Retaliation Against Protocol Attacks

Giampaolo BellaUniversita di Catania, ITALY
Stefano Bistarelli, Universita di Pescara and C.N.R. Pisa, ITALY
Fabio Massacci, Universita di Trento, ITALY

Abstract

Security protocols intend to give their parties reasonable assurance that certain
security properties will protect their communication session. However, the liter-
ature confirms that the protocols may suffer subtle and hidden attacks. Flawed
protocols are customarily sent back to the design process, but the costs of reengi-
neering a deployed protocol may be prohibitive. This paper outlines the concept
of retaliation: who would steal a sum of money today, should this pose significant
risks of having twice as much stolen back tomorrow? When ethics is left behind,
attacks are always balanced decisions: if an attack can be retaliated, the economics
of security may convince the attacker to refrain from attacking, and us to live with
a flawed protocol. This new perspective requires a new threat model where any
party may decide to subvert the protocol for his own sake, depending on the risks
of retaliation. This threat model, which for example is also suitable to studying
non-repudiation protocols, seems more appropriate than the Dolev-Yao model to
the present technological/social setting. It is demonstrated that machine-assisted
protocol verification can and must be tailored to the new threat model.

1 Introduction

A security protocol is a social behaviour that principals of a distributed system must
follow to obtain some important collective benefits in terms of security. For the good
principals, it is sufficient to state some clear, understandable, and acceptable rules de-
scribing how to execute the security protocol correctly, namely by the book. Because
they are good principals, they will conform to the rules, and behave as the protocol
prescribes. The bad principals, by definition, will not conform to the rules and, rather,
will execute the protocol arbitrarily, that is incorrectly.

Classical research in distributed systems and security starts off exactly from the
need to counter the disruptive behaviour of the bad principals. Research efforts have

*This version is revised thanks to the anonymous reviews. Under consideration for publication in the
International Journal of Information Assurance and Securifihis paper extends and supersedes a prior
version presented at tidato Advanced Research Workshop on Information Security Assurance and Security
held in Tetuan (Morocco) in June 2005 and published in its proceedings edited by Mohammad Essaaidi and
Johnson Thomas.

fCorresponding author: giamp@dmi.unict.it

focused on designing a protocol so that if the good principals outnumber the bad ones,
the collective benefits will be achieved regardless of the bad principals’ behaviours.
Another perspective aims at limiting the bad principals’ profit, regardless of how many
or how smart they are [11]. The general line of research seems towards proving that
those who conform to the protocol are somewhat safeguarded with their own aims. Our
contribution substantially lengthens this line.

There has been a stable relation between verification and design. Whenever verifi-
cation denounces an attack, the protocol must go back to the design phase. It generally
tells people that the original design is a complete failure, although it literally only sig-
nifies that it is flawed. These acute considerations lead us to wondering what may
happen after an attack takes place. Can we still get something useful from the protocol
or merely repeated instances of the attack that was just found? We expect to obtain
deeper insights about the entanglements of a protocol by continuing its analysis after
an attack is pinpointed. In other terms, we are crossing a doorstep that usually stops
researchers and sends them to publishing their findings.

Our analysis helps us understand whether it is at all possible to threaten the bad
principals exactly when they execute the protocol incorrectly. In the real world, a
virtuous behaviour is imposed on people by taking measures of real security such as
hardening the windows against crash. There is a perfect simile with security protocols
so far. However, the real world also relies on countermeasures of security so that the
vandals who, despite the rules, crash the windows are jailed. Our simile flickers here
but must not. People balance the advantages of breaking the law on one side with its
consequences on the other side. We observe that this applies to both the real and the
digital world. So, if we convince the protocol participants to weigh up the benefits of an
incorrect execution with the consequent threats, they would opt to execute the protocol
correctly if the threats were heavier.

The essence aktaliation for security protocols has come clear. Let us consider
Lowe’s famous attack to the public-key Needham-Schroeder protocol [13]. The attack
entitles the bad principal to ask for a transfer of money. Would he really steal a sum
of money if the threats that twice as much would consequently be stolen to him were
significant? This kind of analysis opens up the ground to novel, realistic considerations
about security protocols. When an attack is discovered, it is worth studying further to
verify if it can be retaliated. An affirmative conclusion, perhaps supported by appropri-
ate risk analysis, may let us decide to keep the protocol in use as it stands. If redesign
is costly, retaliation may signify that a flawed protocol can still achieve a sufficient and
stable level of security.

It is unfortunate that retaliation is normally accepted and legitimised in military
contexts. Our findings appear to justify this concept also in commercial systems reg-
ulated by security protocols. However, this may turn out useful to all protocol partic-
ipants. Attackers usually leave ethics behind and adopt a simple cost/benefit conduct.
Either the media or their own mischievousness — which makes themselves victims of
retaliation attacks — will have informed them that certain attacks can be retaliated. It
can be deduced that, at that stage, their simple code of conduct will convince them
to retreat. As a consequence, the good principals will be safe enough with a flawed
protocol that permits retaliation.

The present paper builds on top of ideas that we informally sketched [4]. The

presentation gains a precise formulation of the novel threat model that supports the
notion of retaliation. Moreover, all definitions are presented formally here. Finally,
the novel concept adut-of-band challengis advanced. Because each principal minds

his own business with any legal (if he is good) or also illegal (if he is bad) means, he
can issue out-of-band challenge messages to suspect or detect that something dodgy
happened.

The organisation of this manuscript is simple. The presentation opens up by trig-
gering the reader’s intuition with an example (82). Only at that stage are the key formal
elements introduced (83), and the novel threat model specified (§84). The continuation
of protocol analysis after an attack is found (85) is central to our work. This paper ex-
tends a previous version [5] with the first findings on machine-assisted formal protocol
verification under the new threat model that encompasses retaliation (§6). These find-
ings have never been published before. Some conclusions terminate the presentation
(87).

2 Retaliation in the Public-Key Needham-Schroeder Pro-
tocol

The popular public-key protocol due to Needham-Schroeder [15] is a good starting
point to our presentation. The notation can be easily summarised as follows.

e Cryptographic keys are denoted by letférin general. Each letter may feature
a principal name as a subscript, expressing the principal who knows the key.

e Nonces are denoted by lettdf. Each letter may feature a principal name as a
subscript, expressing the principal who invented the nonce.

e The message concatenation operator is denoted by a comma.

e The message encryption operator is denoted by external curly braces featuring
the encryption key as a subscript. This paper only features asymmetric encryp-
tion.

Having seen the basic protocol notation, the actual protocol can be found Figure 1.

1. A— B:{Na, A},
2. B — A:{Na,Nb},
3. A— B:{Nb},

Figure 1: The public-key Needham-Schroeder protocol

The goal of this protocol iauthentication at completion of a session initiated Hy
with B, principal A should get evidence to have communicated vithnd, likewise,

principal B should get evidence to have communicated withAssuming that encryp-

tion is perfect and that the nonces are truly random, authentication is achieved here by
exchange of nonces. Upon receptionof inside message 24 should be allowed to
conclude that she is interacting with, the only principal who could retriev&a from
message 1. In the same fashion, upon receptiakibohside message 3 should be
allowed to conclude that he is interacting wilhhthe only principal who could retrieve

Nb from message 2. However, let us consider Lowe’s attack reported in Figure 2.

1. A—C:{Na,Al.
1. C— B:{Na, A}y,
2'. B — A:{Na,Nbl,
2. C— A:{Na,Nb},
3. A— C:{Nbl},,
3. C — B:{Nb}y,

Figure 2: Lowe’s attack to the Needham-Schroeder protocol

The attack consists in a malicious princigalmasquerade as a principdlwith a
principal B, after A initiated a session witly'. This scenario, which se€sinterleave
two sessions, indicates failure of authenticatiomafith B, which follows from fail-
ure of confidentiality ofNb. Lowe also reports that, iB is a bank for example&,’ can
steal money from’s account by sending a single message (Figure 3). Upon reception
of the two nonces of the session with the bankB would honour the request believ-
ing it came from the account holder. The sender label can be changed at will, and
notoriously is unreliable.

4. C — B :{Na, Nb,“Transfer £1000 fromd’s account taC’s" |} .,

Figure 3: Completion of Lowe’s attack

A more thorough confidentiality analysis with soft-constraints [3] reveals that, as
a by-product of Lowe’s attacki3 has learnt noncé/a, which was invented byl to
be shared withiC' only. Formally speaking, this already is a violation of the protocol,
because it is against its underlying policy. On one hand, it may not seem a major ob-
servation, as we already know that the protasdlawed and is flawed exactly in terms
of confidentiality of the nonces. On the other hand, we wonder what may happen in
practice if B later realises the significance of the nonce he indeliberately received, and
hence decides to take advantage of it. In terms of security analysis, it is not interesting
to study howB could realise that: if a bad principal has a key ring with many keys,
he may systematically try them all at the available locks. In most cases, there will be
some “proximity” between the key ring and the potential victim locks, such as within

the same newsgroup, or the same LAN, or the same institution. However, the very con-
sequences of the most pessimistic case that Beeploit Na are the focus hereB

can also rob the robber by a single message, as described in Figure 4. Upon reception
of the two nonces of the session with the bankA would honour the request believing

it came from the account holdét.

4" B — A:{Na, Nb,“Transfer £2000 fronC’s account taB's" |} -,

Figure 4: Retaliating Lowe’s attack

This is a form of indirect retaliation” robs A throughB, henceB robsC through
A. It may turn out to be more or less appealing in practice. Nevertheless, what can
be learnt is that something significant may follow after an attack happens in the first
place, and therefore we should also look beyond protocol attacks. It is something that is
made possible exactly because the first attack took place, so it is not just another attack.
Also, it is imprecise to see this scenario as a classical cascade of attacks because the
victim of the first attack is not the same as that of the retaliation attack. The most
appropriate connotation indeed appears to be that of retaliation: because something
happens, something else can happen against that.

It is interesting to point out that the retaliation attack is possible because not only
does Lowe's attack disclos®b to C, but it also revealsVa to B. The same pattern
lies behind classical attacks to other protocols, such as Splice/AS and the Helsinki pro-
tocol [7]. Hence, also those attacks can be retaliated. A fundamental prerequisite to
study retaliation attacks in detail is to allow the principals to change behaviour from
unaware mediator to active attacker, as is the cade iofthe example above, or from
victimiser to victim, as is the case 6f. It seems that the classical Dolev-Yao threat
model consisting in a super-potent attacker is inappropriate to the present technologi-
cal/social setting. Today, each principal may have capacity and competence to decide
to act illegally for his own sake. This change to the threat model is defined below (84)
but some basic terminology must be introduced first.

3 Basic terminology

For simplicity, in the following we do not specify a more or less free algebra of mes-
sages, since this is only needed when modelling a specific protocol with a specific
formal method. We only assume one exists, so that messages are elements of this alge-
bra and can be suitably identified by a number to avoid ambiguity. Following Backes
et al. [1] we uniquely identify each message so that even if a principal takes a message
and simply forwards it to another one, it will be denoted by a different identifier. The
underlying algebra of messages would then tell us that the messages are indeed “equal
in content”. Such a notion can then be used when modelling a specific protocol step.

Definition 1 (Events) An Eventis one of the following actions:

e a principal sendsa message to another principal; it is denoted by a 4-uple
s(A: A" — B[#]) mentioning the actual sendet, the alleged sended’, the
recipientB, and the message numbgr

e a principalreceivesa message; it is denoted by a tupled : #) mentioning the
receiverA and the message numbgt

Example 1 Consider the Needham-Schroeder protocol (Figure 1). Its events and mes-
sages can be easily formalised as follows. The event whetehitiates with B can

be denoted by (4 : A — B[1]); the event whereby3 receives the message can be
denoted by (B : 1); the event whereby sonte intercepts the same message can be
denoted by (C : 1).

Definition 2 (Traces) A TraceT is a list of events formalising a specific network his-
tory. It must respect Lamport’s causality principle and the unique identification of
messages by Backes et al. [1]: each sending event must precede the corresponding
receiving event and each sending event must introduce a message with a new formal
identifier.

Example 2 Consider the network history on which Lowe’s attack (Figure 2) takes
place. It can be formalised by the trace:

Fs(A:A— C[)),r(C) 7
s(C:A— B[l]),r(B:1),

oo | s :B—>A[7,r(C 2/)
s(C: Af2]),r(A:2),
s(A:A—=C[3]),r(C:3),
_s<c:AﬁB[3’1> (B:3) |

It can be seen that the reception eventdif.,. confirm thatC' learns nonceVb and
B learns nonceVa.

Definition 3 (Trace Projections and Extensions)A ProjectionT’ /A of atraceT over
a set of principalsA is the sublist of events iff’ that are performed by some princi-
pal in A. AnExtensionT’ of a trace T is any trace beginning witll". In symbols:
T C T’; the concatenated trac&; Ts is such thatT, C T; T5.

A remark is necessary about trace projection. Let us suppose that a trace features
the event wherebyl sends a message 1. This event certainly belongs to the pro-
jection of the trace over s€tA}, but not over the sefB} because reception is not
guaranteed in general. Likewise, if the original trace features the event whdreby
receives a message, this event belongs to projection of the tracd 4yerThere is
no strong relation between the projection and extension operators, so that in general

T/{A}ET.

Example 3 Consider the trace representing Lowe’s attack. It can be easily projected
over the attacke€ as:

s(C:A— B[l]),r(C:2),
Trowe/ {C}=| s(C:C — A[2]),r(C:3),
s(C: A— B[3))

Example 4 Consider the example trace:
T'=[s(A: A— C[1]),r(C:1),s(C: A— B[l'])]

It follows that 7" T Trowe, but T/ £ Troue/ {C} becaused’s sending the first
message does not appearifow./ {C}. Also, Trowe/ {C} L Trowe-

Classical security terms such as spoofing and sniffing can be easily defined formally
using the notion of trace. A principapoofsa message on a trace if the trace features
an event in which the actual sender is different from the alleged sender. A principal
interceptsa message meant for someone else on a trace if the trace features an event
whereby the principal receives the message but no event whereby the intended recipient
of the message receives it. If a trace on which an interception event takes place is
extended with the event whereby the intended recipient of the intercepted message
actually receives it, then the interception event should be more correctly addressed as
asniffingevent. It means that these notions only make sense exactly with respect to a
trace and precisely to the very trace under consideration. By contrast, they are pointless
on their own.

A formal protocol modebenerically is the set of all possible traces induced by
the protocol. It can be defined in the formal model of choice (CSP [20], Inductive
Method [17], Strand Spaces [22], etc). It is denoted by (variants of) the GreeKiletter

4 BuUUG: A New Threat Model

A subtler classification of principals than the classical spy/non-spy one is needed. Our
interest is in a social taxonomy reflecting whether the principals behave legally or not,
rather than in notions such as initiator or responder. The taxonomy is taken as a threat
model for the security considerations that follow.

Definition 4 (BUG Threat Model) The BU/G threat model partitions the principals
according to three, disjoint, social behaviours: thad thegoodand theugly princi-
pals. These are defined as follows:

Bad principals are attempting to break the protocol for their own illegal benefits. They
may or may not collude with each other. They are denoted by (variants of) the
calligraphic letter5.

Ugly principals are acting with no precise social/legal commitment: they may follow
the protocol and may, deliberately or not, let the bad principals exploit them.
They are denoted by (variants of) the calligraphic letier

Good principals follow the protocol rules, and are exactly those who should enjoy the
protocol goals exactly by conforming to its rules. They are denoted by (variants
of) the calligraphic letteiG.

Our taxonomy is both similar to and different from the Dolev-Yao [10] simple
classification of principals. Itis similar in the admission that someone can act illegally.
We are however accounting forset of bad principals rather than for a single spy,
signifying that more than one principal may want to subvert the protocol. Crucially,
each bad principal may want to act by himself, as it is realistic nowadays. By contrast,
the Dolev-Yao spy is the logical product of any set of colluding principals, as it was
more realistic decades ago when computer networks were rare.

A distinction is necessary between good/bad and ugly participants because we want
to discuss what happens after an attack. It is important to identify the participants who
should have benefited from the protocol goals (the good), the participants who actually
benefited from the flaw (the bad) and finally those who took part in the session and
indeliberately contributed to the flaw (the ugly). Because the principals can change
role, for example from good to bad, by performing some event, the taxonomy depends
on the specific trace under consideration. This relation requires further specification,
but for simplicity it is sufficient to clarify that if a specific partition (of the principals
into the roles) underlies a trace, another partition can underly an extension of the given
trace.

In the original Dolev-Yao model, and in some later more complicated incarnation
such as the Bellare-Rogaway [6] model, the ugly and the bad were grouped together:
the intruder can use as oracle any stage of the protocol. However this does not dis-
tinguish who gained from the protocol failure. But such a clear distinction is always
present in the informal description of an attack in a research paper: sentences such as
"and thus A can impersonate B", "C can learn M" etc. mark exactly the notion of who is
gaining. However, to impersonate Bob, it might be the case that Alice needs to exploit
Ive’s participation in the protocol, in which case Ive would be playing, deliberately or
not, the role of an ugly principal.

Before moving on to a formal example, we assume the existence of a predicate
over a protocol trace that evaluates to true if the trace contains an attack according
to some suitable definition. The predicate takes as parameters also the specific social
behaviours of the principals on that traé€:T', 3,1, G). Clearly, additional predicates
can be introduced formalising specific attacks, but we can do with one for the sake of
presentation.

Example 5 Consider Lowe’s attack (Figure 2) to the Needham-Schroeder protocol and
the tracel', ... (Example 2) formalising it. On this trace it can be observed tidats

the subject of the attack, the attacket;is just playing by the rules with no deliberate
commitment;B is the object of the attack, the victim. So, we define:

e B={C}
OU:{A}
. G—(B)

It follows thatA(T'owe, B, U, G) holds.

Example 6 Consider the completion of Lowe’s attack (Figure 3). It can be formalised
as an extension of the trad,,.,. (Example 2) as:

T1 = Trowe; [s(C : A— B[4]),r(B : 4)]

On this trace it can be observed that: is the subject of the attack, the attackét;is
just playing by the rules with no deliberate commitmetis the object of the attack,
the victim. So, we define:

e By ={C}
o Uy ={B}
e G = {4}

It follows thatA(Ty, By U1, Ql) holds.

The two previous examples show that the social roles that the agents play vary from
the tracel’,.,. formalising Lowe’s attack, to the tracg formalising its completion
with the illegal money transfer. It is clear that, while Lowe’s attack directly imp>s
the consequent theft impacts

Example 7 Consider our continuation of Lowe’s complete attack (Figure 4). It can be
formalised as an extension of the trdEe(Example 6) as:
To=Ty;[s(B:C — A[4]);r(A:4")]

On this trace it can be observed tha® is the subject of the attack, the attacker;s
just playing by the rules with no deliberate commitmeTitis the object of the attack,
the victim. So, we define:

e B3y, ={B}
o Uy ={A}
° QQZ{C}

It follows thatA(Ts, Bs, Uz, G2) holds.

5 Beyond Protocol Attacks

Before going beyond protocol attacks, we provide a classical formal definition of pro-
tocol vulnerability.

Definition 5 (Vulnerability) A protocolIl is vulnerable to an attack that is mounted
by the principals i3 exploiting those iri/ against those ig if there exists a protocol
trace T' that featuresA mounted by3 exploitingl/ againstG (Figure 5).

Definition 5 is formalised in Figure 5, where a suitable predicate representing vul-
nerability is introduced as a function of the protocol, the attack and the principals’
behaviours. Building on top of this definition we will characterise the subtler notion of
retaliation.

Vulnerability(IT, A, B, U, G) =
IT. Tell A A(T,B,U,G)

Figure 5: Defining protocol vulnerability formally

5.1 Retaliation

What is the essence of retaliation? Should a principal cheat, he can be cheated back. It
is therefore not obvious whether the principal will choose to cheat. A positive decision
requires the absence of unbearable hazards. Clearly, retaliation is meaningful if hitting
back is a meaningful property in the context of the given protocol. As the bad principals
are protocol participants, namely insiders, we can assume that they want to reap the
benefits of the protocol (such as authentication), plus any additional benefits they may
obtain by misbehaving. These latter benefits should be balanced with the threats of
being hit back. Designing a protocol so as to increase those threats will simply produce
a stronger protocol.

Definition 6 (Retaliation) A protocolIT allowsretaliation of an attacl that is mounted
by the principals in3 exploiting those i/ against those i if, for every protocol
trace that feature#\ mounted by5 exploitingl/ againstg, there exists an extension
of the trace featurindA mounted by somB’ exploiting somé{’ against som&’. The
principals in B change their role in the extended trace; vice versa, thod# idid not
play the same role in the original trace. # = G and B = @', thenII allowsdirect
retaliation elsell allowsindirect retaliation

Clearly, direct retaliation is the most intuitive form of retaliation, which sees the
good and the bad principals exactly switch their roles. However, our examples have
shown that more articulated forms of the property, such as indirect retaliation, are pos-
sible. Definition 6 is formalised in Figure 6, where a suitable predicate representing
retaliation is introduced as function of the protocol, the attack and the principals’ be-
haviours. The intuition is that each time there is an attack, some additional event may
take place to retaliate, that is to attack the initial attackers. This typically involves
some principals’ changing their social behaviour. The formal definition in the figure
confirms the change of roles: those who are now bad3thare a subset of those who
were either ugly or good; those who were bad, Hheare a subset of those who are
currently either ugly or good.

Retaliation(I, A, B, U, G) =
VT. Tell AN AT,B,U,G) —
F3T,BU,G. "elIANTCT ANBCUUGABCUUG A
AT, B, U,G))

Figure 6: Defining retaliation formally

10

5.2 Suspicion and Detection

In the previous section we introduced the definitions of protocol vulnerability and retal-
iation. These were given in terms of a global view of the traces of events, a god-centric
perspective. Equivalent principal-centric versions are of little significance because an
attack is by its definition undetectable by its target principal.

However, a principal-centric perspective is possible if we envisage some empirical
control event that principals can perform outside the protocol, which weoo&ibf-
band challengeThe principals can easily use this method to check whether something
fishy happened during the protocol.

The protocol responder can use the out-of-band challenge to raiseigpgcion
that something went wrong. Precisely, suspicion means that a good principal suspects
that an attack was attempted, but has no clue on the possible attacker. In our example
protocol, this can be achieved by a suitable message, as in Figure 7. PriBcipal

B — A: {Na, Nb,“Transfer £1 fromB’s account toB’s” |} .,

Figure 7: B’'s challenge for suspicion

attempting a dull money transfer either within his own account or between two of his
accounts. Notice that the amount is meaningless here — it may be 0 or another irrele-
vant value. PrincipaB can verify from his bank statement if the transfer went through.
If this is affirmative,B gets a confirmation that acknowledges the pai¥a, Nb with
him. Otherwise,B learns that his session with was somewhat compromised by
someone, exactly becaudedoes not acknowledge the pair of nonces.

The challenge for suspicion can be made stronger, indeed becoming a challenge for
detection In our example protocol, this can be achieved by a suitable set of messages,
as in Figure 8. PrincipaB is again attempting a dull money transfer from any account

VX. B — A:{Na,Nb, “Transfer £1 fromX’s account taB’s” |} .,

Figure 8: B’s challenge for detection

holder onto his own. Principd can verify from his bank statement for which principal
X his attempt went through. This means tHaassociated the pai¥a, Nb to X rather
than toB. In consequence3 detects thafX acted as a bad principal betwednand
B: the protocol admits a trace modelling this social behaviour.
After detection,B has sufficient evidence against the attacker, so he can draw a
balance between two alternatives: either sue the attacker or retaliate against him.

11

6 Towards Formal Verification under the Bi/G Threat
Model

Classical properties such as authentication have been vastly analysed. Can we formally
analyse properties such as retaliation? From a theoretical standpoint there is not a big
difference. We have casted our properties as properties of traces because almost all
research in tool-supported security verification is based on defining the protocol goals
as properties of traces [12, 13, 14, 17, 19, 20, 9] or fragments thereof [8, 21].

The key observation is that the emphasis in the traditional work on security verifi-
cation was on finding attacks or showing that no attack existed. This was reflected on
formal models by the nature of the checked properties, which were essentially of exis-
tential nature: is there a tradein the protocoll such thatA holds onT? Here, T, 11,
andA can be complicated at will. Indeed,as a formally defined property can be ex-
tremely complicated, for instance including arithmetical constraints on the number of
events and arbitrarily many quantifiers. Theorem-proving fellows wished to prove that
no such trace existed, while model-checking fans longed for a witness of its existence.

Our properties are much more complex, as they feature at least two quantifiers
over a single trace, and we may also expect quantifier alternation. Lifting a theory
of authentication to our properties appears to be reasonably simple: a formal account
is already available using the method of soft constraint programming [3] with pen and
paper. Lifting the automatic tool support remains a real challenge. We have already got
to grasps with this challenge by experimenting with Paulson’s Inductive Method [18]
of protocol verification. Our initial findings are published here for the first time. The
Inductive Method is developed for classical analyses in the Dolev-Yao threat model,
but our experiments support the claim that it is realistically scalable tBtf@ threat
model. The Inductive Method is thoroughly supported by the generic proof assistant
Isabelle [16], which can be obtained from the Internet [23] under the Open Source
Software BSD licence.

6.1 Outline of the Inductive Method

There is only room here for a brief introduction to the method — the complete presen-
tation is to be found elsewhere [2, 18]. Figure 9 showsffdagment.thy opened by

the Isar graphical interface to Isabelle [24]. The file sums up the definitions of a few
main functions.

There exists an unlimited population of principals who are entitled to initiate at will
an unlimited number of sessions of the given security protocol. Among the principals
is the spy, who monitors the entire network traffic and in consequence knows who
sends and who receives which messages. This feature indicates that the method was
conceived under Dolev-Yao’s threat model. An unspecified sbadfprincipals have
colluded with the spy by revealing their long-term secrets. The spy is herself bad,
as it can be seen in Figure 9. However, she is the only network principal who can
send arbitrary messages built from components intercepted from the network traffic.
Interception is modelled by the functidmows, and creation of fake messages by a
conjunct use of the functionsalz andsynth. All are described below.

12

The network traffic develops according to the events performed by the principals
while they are executing the given protocol. Typical events are to send or to receive a
message. A history of the network is represented trg@e, the list of events occurred
throughout that history. The set of all possible traces is the formal model for the given
protocol, and is defined inductively by specific rules drawn from the protocol. For
example, if the protocol prescribes thaitsendsA a message:’ upon reception ofn,
then the model features a rule that may extend a generic trace by thé&eyeBtA m’
each time the trace contains the evéats B m. In other words, that reception event
is a precondition and that sending event is a postcondition of the rule. Therefore, the
events occur via the firing of the inductive rules. But, as induction prescribes, no rule
is forced to fire, so no event is forced to occur.

emacs: fragment.thy

FHile Edit View Cmds Tools Options Buffers Proof-General [sabelle X-Symbol
Rl)
@ Comtext maract o | e | oo | rma Swop e i

fragment.thy|

consts .
bad :: "agent set"

specification (bad)
Spy_in_bad [iff]: "Spy € bad"

consts parts it "msg set = msg set”

inductive "parts H"
intros

Inj [intro]: "X ¢ H — X ¢ parts H"
EsiE "§%,Y¥ € parts H — X < parts H"

Snd: "{¥,Y} € parts H = V¥ < parts H"
consts analz :: "msg set = msg set”
inductive "analz H"
intros
Inj [intro,simp] : "X € H = X € analz H"
Fat: "§¥,Yy € analz H = ¥ ¢ analz H"
Snd: "{H,Yy € analz H = Y ¢ analz H"
Decrypt [dest]: "[Crypt K X € analz H; Key(invKey K) ¢ analz H]
= ¥ & analz H"]
congts synth it "msg set = msg set”
inductive "synth H"
intros
Inj [intro]: "X € H = X € synth H"
2gent [intro]: "Agent agt ¢ synth H"
Number [intre]: "Number n < synth H"
Hasgh [intre]: "X € synth H — Hash X ¢ synth H"
MPair [intro]: "[X € synth H; Y < synth H] — {X,Y¥} ¢ synth H"]
Crypt [intre]: "[X e synth H; Key(K) ¢ Hl = Crypt K X « synth H"]
consts
knows :: "agent = event list = msg set"
primrec
knows_Nil: "knows A [] = initState A"

knows_Cons:
"knows A (ev # evs) =
(if & = Spy then
(case ev of
Says A' B X = insert X (knows Spy evs)
| Gets &' X = knows Spy evs
| Hotes &' X =
if A' ¢ bad then insert X (knows Spy eve) else knows Spy evs)
il
(caze ev of
Says A' B X =
if A'=A then insert ¥ (knows & =vs)] eslse knows A& avs

if A'=A then insert ¥ (knows & =vs)] else knows 2 avs
| Hotes &' X =

if A'=A then insert ¥ (knows & svs) else knows & svs))"

ISO8—-**-HEmacs: fragment.th [t e S Hal s Font)****Allfﬁ
End of buffer

Figure 9: Defining the main functions for the Inductive Method in Isabelle

13

The binary functiorknows, defined by primitive recursion in Figure 9, formalises
the knowledge that principals derive from observing a trace [2]kfaws A evs is the
set of messages that principaleither sends or receives on traae. ShouldA be the
spy, the set would include all messages that anyone ever sends or receives on the trace.
Figure 9 also shows that the unary functimnts extracts all components (portions of
clear-text messages and bodies of cipher-texts) from a set of messaglesis the
same but only opens those cipher-texts whose encrypting key is available. This means
that it is assumed that no cryptanalysis is possible, namely that encryption is totally
reliable. In consequence, confidentiality of a message compenéna traceevs can
be expressed as

m ¢ analz(knows Spy evs).

The functionsynth, also defined by induction in Figure 9, is crucial. It expresses
the spy’s illegal activity in building up messages at will. It can be seen that the spy can
synthesise any agent name or number (timestamp), and hash available messages. She
can also concatenate messages into longer ones, and build ciphertexts using available
keys. Therefore, the set

synth(analz(knows Spy evs))

expresses all messages that the spy can synthesise from the analysis of the network
traffic over traceevs.

Each kind of cryptographic key has its own syntax. For our examples below, it
must be mentioned that the public keys are denoted by funeiibi. Moving on
to the actual formal guarantees, they come in the form of theorems that hold of the
protocol model. Precisely, each theorem is expressed over a generic trace and hence
holds in general. A proof is conducted by structural induction on the length of the trace,
resulting in a number of long subgoals that can span several pages. It is here, where
the long and often tedious proof entanglements contrast human scrupulousness, that
the proof assistant Isabelle comes into help by solving the simple cases automatically.

6.2 Analysis of Needham-Schroeder under Dolev-Yao

Paulson analysed the public-key Needham-Schroeder protocol under Dolev-Yao's threat
model years ago using the Inductive Method. The protocol model is quoted in Fig-
ure 10.

It can be seen that the full specification comes with§&_Public_Bad.thy and
is defined as the Isabelle thed¥s Public_Bad. This is built up by extending the-
ory Public, which defines all functions for public-key protocols. The actual protocol
model, constanhs_public, is declared as a set of traces and defined inductively by
five rules. RuleNil sets the base of the induction stating that the empty trace belongs
to the model. Ruld-ake models the spy’s activity: given a traewsfin the model,
its extension (# is the list append operator) with the event whereby the spy sends some
agentB one of her fake messagésis still a trace of the protocol model. The inductive
layout is clear. Notice that the messakds derived from the set of fakes described in
the previous section. The remaining rules model the steps of the protocol, one by one.

14

emacs: NS_Public_Bad.thy

Fle Edit View Cmds Tools Options Buffers Proof-General Isabelle X-Symbol

oISl)

NS Public_Bad. thy|

(& (=
Title: HOL/&uth/NS_Public_Bad

Bl $Id: NS5 Public_Bad.thy,v 1.20 2005/06/17 14:13:06 haftmann Exzp#
Author: Lawrence C Paulson, Cambridge University Computer Laboratory

Copyrié;ht 1996 University of Cambridge

Inductive relation "ns_public" for the Needham-Schroeder Public-Key protocol.
Flawed version, wvulnerable to Lowe's attack.

From page 260 of
Burrows, Zbadi and Needham. A Logic of Authentication.
Proc. Royal Soc. 426 (1983)

=]

header{*Verifying the Needham-Schroeder Public-Key Protocol*}
theory NS_Public_Bad imports Public begin
EreipEiEE e jebleilide 38 Yeweimie lLlsin st

inductive ns_public
intros
[Etabiealal hmeeE s St
Nil: "[] € ns_public”

(*The spy MAY say anything he CAN say. We do not expect him to
invent new nonceg here, but he can also uge NS1. Common to
all similar protocols.*)

Fake: "[evsf € ns_public; X € synth (analz (spies evsf))l

— Says Spy B X # evsf € ns_public”

(*Alice initiates a protocol run, sending a nonce to Bob*)
NSl: "[evsl € ns_public; HNonce NA ¢ used evsl]
— Says A B (Crypt (pubEK B) {Nonce Na, Agent A3)
evsl € ns public”

(*Bob responds to Alice's message with a further nonce*)
NS2: "[evsZ e ns_public; Nonce NB ¢ used evsZ;
Says A' B (Crypt (pubEK B) {Nonce NA, Agent A}) e set evesl]
— Says B A (Crypt (pubEK &) {Nonce N&, Nonce NB3})
evs2 € ns_public”

(*Alice proves her existence by sending NB back to Bob.*)
NSE:aEevs Sieins Sptblde s
Saye A B (Crypt (pubEK B) {Nonce WA, Agent 23}) e set eva3;
Says B' A (Crypt (pubEK &) {Nonce WNA, Nonce NB}) e met evsl]
— Says A B (Crypt (pubEK B) (Honce HB)) # evs3 e ns public”

g
IS808--**-XEmacs: NS_Public_Bad.th (Isar script ¥S:isabelle/s Font)----Top|

Figure 10: Inductive model of the public-key Needham-Schroeder protocol

Rule NS1 has the only premise that uses a fresh nonce. Freshness on a trace
is modelled via the functionsed, whose intuitive definition is omitted from this pre-
sentation. RuldNS2 also relies on the assumption thatreceived an instance of the
first message on the given traees2 Notice thatSays A’ B X is an old syntax for
Gets B X. RuleNS3 admits thatd concludes the protocol with only if A initiated
it with B and got a matching instance of the second message.

Paulson’s analysis of this protocol confirmed Lowe’s attack. Here, we are interested
in a guarantee expressing confidentiality4d$ nonce, not ofB’s — the reasons being
clarified in the next section. It is given in Figure 11 in the same form as it is released
with Isabelle [23]. The theorem insists thatinitiates the protocol withB using a
nonceNA It requires that both of them are not bad, and concludes that the nonce
remains confidentiakpies evs is the old syntax foknows Spy ewvs).

The proof of this theorem is simpler to execute interactively than to describe on

15

macs: NS_Public_Bad.thy

NS Public_Bad. thy|

theorem Spy_not_ see HNA:

"[Says & B (Crypt(pubEK B) {Nonce NA&, Agent A}) e set evs;

2 ¢ bad; B ¢ bad;, evs e ns_public]

— HNonce NA ¢ analz (spies evz)" =
apply (erule rev_mp)
apply (erule ns _public.induct, simp all, spy analz)
apply (blast dest: unique NA intro: no_nonce NS1 NS2)+]
done

IS08--**-¥Emacs: NS Public Bad. th (Igar script XS:isabelle/s

proof (prove): step 3
fixed variables: &, B, NA, evs

goal (theorem (Spy not_sece NA&)):
No subgeals!

Figure 11: Guarantee of confidentiality of the initiator's nonce

paper. Each proof command is introduced by the keyvegmoly. The first command
brings the first premise, namely tBeys event, into the inductive formula. The second

one applies induction, then simplifies all cases, and solves the subgoal corresponding
to ruleFake by a standard methapy_analz. The final command applies the classical
reasoner to all remaining subgoals with the only aid of two lemmas proved before.

6.3 Analysis of Needham-Schroeder undeBi/G

Can we use the Inductive Method and its Isabelle support undé&tidethreat model?

Can we tailor the strict formalisation of the spy to a broader and more realistic threat?
No, it appears that this cannot be done straightforwardly, that is, without a complete
redefinition of the agents’ datatype and related functions. However, we had a number
of insights in the attempt to keep the standard formalisation of the spy. One that seems
the most balanced between simplicity and expressiveness merely concentrates on the
theorem statements.

As we observed above (82), an attack can be retaliated when it causes more than
one violation of the protocol policy: one that is directly useful to the attacker to mount
the attack, and the others that are usually neglected. We noticed that with the public-
key Needham-Schroeder protocol, the attacker’s activity indeliberately revealed nonce
NAto B, when in fact4 only intended to share that nonce with the attacker. Having
observed that it is feasible th#&t sooner or later intends to exploit his knowledge of
NA against other principals, the direction for tomorrow’s formal protocol verification
becomes clear: it is necessary to investigate confidentiality of all potentially sensitive
components in th&L/G threat model and for all protocols.

With our example protocol, this direction requires establishing formally whether
NA remains unknown t@, who can be the attacker himself. Strictly speaking, this is
daunting due to the formalisation of the spy, who cannot hide behind two agents at the

16

same time. However, here we advance a heuristic that investigates what happens to the
confidentiality theorems if we relax the assumptions that the involved agents are not
bad: it can reveal novel vulnerabilities of sensitive message components. An attempt

A< emacs: NS_Public_Bad.thy

File Edit View Cmds Tools Options Buffers Proof-General X-Symbol Isabelle

PEEE R HEER e

SH0p Resta
NS_Public_Bad. thy|

theorem Spy not_see Na BUG: 1

"[Says A B (Crypt(pubEK B) {llonce NA, Zgent 23) < set evs;
2 ¢ bad;, evs e ns_public]

— Nonce NA ¢ analz (knows Spy evs)"

erule rev_mp)

erule ns public.induct)]

apply (

apply (

apply (simp all)
apply (spy_analz)

prefer 2 apply (blast dest: unique_NA intro: no_nonce N8l N32)
prefer 2 apply (blast dest: unique NA intro: no_nonce NS1 NS2)
apply (rule ccontr) J
apply simp

apply (erule disjE)
prefer 2

apply blast

apply clarify
apply (erule disjE)
prefer 2

apply blast

apply clarify

.
IS08-—**-XEmacs: NS Public Bad. th (Isar script XS:isabelle/s

proof (prove): step 2
fixed variables: A, B, NA, evs

goal (theorem (Spy_not_see_NA BUG), 5 subgeoals):
1. 2 ¢ bad =
Says A B (Crypt (pubK B) {llonce HA, Agent A}) « set [] —
Nonce N& ¢ analz (knows Spy [])
2. ABa X evsf.
[2 ¢ bad, evef ¢ ng_public;
Says A B (Crypt (pubK B) {Nonce NA, Agent A3)
€ set evaf —
Nonce NA ¢ analz (knows Spy evsf);
X e synth (analz (knows Spy evsf)]]
— Says & B (Crypt (pubK B) {Nonce NA, Agent 2})
e set (Says Spy Ba X # evsf) — &
Nonce N2 ¢ analz (knews Spy (Says Spy Ba X # evef))
3. ARa Ba NRa evsl.
[2 ¢ bad;, evsl e ns public;
Says A B (Crypt (pubK B) {Nonce NA, Agent 23})
€ set evel —
Nonce NA ¢ analz (knows Spy evsl);
Nonce Nza ¢ used evsl]
— Says & B (Crypt (pubK B) {Nonce NA, Agent 2})
¢ set (Says Aa Ba
(Crypt (pubK Ba) {llonce Hia, Agent Aa}) #
evsl) —
Nonce N2
¢ analz
(knows Spy
(Says Aa Ba
(Crypt (pubK Ba) {Nonce NAa, Agent 2a}) #
evsl))

Figure 12: Attempt to prove confidentiality of the initiator’'s noncésig: level 2

to prove the theorem presented in the previous section omitting the assumption of a
bad B is in Figure 12. It can be seen that subgoal 1 corresponds td\thseibgoal 2

to casdrake, subgoal 3 to casiS1 and so on — there are five subgoals although the
window only covers three. Simplification has not been done at the moment: the light
blue shading confirms that it is the next step that can be taken.

Let us concentrate on subgoal 3. The inductive formula is available as the third
premise in the preconditions. The postcondition expresses the thesis for thevsace
extended with the new event introduced by rNIB1. If the eventSays A B ... was
already in tracevs] then the subgoal terminates via an appeal to the inductive formula.
Otherwise, that event is exactly the one that &l introduces, and so it must be the

17

case thatd equalsAa, B equalsBaand so on.

If we continue the proof attempt interactively as in Figure 13, Isabelle routinely
solves most subgoals. For example, commareder moves the numbered subgoal to
the first slot, to which each standard command applies by default. Suitable applications
of this command leave us at level 6 with only the subgoal corresponding thi8ilé¢o
be solved. We solve its simple subcases interactively by a few intelligible commands.
For example, ifB is not bad, then he certainly is not the spy (because théambt
includes the spy), and the thesis can be reached. What happ@ngdfe bad, that is,
potentially the spy? Our last figure, Figure 13, confirms that Isabelle leaves us with the
very subgoal denouncing th&tis bad. It is clear that it cannot be terminated because
no premises lead to contradiction. This interactive and long proof was described here
to facilitate the reader’s intuition. However, one appeal togh method at level 6
would have lead to the same state in just one step.

¢ emacs: NS_Public_Bad.thy

Fle Edit View Cmds Tools Options Buffers Proof-General X-Symbol Isabelle Help

RIEHRIEEEESEE

Siop_Resia
NS Public_Bad. thy|
theorem Spy_not see HNA BUG: =
"[Says A B (Crypt(pubEK B) {Nonce NA, Agent A}) e set evs;
A ¢ bad; evs € ns_public]
= MNonce NA ¢ analz (knows Spy evs)”
apply (erule rev_mp)
apply (erule ns public.induct)
(
(

apply (simp_all)

apply (spy_analz)

prefer 2 apply (blast dest: unique N& intro: no_nonce NS1 NS2)
prefer 2 apply (blast dest: unique N& intro: no_nonce NS1_NS2)
apply (rule ccontr) J
apply simp

apply (erule disjE)
BEE FETh

apply blast

apply clarify
apply (erule disjE)
prefer 2|

apply blast

apply clarify

IS08-—-**-¥Emacs: NS Public Bad.th (Igar script XS:isabelle/s

proof (prove): step 18
fixed variables: A, B, NA, evs

goal (theorem (Spy not see NA BUG), 1 subgoal):
1. Ala Ba Naa evsl.
[2 ¢ bad; evsl € ns_public;
Says A B (Crypt (pubK B) {Nonce NA, Agent 2})
G e sugl =
Nonce MNAi ¢ analz (knows Spy evsl);
Nonce NA& ¢ used evsl; B e bad]
— False

Figure 13: Attempt to prove confidentiality of the initiator's nonceésiG: level 18

It is no secret that the experiments reported here were conducted only after we had
the insights described in the early sections of this paper. Their significance remains
unaltered: if we analyse all protocols under Bi¢G threat model, we can find viola-
tions that can lead to retaliation attacks. In particular, the Inductive Method used on the
public-key Needham-Schroeder protocol as we suggested above denounces mechani-
cally B’s indeliberate discovery afl’s nonce.

18

This is the current state of the art. However, our last guarantee cannot be considered
the most expressive formalisation of a retaliation attack: the spy has bad agents’ private
keys and hence can access anything that is encrypted with the corresponding public
halves. So, there is vast potential for additional research here. In particular, it remains
to be formalised that, should the spy hide behi®dshe might need to forward’s
nonce to another agent. This was the case with Lowe’s attack.

7 Conclusions

Our research is motivated by the novel settings in which security protocols are executed
nowadays, significantly different from settings dating back to nearly three decades ago.
Security protocols, whose use was typically appanage of 007s to protect their com-
munications from the rest of the world during espionage missions, have now become
accessible to a huge international community. The threat model has indeed changed.
It is now perfectly realistic to even conceive that each principal may want to attack
(whatever this means in a context) everyone else — on-line auctions in particular and
e-commerce in general come as examples. Also non-repudiation protocols assume that
everyone trusts no-one else.

The good principals were expected in the taxonomy, but the ugly principals perhaps
not. The identification of this social behaviour brings forward another new concept:
principals cannot and should not be constrained to be playing a single social behaviour
forever. Imposing such a constraint would limit formal analysis significantly in scope.
More precisely, given a trace of events representing participation in a protocol, the
social behaviours played by each principal can be easily identified, but they may vary
in a different trace, such as an extension of the original trace. More simplistically,
we could even see all principals as ugly, who turn out to behave as good or as bad
according to specific circumstances.

This paper has formalised the notion of retaliation in the context of security pro-
tocols. If an attack is discovered, it is worth investigating whether it can be retaliated.
If yes, risk analysis may lean towards keeping the protocol in use. This perspective
advances on the long-established practice of going back to redesign soon after one at-
tack. An attack signifies a flaw, not necessarily a complete failure. Also the notions
of suspicion and detection appear to have never been spelled out explicitly. They are
adequately supported by the new threat model. It seems fair to conclude that the path
to a new, important niche of protocol verification has just been drawn.

A pen-and-paper formal analysis of retaliation is already available [3]. However,
it is widely accepted that mechanical tool support is necessary to deal with proofs
about security protocols, as their major difficulty often is their sheer length. This paper
has extended a prior version [5] with the first experiments of tool-supported analysis
of retaliation attacks. We have discussed the current state of the art, which balances
expressiveness with simplicity. But a complete mechanisation would require the full
implementation of thési/G threat model. That is where future research is targeted.

19

Acknowledgements

Stefano Bistarelli was partially supported by the Italian PRIN project "Vincoli e pref-
erenze come formalismo unificante per I'analisi di sistemi informatici e la soluzione di
problemi reali". Fabio Massacci was partially supported by the FIRB "Security" and
IST-FET-IP "Sensoria" projects.

References

(1]

(2]

3]

[4]

(5]

(6]

[7]

(8]

9]

M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations (extended abstractProceedings of 10th ACM Confer-
ence on Computer and Communications Security (C@&)es 220-230. ACM
Press, 2003.

G. Bella. Formal Correctness of Security Protocolgnformation Security and
Cryptography. Springer, 2007.

G. Bella and S. Bistarelli. Soft constraint programming to analysing security
protocols. Journal of Theory and Practice of Logic Programmjrg(5):1-28,
2004.

G. Bella, S. Bistarelli, and F. Massacci. A protocol’s life after attacksPioc.
of the 11th Security Protocols Workshop (SPW,03)ICS 3364, pages 3-18.
Springer, 2005.

G. Bella, S. Bistarelli, and F. Massacci. Retaliation: Can we live with flaws? In
M. Essaidi and J. Thomas, editof2roc. of the Nato Advanced Research Work-
shop on Information Security Assurance and Secul@$ Press, 2005.

M. Bellare and P. Rogaway. Provably Secure Session Key Distribution — the
Three Party Case. IRroc. of the 27th ACM SIGACT Symposium on Theory of
Computing (STOC'95)pages 57-66. ACM Press, 1995.

C. Boyd and A. Mathuria.Protocols for Authentication and Key Establishment
Information Security and Cryptography. Springer, 2003.

L. Carlucci Aiello and F. Massacci. Verifying security protocols as planning in
logic programming-Transactions on Computational Logi2(4):542-580, 2001.

E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with brutus.
ACM Trans. Softw. Eng. Methodob(4):443—-487, 2000.

[10] D. Dolev and A. Yao. On the security of public-key protocdEBEE Transactions

on Information Theory2(29), 1983.

[11] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Var&easoning about Knowledge

The MIT Press, 1995.

20

[12] R. Kemmerer, C. Meadows, and J. Millen. Three system for cryptographic pro-
tocol analysis.Journal of Cryptology7(2):79-130, 1994.

[13] G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication Pro-
tocol. Information Processing Letter§6(3):131-133, 1995.

[14] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using Murphi. IfProc. of the 16th IEEE Symposium on Security and
Privacy (SSP’97)pages 141-151. IEEE Press, 1997.

[15] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computerscCommunications of the ACN21(12):993-999, 1978.

[16] T. Nipkow, L. C. Paulson, and M. Wenzelsabelle/HOL: A Proof Assistant for
Higher-Order Logic Springer, 2002. LNCS Tutorial 2283.

[17] L. C. Paulson. The inductive approach to verifying cryptographic protogdols-
nal of Computer Securitys:85-128, 1998.

[18] L. C. Paulson. The inductive approach to verifying cryptographic protogols-
nal of Computer Securitys:85-128, 1998.

[19] F. R. and R. Gorrieri. The compositional security checker: A tool for the veri-
fication of information flow security propertie$EEE Transactions on Software
Engineering 23(9):550-571, 1997.

[20] S. Schneider. Security properties and CSHRrioc. of the 15th IEEE Symposium
on Security and Privacy (SSP’'96)ages 174-187. IEEE Press, 1996.

[21] D. Song. Athena: An automatic checker for security protocol analysi®rdn.
of the 12th IEEE Computer Security Foundations Workshop (CSFWERE
Press, 1999.

[22] F. Thayer Fabrega, J. Herzog, and J. Guttman. Honest ideals on strand spaces.
In Proc. of the 11th IEEE Computer Security Foundations Workshop (CSFW'98)
IEEE Press, 1998.

[23] URL. Isabelle download page.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/download.html

[24] URL. Proof General: a generic interface for proof assistants.
http://proofgeneral.inf.ed.ac.uk

21

