât c̄′

and ∀d̄ ∈ Cm(S), d̄′ ∈ Cm(S′) d̄′ 6Ât d̄

The following example shows how the or-composition operator works.

Example 4. Consider an or-attack A = x ∨ y ∨ z and CPT (C) = {x : a Â b Â c,
y : c Â a, z : a Â b}, describing the partial orders Âx,Ây and Âz depicted in Fig. 5(a),
5(b) and 5(c) respectively. We want to determine the preference order over sets of
countermeasures covering the attack x ∨ y ∨ z. First of all we have to determine the
possible tuples of countermeasures 〈cx, cy, cz〉, those components cx, cy and cz cover
the actions x, y and z respectively. Then we derive the sets of countermeasures, by
removing the duplicate elements from these tuples:

{a} ← 〈a, a, a〉
{a, b} ← 〈b, a, a〉, 〈a, a, b〉, 〈b, a, b〉
{a, c} ← 〈a, c, a〉, 〈c, c, a〉, 〈c, a, a〉
{b, c} ← 〈b, c, b〉, 〈c, c, b〉

{a, b, c} ← 〈b, c, a〉, 〈a, c, b〉, 〈c, a, b〉
Now we have to compare these sets: the set {a} is preferable to the sets {a, b} and
{a, c} because {a} ⊂ {a, b}, {a} ⊂ {a, c}; the sets {a}, {a, b}, {a, c} and {b, c} are
preferable to the set {a, b, c} because they are proper subsets of it; the set {b, c} is
preferable to {a, b} because 〈b, c, a〉 is preferable to 〈b, a, a〉 and no tuple in Cm({a, b})
is preferable to a tuple in Cm({b, c}); the set {a, c} is preferable to {b, c} because
〈a, c, a〉 is preferable to 〈b, c, b〉 and no tuple in Cm({b, c}) is preferable to a tuple in
Cm({a, c}); the set {a, c} is preferable to {a, b} because 〈a, c, a〉 is preferable to 〈b, a, a〉
and no tuple in Cm({a, b}) is preferable to a tuple in Cm({a, c}). Fig. 5(d) shows the
corresponding induced preference graph, where the set {a} is the preferable solution
for the or-attack x ∨ y ∨ z. 4

4 From CP-defense trees to ASO programs

The use of CP-defense trees and the methodology proposed in [2] aims to find
best set of countermeasures able to stop all the attacks to the system by compos-



P : r1 : w← .
r2 : x ∨ y← w.
r3 : a ∨ b ∨ c← x.
r4 : a ∨ c← y.

Φy : c > a← y.
Φx : a > b > c← x.

Fig. 6. An example of and attacks (with cycles) and the corresponding ASO program.

ing together the preference orderings associated to each branch of the tree. This
approach is good and elegant for representing small scenarios, but the directly
application of the composition operators becomes difficult for big and complex
scenarios. This problem can be avoided by translating the CP-defense tree into
ASO program, whose semantics completely respects the intended meaning given
in [2], and by solving the obtained program with CHOPPER, an ASO solver
described in [7].

4.1 Translation of and-or attacks into ASO programs

The ASO framework can profitably be used in order to represent a CP-defense
tree structure and find the best set of countermeasures able to stop all the
attacks. In this section the translation of and/or attacks into ASO programs
whose semantics realizes and/or-composition of actions, presented in Sections 3.1
and 3.2, will be discussed.

Translation of and-attacks into ASO programs. Let us start with an example of
and-attack . Consider the and-attack w, composed of two actions x and y, where
y Â x, presented in Fig. 6(a).
To protect the system from this kind of attack it is enough to stop just one
action composing the attack. The order among countermeasures obtained by
and-composition of orders corresponding to these actions is depicted in Fig. 6(b).
We can notice that in this case a cycle is obtained. Since the countermeasure
of the most dangerous attack has to be considered as preferred, the cycle can
be broken by removing one of the arcs among the countermeasure of the less
dangerous attack x. More precisely, the preference relations, described in (Dy,
Ây) have to be considered as more important, and the relation b Âx c, generating
(transitively) the conflict, has to be omitted. Graphically, this corresponds to
removing the arc as shown in Fig. 6(c).

Let us now consider how to model this by using ASO programs. The attack
action x and the preference order over the corresponding countermeasures a, b,
and c generate the following ASO program 〈Px, Φx〉:

Px rx1 : x← . rx2 : a ∨ b ∨ c← x. Φx %x1 : a > b > c← x.



where the rules rx1 and rx2 introduce the action and the possible counter-
measures respectively, while %x1 represents the preference order among them.
The same result is obtained for the attack action y, the corresponding program
〈Py, Φy〉 is the following:

Py ry1 : y← . ry2 : a ∨ c← y. Φy %y1 : c > a← y.

In order to model the and-node presented in Fig. 6(a), a new program 〈P, Φy, Φx〉
(see right side of Fig. 6) is generated combining the rules in 〈Px, Φx〉 and
〈Py, Φy〉. P introduces two new rules: r1 represents the root action w, while
r2 combines the action x and y in such way that only one of them must be
stopped. The other rules are a simply added without any change.
The answer sets of P are M1 = {w, x, a}, M2 = {w, x, b}, M3 = {w, x, c},
M4 = {w, y, c} and M5 = {w, y, a}. In order to establish the optimal answer
set, the ASO semantics firstly constructs the satisfaction vectors reporting the
degree of satisfaction for %y1 and %x1 for each model: VM1 = [I, 1], VM2 = [I, 2],
VM3 = [I, 3], VM4 = [1, I] and VM5 = [2, I].
Since %y1 is more important than %x1 , the comparison of these vectors under
assumption that I ≡ ∞ establishes the following order among the answer sets:
M4 > M5 > M1 > M2 > M3. Consequently, M4 is the optimal answer set and
{c} is the best set of countermeasures as c ∈ M4.

The order among answer sets can be also used in order to derive all pos-
sible sets of countermeasures and the order among them. Firstly, observe that
the possible sets of countermeasures correspond to the extraction of counter-
measures from the answer sets and are {a}, {b} and {c}. The preference order
among these sets can be obtained by considering the preference order among
the corresponding answer sets. In particular, when a set corresponds to multiple
answer sets, the best answer set has to be considered.

In this example both M1 and M5 contain countermeasure a, M5 > M1, thus
we have consider M5; both M3 and M4 contain countermeasure c, M4 > M3, thus
we have consider M4. Consequently, the order among the sets of countermeasures
is {c} > {a} > {b} as M4 > M5 > M2.

Translation of or-attacks into ASO programs. Let now consider the case of an
or-attack, i.e. an attack composed of a set of alternative actions one of which
has to be successfully achieved to obtain the goal. The protection from this kind
of attack consists in the protection from all the actions composing the or-attack.
Intuitively, the most preferred strategy has to select the best countermeasure for
each action.

Consider the or-attack w presented in Fig. 7. The corresponding ASO pro-
gram is generated as follows: 〈Px, Φx〉, 〈Py, Φy〉 and 〈Pz, Φz〉 represent, respec-
tively, the programs associated to the actions x, y and z, and the corresponding
preferences over the countermeasures a, b and c.

Px x← . a ∨ b ∨ c← x. Py y← . a ∨ c← y. Pz z← . a ∨ b← z.
Φx a > b > c ← x. Φy c > a ← y. Φz a > b ← z.



P : r1 : w← . Φ1 : %1 : c > a← y.
r2 : x← w. Φ2 : %2 : a > b > c← x.
r3 : y← w. %3 : a > b← z.
r4 : z← w.
r5 : a ∨ b ∨ c← x.
r6 : a ∨ c← y.
r7 : a ∨ b← z

Fig. 7. An example of or attacks and the corresponding ASO program.

Then they are combined in the ranked ASO program 〈P, Φ1, Φ2〉, where Φ1 = Φy,
Φ2 = Φx ∪ Φz (see the right side of Fig. 7). A new rule r1, introduced in P,
represents the root of the or-attack w, while the rules r2, r3 and r4 model
the or-attack, i.e. that all the three actions must be stopped to stop the w.
The answer sets of P are M1 = {w, x, y, z, a} and M2 = {w, x, y, z, b, c} and
describes the application of two alternative sets of countermeasures {a}, {b, c},
protecting from the or-attack w. In order to establish the optimal answer set,
the ASO semantics firstly construct the satisfaction vectors VM1 = [2, 1, 1] and
VM2 = [1, 2, 2]. Then it compares these vectors, by firstly considering %1 ∈ Φ1,
obtaining immediately that VM2 < VM1 . Consequently, M2 is the optimal answer
set and {b, c} is the preferred set of countermeasures.

Observe that the application of ASO semantics models the or-composition
operation in simple and elegant way. For instance, by collecting the minimal
answer sets it avoids to select the redundant countermeasures. In fact, in the
example above among the sets M1 = {w, x, y, z, a}, M ′

1 = {w, x, y, z, a, b},
M ′′

1 = {w, x, y, z, a, c}, M ′′′
1 = {w, x, y, z, a, b, c} only M1 is considered as the

application of the countermeasure a is enough to protect the system.
Observe also that the most preferred strategy suggested by ASO semantics

has to prefer the set, containing the best countermeasures for most dangerous
actions, to the set containing the smaller number of countermeasures. In fact, in
the above example, the set of countermeasures {b, c} is preferred to {a}, having
only one countermeasure. A possible extension of the ASO semantics, could be
able to take into account the cardinality of the set of countermeasures.

4.2 Translation of CP-defense trees to ASO programs

Given an IT system root and the corresponding CP-defense tree T , the selection
of the preferred defense strategy can be modeled by means of the corresponding
logic program with preferences. In particular, if we assume that (i) attacks are
totally ordered, and (ii) the set of countermeasures occurring in every conditional
preference rule is totally ordered, a ranked ASO program L(T ) = 〈P, Φ1, ..., Φk〉
can be constructed, where P describes the possible defense strategies designed
in T , while Φ1, ..Φk model preferences among the attacks, highlighted in T ,
and establish the preference order among the attacks following the preference
orderings among the countermeasures for each single attack. The application of
the ASO semantics on L(T ) produces the best defense strategies w.r.t T , thus the



optimal solutions of L(T ) can be used in order to find the best countermeasure
selection.

Given a CP-defense tree with n leaf attack actions a ranked ASO program
L(T ) = 〈P, Φ1, ..., Φk〉, k ≤ n, can be defined, where
P is generating program consisting in the following rules r:

1. root←, stating that the root of the tree must be protected;
2. Y1 ∨ . . . ∨ Yn ← X, for each and-node X having n child nodes Y1, . . . , Yn,

meaning that at least one attack from Y1, . . . , Yn must be stopped to protect
from X;

3. Yi ← X, i = [1..n], for each or-node X having n child nodes Y1, . . . , Yn,
stating that each attack represented by Y1, . . . , Yn must be stopped to protect
from X;

4. C1 ∨ . . . ∨ Cn ← X, for each leaf node X decorated with n countermeasures
C1, . . . , Cn, stating that at least one countermeasure C1, . . . , Cn is able to
protect from X.

Each action in the defense tree induces a preference rule in the ASO program.
Moreover, if the attack actions are ordered as A1 Â · · · Â Ak, where each Ai

is a set of actions {a1..., ahi}, a set of preference programs Φ1, . . . , Φk, where
Φi = {%a1 , . . . , %ahi

}, i = [1, . . . , k], is constructed. For each attack action X the
preference rule %X is defined as follows:

1. C1 > . . . > Cn ← X, for each leaf node X decorated with n countermeasures
C1, . . . , Cn, where there is a solid arrow from Ci to Ci−1, i = [2, . . . , n].
This preference rule states that to protect the attack X the countermeasure
C1 is preferred to C2, . . . , Cn−1 is preferred to Cn.

The optimal answer set obtained by computing the semantics of the generated
program will collect the best countermeasure. The following Example show the
result of the above procedure when applied to the CP-defense tree of Fig. 3(b).

Example 5. In this example we present an application of the ASO semantics for ana-
lyzing the attack/defense scenario shown in the CP-defense tree of Fig. 3(b). It can be
modeled by using the prioritizing program 〈P, Φ〉:

P : root← a5 ∨ a6 ← a5,6 Φ : %1 : c1 > c2 > c3 ← a1
a1,2 ← root c1 ∨ c2 ∨ c3 ← a1 %2 : c5 > c3 > c4 ← a2
a3,4 ← root c3 ∨ c4 ∨ c5 ← a2 %3 : c6 > c7 ← a3
a5,6 ← root c6 ∨ c7 ← a3 %4 : c8 > c9 ← a4
a1 ← a1,2 c8 ∨ c9 ← a4 %5 : c10 > c11 ← a5
a2 ← a1,2 c10 ∨ c11 ← a5 %6 : c12 > c13 ← a6
a3 ← a3,4 c12 ∨ c13 ← a6
a4 ← a3,4

The answer sets of P are ninety, M1 is an example of them: M1 = {root, a1,2, a3,4,
a5,6, a1, a2, a3, a4, a5, c1, c4, c6, c8, c10}. Considering the preference order among attacks,
as depicted in Fig. 3(b), we can specify the importance of preference rules: %2 is more
important than %1 for expressing the preferences in the selection of countermeasures



for the attack a2 that is preferred to a1, %1 is more important than %6 because a2 is
preferred to a6 and so on. In this way we obtain the following ranked ASO program
〈P, Φ1, Φ2, Φ3, Φ4, Φ5, Φ6〉, where Φ1 = {%2}, Φ2 = {%1}, Φ3 = {%6}, Φ4 = {%5}, Φ5 =
{%3} and Φ6 = {%4}, whereas the generating program is the same. By applying the ASO
semantics we obtain that M = {root, a1,2, a3,4, a5,6, a1, a2, a3, a4, a6, c1, c5, c6, c8, c13}
is the optimal answer set, intuitively, M is the preferred answer set as it contains a6

which is preferred w.r.t. a5 and the best options for each preference rule %1 . . . %4 and
%6. Concluding, {c1, c5, c6, c8, c13} is the preferred set of countermeasures. 4

5 Conclusion and future works

In this paper we propose the use of two qualitative instruments for the selection
of defense strategies to protect an IT system from the risk of attacks: we use
defense trees to model attack/defense scenarios and CP-nets to model qualitative
conditional preference over attacks and countermeasures.

Defense trees allow us to represent the possible attack actions that a person
can perform to damage an asset of an IT system, and the possible countermea-
sures able to stop each action.

CP-nets, instead, allow us to model conditional preferences over attacks and
countermeasures, and the qualitative preferences of a system administrator in
the selection of countermeasures for each attack.

Our idea is to use CP-nets to model the selection of the countermeasures
represented in a defense tree. We propose two methods for the composition of
these preferences: an and-composition to model the preference order in the case
of an and-attack, and an or-composition in the case of an or-attack.
The first operation we propose is an and-composition, we combine the preference
order over the countermeasures represented in the CP-nets associated to attack
actions composing the and-attack. In this case we also take into consideration
the preference between attacks with the purpose of determining the preferred
countermeasures. The second operation we propose is an or-composition of the
CP-nets: we are interested in determining a preference order over sets of coun-
termeasures which are able to cover all actions of an or-attack. In particular,
we prefer countermeasures which are able to mitigate the risks associated with
more than one action.

This paper also discusses the use of ASO programs to represent CP-defense
trees, and to reason about them. The ASO approach uses preference rules in
order to express the preference relations among the combinations of atoms and
introduces the preference order among these rules. The ASO semantics gives
simple and an intuitive way for modelling a CP-defense tree and is expressive
enough to formulate preferences over countermeasures w.r.t. attacks.

The methodology presented in this paper provides a basis for future work
along the following directions.

In a future version of this paper we will give formal proofs about the sound-
ness and the completeness of the translation of CP-defense trees into ASO pro-
grams. When presenting the translation method in Section 4 we assumed that (i)
attacks are totally ordered, and (ii) the set of countermeasures occurring in every



conditional preference rule is totally ordered. The application of the translation
method to the more general case requires further investigation.

We faced the problem of determining defense strategies composed of sets of
countermeasures (one for each attack) and only in the case of an or-attack we
studied how a single countermeasure can cover more than one attack. A possible
extension of this work is to investigate how to find sets of countermeasures able
to mitigate sets of attacks, also in the case of or-attacks.

In this paper we use CP-nets considering only strict partial orders, a possible
extension can be the use of non strict partial orders to model the preference over
countermeasures and attacks, and the use of indifference between this variables
(for instance a1 º a2).

We also plan to consider attacks as uncertain variables. In [10] an approach is
described to model a real-life problem as a set of variables with finite domains and
a set of soft constraints among subsets of the variables. A variable is uncertain
if we cannot decide its value. In this case, they associated a possibility degree
to each value in its domain, which will tell how plausible it is that the variable
will get that value.

References

1. S. Bistarelli, F. Fioravanti, and P. Peretti. Defense tree for economic evaluations
of security investment. In 1st Int. Conf. on Availability, Reliability and Security
(ARES’06), pages 416–423, 2006.

2. S. Bistarelli, F. Fioravanti, and P. Peretti. Using cp-nets as a guide for counter-
measure selection. In ACM Symp. on Applied Computing, pages 300–304, 2007.

3. C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos, and D. Poole. Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. JAIR, 21, 2004.

4. C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos, and D. Poole. Preference-
based constrained optimization with cp-nets. Computational Intelligence, Sp.I. on
Preferences, 2(200):137–157, 2004.

5. C. Boutilier, R. I. Brafman, H. Hoos, and D. Poole. Reasoning with conditional
ceteris paribus preference statements. In 15th Conf. on Uncertainty in Artificial
Intelligence, pages 71–80, 1999.

6. G. Brewka, I. Niemela, and M. Truszczynski. Answer set optimization. In 18th Int.
Joint Conf. on Artificial Intelligence, pages 867–872. Morgan Kaufmann, 2003.

7. L. Caroprese, I. Trubitsyna, and E. Zumpano. Implementing prioritized reasoning
in logic programming. In ICEIS (2), pages 94–100, 2007.

8. J. Caulkins, E. Hough, N. Mead, and H. Osman. Optimizing investments in security
countermeasures: A practical tool for fixed budgets. IEEE Security and Privacy,
5(5):57–60, 2007.

9. R. W. Floyd. Non-deterministic algorithms. J. Assoc. Comp., pages 636–644, 1967.
10. M.S. Pini, F. Rossi, and K.B. Venable. Possibility theory for reasoning about

uncertain soft constraints. In ECSQARU, pages 800–811, 2005.
11. Mehmet Sahinoglu. Security meter: A practical decision-tree model to quantify

risk. IEEE Security and Privacy, 3(3):18–24, 2005.
12. B. Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, 1999.


