
Experimental Evaluation of Interchangeability in

Soft CSPs

Nicoleta Neagu1, Stefano Bistarelli2,3, and Boi Faltings1

1 Artificial Intelligence Laboratory (LIA), Computer Science Department, EPFL
CH-1015, Ecublens, Switzerland

{boi.faltings,nicoleta.neagu}@epfl.ch
2 Dipartimento di Scienze, Universitá “D’Annunzio”

Viale Pindaro 87, I-65127 Pescara, Italy
bista@sci.unich.it

3 Istituto di Informatica Telematica (IIT), CNR,
Via G. Moruzzi 1, I-56124, Pisa, Italy,
Stefano.Bistarelli@iit.cnr.it

Abstract. In [8], Freuder defined interchangeability for classical Con-
straint Satisfaction Problems (CSPs). Recently [2], we extended the def-
inition of interchangeability to Soft CSPs and we introduced two notions
of relaxation based on degradation δ and on threshold α (δneighborhood
interchangeability (δNI)and

α
neighborhood interchangeability (αNI)).

In this paper we extend the study introduced in [11] and we analyze the
presence of the relaxed version of interchangeability in random soft CSPs.
We give a short description of the implementation we used to compute
interchangeabilities and to make the tests. The experiments show that
there is high occurrence of αNI and δNI interchangeability around opti-
mal solution in fuzzy CSPs and weighted CSPs. Thus, these algorithms
can be used successfully in solution update applications. Moreover, it is
also showed that NI interchangeability can well approximate full inter-
changeability (FI).

Keywords: soft constraint satisfaction problems, substitutability, interchange-
ability.

1 Introduction

Interchangeability in constraint networks has been first proposed by Freuder [8]
to capture equivalence among the values of a variable in a discrete constraint
satisfaction problem. Value v = a is substitutable for v = b if for any solution
where v = a, there is an identical solution except that v = b. Values v = a and
v = b are interchangeable if they are substitutable both ways. Full Interchange-
ability considers all constraints in the problem and checks if values a and b for
a certain variable v can be interchanged without affecting the global solution.
The localized notion of Neighbourhood Interchangeability considers only the con-
straints involving a certain variable v. Interchangeability has since found other

applications in abstraction frameworks [10, 16, 6] and solution adaptation [15].
One of the difficulties with interchangeability has been that it does not occur
very frequently.

In many practical applications, constraints can be violated at a cost, and
solving a CSP thus means finding a value assignment of minimum cost. Various
frameworks for solving such soft constraints have been proposed in [9, 7, 13, 14,
3]. The soft constraints framework of c-semirings [3] has been shown to express
most of the known variants through different instantiations of its operators, and
this is the framework we are considering in this paper.

In [2] we extended the notion of interchangeability to Soft CSPs. The most
straightforward generalization of interchangeability to Soft CSPs would require
that exchanging one value for another does not change the quality of the so-
lution at all. Nevertheless, this generalization is likely to suffer from the same
weaknesses as interchangeability in hard CSPs, namely that it is very rare.

Fortunately, soft constraints also allow weaker forms of interchangeability
where exchanging values may result in a degradation of solution quality by some
measure δ. By allowing more degradation, it is possible to increase the amount
of interchangeability in a problem to the desired level. The δsubstitutability and
δinterchangeability concepts ensure this quality. This is particularly useful when
interchangeability is used for solution adaptation. Another use of interchange-
ability is to reduce search complexity by grouping together values that would
never give a sufficiently good solution. In αsubstitutability/interchangeability,
we consider values interchangeable if they give equal solution quality in all so-
lutions better than α, but possibly different quality for solutions whose quality
is ≤ α.

The behaviour of NI sets in the Soft CSP frameworks is still unexploited.
For this motivation we study and evaluate here how NI behaves in soft CSPs
frameworks (mainly fuzzy and weighted CSPs).

In the following we first remind some details about Interchangeability and soft
Constraint Satisfaction Problems. We give also some details about the java im-
plementation [11] we used to compute to δ/αsubstitutability/interchangeability.
Central results of the paper are described in Section 4 where the results of some
tests are described. Conclusions and possible future work are presented in the
last section.

2 Soft CSPs

A soft constraint may be seen as a constraint where each instantiations of its
variables has an associated value from a partially ordered set which can be
interpreted as a set of preference values. Combining constraints will then have
to take into account such additional values, and thus the formalism has also to
provide suitable operations for combination (×) and comparison (+) of tuples

of values and constraints. This is why this formalization is based on the concept
of c-semiring S = 〈A, +,×,0,1〉, which is just a set A plus two operations1.

Constraint Problems. Given a semiring S = 〈A, +,×,0,1〉 and an ordered
set of variables V over a finite domain D, a constraint is a function which, given
an assignment η : V → D of the variables, returns a value of the semiring.

By using this notation we define C = η → A as the set of all possible con-
straints that can be built starting from S, D and V . Consider a constraint c ∈ C.
We define his support as supp(c) = {v ∈ V | ∃η, d1, d2.cη[v := d1] 6= cη[v := d2]},
where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the association
v := d1 (that is the operator [] has precedence over application).

Combining soft constraints. Given the set C, the combination function ⊗ :
C× C → C is defined as (c1 ⊗ c2)η = c1η ×S c2η.

In words, combining two constraints means building a new constraint whose
support involve all the variables of the original ones, and which associates to each
tuple of domain values for such variables a semiring element which is obtained by
multiplying the elements associated by the original constraints to the appropriate
subtuples.

Interchangeability. In soft CSPs, there are not any crisp notion of consistency.
In fact, each tuple is a possible solution, but with different level of preference.
Therefore, in this framework, the notion of interchangeability become finer: to
say that values a and b are interchangeable we have also to consider the assigned
semiring level.

More precisely, if a domain element a assigned to variable v can be substi-
tuted in each tuple solution with a domain element b without obtaining a worse
semiring level we say that b is full substitutable for a (that is b ∈ FS v(a) if and
only if

⊗

Cη[v := a] ≤S

⊗

Cη[v := b]). When we restrict this notion only to the
set of constraints Cv that involve variable v we obtain a local version of substi-
tutability (that is b ∈ NSv(a) if and only if

⊗

Cvη[v := a] ≤S

⊗

Cvη[v := b]).
When the relations hold in both directions, we have the notion of Full and

Neighbourhood Interchangeability of b with a.
This means that when a and b are interchangeable for variable v they can be

exchanged without affecting the level of any solution.
Extensivity (NI v(a/b) =⇒ FI v(a/b)) and transitivity (b ∈ NS v(a), a ∈

NSv(c) =⇒ b ∈ NSv(c)) of interchangeability can be used to define an al-
gorithm able to compute a subset of the interchangeabilities. When the times

1 In [3] several properties of the structure are discussed. Let us just remind that it is
possible to define a partial order ≤S over A such that a ≤S b iff a + b = b.

operator of the semiring is idempotent the algorithm , instead of considering the
combination of all the constraint Cv involving a certain variable v, can check
interchangeability on each constraint itself [2] giving raise to a low complexity
bound.

Algorithm 1 shows the algorithm that can be used to find domain values
that are Neighbourhood Interchangeable. It uses a data structure similar to
the discrimination trees, first introduced by Freuder in [8] . Algorithm 1 can

1: Create the root of the discrimination tree for variable vi

2: Let Cvi
= {c ∈ C | vi ∈ supp(c)}

3: Let Dvi
= {the set of domain values dvi

for variable vi}
4: for all dvi

∈ Dvi
do

5: for all c ∈ Cv do

6: execute Algorithm NI -Nodes(c, v, dvi
) to build the nodes associated with c

7: Go back to the root of the discrimination tree.

Algorithm 1: Algorithm to compute neighbourhood interchangeable sets for vari-
able vi.

compute different versions of neighbourhood interchangeability depending on
the algorithm NI−nodes used. Algorithm 2 shows the simplest version without
threshold or degradation.

1: for all assignments ηc to variables in supp(c) do

2: compute the semiring level β = cηc[vi := dvi
],

3: if there exists a child node corresponding to 〈c = ηc, β〉 then

4: move to it,
5: else

6: construct such a node and move to it.
7: Add vi, {dvi

} to annotation of the last build node,

Algorithm 2: NI-Nodes(c, v, dvi
) for Soft NI .

Degradations and Thresholds. In soft CSPs, any value assignment is a solution,
but may have a very bad preference value. This allows broadening the original
interchangeability concept to one that also allows degrading the solution qual-
ity when values are exchanged. We call this δinterchangeability, where δ is the
degradation factor.

When searching for solutions to soft CSP, it is possible to gain efficiency by
not distinguishing values that could in any case not be part of a solution of
sufficient quality. In αinterchangeability, two values are interchangeable if they
do not affect the quality of any solution with quality better than α. We call α
the threshold factor.

Both concepts can be combined, i.e. we can allow both degradation and limit
search to solutions better than a certain threshold (δ

αinterchangeability). By
extending the previous definitions we obtain thresholds and degradation version
of full/neighbourhood substitutability/interchangeability:

– we say that b is δFull Substitutable for a on v (b ∈ δFS v(a)) if and only if for
all assignments η,

⊗

Cη[v := a]×S δ ≤S

⊗

Cη[v := b];
– we say that b is αFull substitutable for a on v (b ∈ αFS v(a)) if and only if for

all assignments η,
⊗

Cη[v := a] ≥ α =⇒
⊗

Cη[v := a] ≤S

⊗

Cη[v := b].
Let consider a Fuzzy CSP example as in Figure 1. By applying the pre-

vious definitions we detect that for δ = 0.1, values b and c for variable X2 are
0.1interchangeable. When considering a lower degradation of δ = 0.4, these values
are not anymore δinterchangeable.

X2X1

X3

a 0.5
b 0.4

a 0.9
b 0.1
c 0.9

a 0.9

c 0.5
a a 0.8
a b 0.8
a c 0.2
b a 0.2
b b 0.6
b c 0.6
c a 0.1
c b 0.5
c c 0.3

a a 0.2
a b 0.9
b a 0.2
b b 0.7
c a 0.4
c b 0.7

a a 0.1
a b 0.2
b a 0.4
b b 0.8
c a 0.9
c b 1

c1

c2

c3

cx1
cx2

b 0.5

cx3

Fig. 1. Fuzzy CSP example.

By applying threshold definition for α = 0.4 for the same values b and c of
variable X2, we can notice that these values are 0.4interchangeable.

3 The Java Implementation

We implemented the soft CSP module and the interchangeability module as
an extension of the JCL, developed at the Artificial Intelligence Laboratory
(EPFL) [4]. JCL is implemented in java which ensures portability on all the
platforms. The library contains a CSP package describing constraint satisfaction
problems and several solvers. In this section, we describe briefly the JCL and
the CSP module.

The Java Constraint Library. The Java Constraint Library (JCL) is a library
containing common constraint satisfaction techniques which provides services
for creating and managing discrete CSPs and applying preprocessing and search
algorithms.

We developed two new packages on top of JCL: the first one models and solve
soft constraint satisfaction problems; the second one computes interchangeabil-
ities for crisp and soft CSPs, see Figure 2.

Java Constraint Library (JCL)

Classes for Search Algorithms

Classes for CSP Modeling

Classes for Soft CSP Modeling

Classes for Search
Algorithms in Soft CSPs

Classes for Interchangeability
Algorithms in Soft CSPs

Classes for Interchangeability
Algorithms in CSPs

Soft CSP Package Interchangeability Package

Fig. 2. Soft CSP and Interchangeability Modules on top of Java Constraint Lan-
guage(JCL).

The Soft CSP Module. The Soft CSP package extends the CSP class in order
to support softness. We implemented the scheme from [3] where preferences levels
are assigned both to variables values (implemented as soft unary constraints by
the class SoftUnaryConstraint) and to tuples of values over the constraints. In
particular, in the actual implementation we only consider binary constraints (by
SoftBinaryConstraint), but the class can be easily extended in this direction.

The Soft CSP package supports classical, fuzzy, probabilistic and weighted
CSPs by using appropriate semirings. The semiring class parameterizes the type
of the CSP and the respective operations of constraints combinations (and pro-
jection).

The Interchangeability Module. This module implements all the algorithms
for computing classical interchangeability for all the semiring types. It provides
also the computational classes for degradation δ and/or threshold α interchange-
ability which finds δ/αNI sets.

4 Test Evaluation

Occurrence of NI in classical CSP have been already studied to improve search [1],
for resource allocation application [5] and for configuration problems [12]. One
of the main result is that in problems of small density the number of NI sets
increases with the domain size.

The behavior of NI sets in the Soft CSP frameworks is still unexploited. For
this motivation we study and evaluate here how NI behaves in the Soft CSP
framework.

We have done our experiments for fuzzy and weighted CSPs representing the
important classes of Soft CSPs dealing with an idempotent and non-idempotent
times operation respectively. The motivation for considering both classes comes

from the fact that solving Soft CSP when the combination operation is not
idempotent is extremely hard [3].

Usually the structure of a problem is characterised by four parameters:
– Problem Size: This is usually the number of its variables;
– Domain Size: The average of the cardinality of the domain of the variables;
– Problem Density: This value (measured on the interval [0,1]) is the ratio of

the number of constraints relatively to the minimum and maximum num-
ber of allowed constraints in the given problem. Considering the constraint
problem as a constraint graph G = (V, E) where V represents the vertices
(variables) (with n := |V |) and E edges (constraints) (with e := |E|); the
density is computed as denscsp = e−e min

e max−e min
, where e min = n − 1 and

e max = n(n−1)
2 ;

– Problem Tightness: This measure is obtained as the average of tightness of all
the constraints. For soft constraints we consider it as the ratio between the
sum of the semiring values associated to all the tuples in all the constraints,
and the value obtained by multiplying the 1 element of the semiring (that is
the maximum) for the number of all possible tuple (that is the constraint-
number × domainsize).
For both fuzzy and weighted CSPs we observed that the density and number

of variables do not influence too much the occurrence of interchangeable val-
ues. There is instead a (weak) dependency from the domain size: the number
of interchangeabilities increases with the resources. This result from the test is
obvious when dealing with crisp CSPs, but for soft problems this could be not so
obvious. We have instead found that the CSP tightness influence the occurrence
of interchangeable values.

In the following we use the model of measuring NI sets developed in [5]
with some adaptation needed in order to deal with softness. We report here
the results for problem sizes n = 10, while varying the density dens − csp ∈
{0.1, 0.2, . . . , 0.9}, the tightness tightness − csp ∈ {0.1, 0.2, . . . , 0.9} and the
maximum domain size dom − size = { n

10 , 2n
10 , . . . , 9n

10 , n}. The semiring values
are generated uniformly and accordingly to the CSP tightness. For each case,
ten random problems were generated and then graphically represented by con-
sidering the measures measureαNI and measureδNI described below.

In all the graphs we highlight where is the position of the optimal solution.
In fact, when dealing with crisp CSP there is no notion of optimality, but for
soft CSP each solution has an associated level of preference. It is important to
study NI occurrence around optimal solutions because we are often interested
to discard solutions of bad quality.

4.1 Fuzzy CSPs

Fuzzy CSPs are a representative example of soft CSP based on an idempotent
times semiring operator. Informally, for fuzzy CSPs the weights assigned to the
tuples represents how much the tuple is satisfied, and the semiring operations
are min for combination and max for projection.

δ/αNI Occurrence in Fuzzy CSPs

measureαNI measures the ”occurrence” of NI αinterchangeable value pairs in
the sense that it computes the average number of αNI interchangeable pairs
values over the whole CSP divided by the potential number of relations using
the formula:

measureαNI =

∑n

k=1
αNIVk∗2

domSizeV
k
∗(domSizeV

k
−1)

n
.

In the formula, n represents the problem size and αNI Vk all the αinterchangeable
pairs values for variable Vk.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
measure NI

α

optimal solution
alpha

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delta

measure NI
δ

optimal solution

(a) (b)

Fig. 3. A statistical measure of the number of NI of α/δ interchangeability for Fuzzy
CSP with uniform weight distribution, for sets of problems with 10 variables and 10
values domains (Figure (a) for α and Figure (b) for δ).

Similarly, measureδNI measures the ”occurrence” of NI δinterchangeable
values:

measureδNI =

∑n

k=1
δNIVk∗2

domSizeV
k
∗(domSizeV

k
−1)

n
−

As before, n represents the problem size and δNIVk all the δinterchangeable
pairs values for variable Vk.

In Figure 3(a), we represent measureαNI varying the value of α. We found
that there are a lot of αinterchangeable values close to the optimal solution. We
also notice that the interchangeabilities decrease when using lower values for α.

Similarly, in Figure 3(b), we observe also for δ the same results: close to the

optimum we have many δ/αsubstitutability/interchangeability.

In the Figure 4, we represent how the occurrence of (δ/α)interchangeability
depends on α and δ (respectively in Figure (a) and (b)), and also on the problem
tightness.

As we can see in the Figure 4(a), the number of α interchangeable values
depend on α, but also on the problem tightness. For low tightness, the num-
ber of interchangeabilities increases faster, while for higher values of tightness
interchangeable values appear only for high values of α.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

alpha
tightness

optimal solution

measure NI
α

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

delta

tightness

measure NI
δ

optimal solution

(a) (b)

Fig. 4. A statistical measure of the number of α/δ interchangeability for Fuzzy CSP,
with uniform weight distribution, for sets of problems with 10 variables and 10 values
domains and varying the problem tightness.

In Figure 4(b), we show the dependence w.r.t. δ and the problem tightness.
We can see that the occurrence of interchangeable values increases with the
tightness for low δ values.

In Figure 5, we perform the same analysis but varying this time the density
of the problem. We can notice that the interchangeability occurence does not
vary too much with problem density (the shape is in fact very regular).

Estimation of NI versus FI for Fuzzy CSPs

Computing full interchangeable values might be a quite costly operation as it
may require computing all the solutions. There are not known efficient algorithms
which can compute in polynomial time full interchangeable values. Neighbour-
hood interchangeability can be computed in polynomial time, but provide only
a subset of full interchangeable values. In the following we study how neighbour-
hood interchangeability can approximate full interchangeability in soft CSPs.

We consider in Figure 6 the ratio between the number of neighbourhood
interchangeabilities and the number of full interchangeabilities. The value of

0

0.2

0.4

0.6

0.8

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

density

α

measure NI α

optimal solution

0

0.5

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

density

optimal solution

measure NI
δ

δ

(a) (b)

Fig. 5. A statistical measure of the number of α/δ interchangeability for Fuzzy CSPs
with uniform weight distribution, for sets of problems with 10 variables and 10 values
domains and varying problem density.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tigthness
alpha

ra
tio

N
IF

I

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

tigthnessdelta

ra
tio

N
IF

I

(a) (b)

Fig. 6. The ratio between the number of neighbourhood and full interchangeable values
varying tightness and α/δ (respectively on the left and right side of the picture), for
problems of 10 variables with 10 domain values.

ratioNIFI is computed as

ratioNIFI =

∑n

k=1 δNIVk
∑n

k=1 δFIVk

for δ interchangeability, and in a similar manner also for α. In the formula, δNIVk

represents the number of δNI interchangeable values pairs for variable Vk and
δFIVk represents the number of δFI interchangeable values pairs for variable Vk.

In Figure 6, we see that the ratios δNI /δFI and αNI /αFI are always between
0.7 and 0.9 when we consider domain values close to the optimal solution. Thus,
NI interchangeability can well approximate FI interchangeability.

Estimation of NI computed by general definition versus NI computed

with the Discrimination Tree algorithm for Fuzzy CSPs

For soft CSPs based on idempotent semiring as Fuzzy CSP, we can use the
proposed Discrimination Tree algorithm for computing (δ/α)neighbourhood in-
terchangeability, see Section 2. In this paragraph we study how much the number
of interchangeability values found with Discrimination Tree algorithm can ap-
proximate the number of interchangeability values detected with the definition
algorithm and full interchangeability values respectively.

In Figure 7(a) we can see how α full interchangeability, α neighbourhood
interchangeability computed using the definition algorithm and discrimination
tree algorithm respectively vary with α. The results show that the Discrimination
Tree general algorithm finds a high number of interchangeable values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

alpha

m
ea

su
re

N
ID

T
/N

I/F
I

NIDT
NI
FI

optimal solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delta

m
ea

su
re

N
ID

T
/N

I/F
I

NIDT
NI
FI

optimal solution

(a) (b)

Fig. 7. How the number of α NI, α FI, α NIDT values are varying with α and δ.

Figure 7(b) represents the analysis for δ interchangeability. We can see that
the graphs almost overlaps. Thus the number of interchangeability values found

for δneighbourhood/full interchangeability is almost the same. Thus, in the δ
case the number of interchangeable values found by the Discrimination Tree
algorithm is very close or almost the same to the original number found by the
definition algorithm.

Following these results we can get to the conclusion that full interchangeabil-
ity in Fuzzy CSPs, and thus for any idempotent soft CSP, can be well approxi-
mated by neighbourhood interchangeability computed either with the definition
algorithm or with the Discrimination Tree algorithm.

4.2 Weighted CSPs

Weighted CSP represents the important class of Soft CSPs dealing with a non-
idempotent times operator. In the following, we evaluate how the neighbourhood
interchangeability can approximate full interchangeability.

δNI Occurrence in Weighted CSPs

We present how the occurrence of δ neighbourhood interchangeable values varies
with δ. The tests are not done for αNI because when times is not idempotent
we cannot easily compare local and global notions of α interchageabilities.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delta

measure NI

optimal solution

δ

0

0.2

0.4

0.6

0.8

1 0
50

100
150

200
250

300

0

0.2

0.4

0.6

0.8

1

delta
density

measure NI

−−− optimal solution

δ

(a) (b)

Fig. 8. How the number of interchageabilities varies with δ and with CSP density in
weighted CSPs.

In Figure 8(a), we see how the number of δneighbourhood interchangeable
increases with δ and how, close to the optimal solution approaches to 1. This
means that all the values pairs are interchangeable for high δ (as could be easily
guessed).

In Figure 8(b), we represent how the measure of NI varies w.r.t. δ and the
density as well. We can see, as in the Fuzzy case, that the SCSP density does
not influence the occurrence of interchangeability too much.

Estimation of NI versus FI for Weighted CSPs

In Figure 9, we can see how the number of neighbourhood and full interchange-
ability values vary with δ. We can see that the number of neighbourhood and
full interchangeability does not differ too much. Thus, we can again approximate
full interchangeability with neighbourhood interchangeability.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delta

NI
FI

measure NI / measure FI

optimal solution

δ δ

Fig. 9. δNI versus δFI values varying δ for weighted CSPs.

As in the tests for fuzzy CSPs, we computed the ratio ratioNIFI , and in
Figure 10 we display the obtained results. We can see how the ratio between
δNI and δFI varies with delta and CSP density. The ratio is always between 0.8
and 1 and this lead us to the conclusion that neighbourhood interchangeability
can approximate fairly full interchangeability for weighted CSP if we can accept
a degradation of δ.

5 Conclusions and Future Work

Interchangeability is an important technique as it can be used as a preprocessing
technique for finding equivalences among variables values, and thus enhancing
search. It can also be used as a postprocessing technique for solution adaptation.
In this paper we used our java based implementation to compute interchange-
ability for Soft CSPs. We have studied the occurrence of αNI and δNI and we
have evaluated how this occurrence can depend on the values of α and δ, on the
CSP parameters and also how local NI relies with FI . The experimental facts
show also that there is high occurrence of αNI and δNI interchangeability close
to the optimal solutions in fuzzy CSPs and weighted CSPs as well. Thus, these
algorithms can be used successfully in solution update applications. On random
generated Soft CSPs we haved studied the occurence of δ

αinterchangeability vary-
ing with the CSP parameters such as size, density, tightness, and semiring values,
where we covered all the range of Soft CSPs problems from easy to difficult.

0
0.2

0.4
0.6

0.8
1

0

50

100

150

200

250

300
0

0.2

0.4

0.6

0.8

1

delta density

ratio NI / FI
δ δ

optimal solution

Fig. 10. The figure represents how ratio δNI/δFI is varying with δ and CSP density
for weighted CSPs.

We have noticed that there is high occurrence of interchangeability values
by varying these parameters too. This motivates for the application of these
methods in practical soft CSPs as a purpose of our further study.

Moreover, we showed that NI interchangeability can well approximate FI
interchangeability. We studied also how the discrimination tree algorithm can
be used to compute a subset of interchangeabilities.

The use of these interchangeability techniques in improving search have
to be investigated. We believe that the results prove the reliability for using
δ
αinterchangeability for solution updating and motivate for further studying.

Most work in constraint satisfaction has focused on efficielty generation so-
lutions. However, it is also interesting how solutions can be adapted and ab-
stracted. Interchangeability is an interesting concept for this. We believe that
a computable form of interchangeability, as neighbourhood interchangeability is
proposed in this paper, can be successfully applied for abstraction, for improving
search and for solution updating in Soft CSPs.

References

1. B.W. Benson and E. Freuder. Interchangeability preprocessing can improve for-
ward checking search. In Proc. of the 10th ECAI, 1992.

2. S. Bistarelli, B. Faltings, and N. Neagu. A definition of interchangeability for soft
csps. In Proc. ERCIM/CologNet Workshop on Constraint - Selected Papers, LNAI.
Springer-Verlag, 2002. to appear.

3. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and
Optimization. J. ACM, 44(2), 1997.

4. E. Bruchez and M. Torrens. Java constraint library. http://liawww.epfl.ch/ tor-
rens/Project/JCL/, 1996.

5. B. Choueiry, B. Faltings, and R. Weigel. Abstraction by Interchangeability in
Resource Allocation. In Proc. of the 14 th IJCAI-95, pages 1694–1701, Montreal,
Canada, 1995.

6. B.Y. Choueiry. Abstraction Methods for Resource Allocation. PhD thesis, EPFL
PhD Thesis no 1292, 1994.

7. D. Dubois, H. Fargier, and H. Prade. The calculus of fuzzy restrictions as a basis
for flexible constraint satisfaction. In Proc. IEEE International Conference on
Fuzzy Systems, 1993.

8. E.C. Freuder. Eliminating interchangeable values in constraint satisfaction prob-
lems. In Proc. of AAAI-91, 1991.

9. E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. AI Journal, 58,
1992.

10. A. Haselbock. Exploiting interchangeabilities in constraint satisfaction problems.
In Proc. of the 13th IJCAI, 1993.

11. N. Neagu, S. Bistarelli, and B. Faltings. On the computation of local interchange-
ability in soft constraint satisfaction problems. In Proc. of the 16th International
FLAIRS Conference - Special Track on Constraint Solving and Programming, St.
Augustine, Florida, USA, 2003. AAAI Press.

12. Nicoleta Neagu and Boi Faltings. Constraint Satisfaction for Case Adaptation. In
In Proc. of the workshop sesion (ICCBR99), 1999.

13. Zs. Ruttkay. Fuzzy constraint satisfaction. In Proc. 3rd IEEE International Con-
ference on Fuzzy Systems, 1994.

14. T. Schiex, H. Fargier, and G. Verfaille. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proc. IJCAI95, 1995.

15. R. Weigel and B. Faltings. Interchangeability for case adaptation in configuration
problems. In Proc. of the AAAI98 Spring Symposium on Multimodal Reasoning,
Stanford, CA, 1998. TR SS-98-04.

16. R. Weigel and B. Faltings. Compiling constraint satisfaction problems. Artificial
Intelligence, 115, 1999.

