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Abstract. Soft constraints are very flexible and expressive. However, thgy ma
also be very complex to handle. For this reason, it may be convenieavéna
cases to pass to an abstract version of a given soft problem, andrihgrsome
useful information from the abstract problem to the concrete one. Tiisape-
fully make the search for a solution, or for an optimal solution, of the rtec
problem, faster.

In this paper we review the main concepts and properties of our abstréetine-
work for soft constraints, and we show some experimental results apjikca-
tion to the solution of fuzzy constraints.

1 Introduction

Soft constraints allow to model faithfully many real-lifegblems, especially those
which possess features like preferences, uncertaintists,devels of importance, and
absence of solutions. Formally, a soft constraint probl&8@SP) is just like a classi-
cal constraint problem (CSP), except that each assignniematues to variables in the
constraints is associated to an element taken from a sedlfypsudered). These ele-
ments will then directly represent the desired featuresesihey can be interpreted, for
example, as levels of preference, or costs, or levels chiceyt

SCSPs are more expressive than classical CSPs, but theljgamare difficult to
process and to solve, mainly because they are optimizattberthan satisfaction prob-
lems. For this reason, it may be convenient to work on a sfiegliversion of the given
problem, trying however to not loose too much information[3, 1, 2], an abstraction
framework for soft constraints has been proposed, whese) &t given SCSP, a new
simpler SCSP is generated representing an “abstractiottieofjiven one. Then, the
abstracted version is processed (that is, solved or chdokembnsistency), and some
information gathered during the solving process is brobglk to the original problem,
in order to transform it into a new (equivalent) problem easd solve.

All this process has the main aim of finding an optimal solutar an approximation
of it, for the original SCSP, with less time or space w.r.toluson process that does



not involve the abstraction phase. It is also useful when erétchave any solver for
the class of soft problems we are interested in, but we do idwe another class, to
which we can abstract to. In this way, we rely on existing sto automatically build
new solvers.

Many properties of the abstraction framework have beengwran [3]. The most
interesting one, which will be used in this paper, is thategiany optimal solution
of the abstract problem, we can find upper and lower boundarfarptimal solution
for the concrete problem. If we are satisfied with these beune could just take the
optimal solution of the abstract problem as a reasonableoajppation of an optimal
solution for the concrete problem.

In this paper we extend this and other results described]ito[Build a new al-
gorithm to solve the concrete problem by using abstractiepss More in detail, we
prove that using the value of the optimal tuple in the absfagblem as a bound for
the abstraction mapping, leads to building each time newadiproblem with better
and better corresponding optimal concrete solution. Whemaor@ solutions are found,
we can be sure that the last found optimum in the abstractgaois indeed the optimal
solution of the concrete one.

Besides devising a new solving algorithm based on suchtsssdl on the abstrac-
tion framework, we also describe the results of several mxgats which show the
behavior of three variants of such algorithm over fuzzy t@st problems [7, 13, 14].
In these experiments, fuzzy problems are abstracted iagsiclal CSPs, and solved via
iterative abstraction of the given problem in differentssizal CSPs. The behavior of
the three versions of our algorithm is then compared to th&amflex, a solver for
fuzzy CSPs. This paper is an extended and improved versigi2bf

2 Soft constraints

A soft constraint [5] is just a classical constraint whereteiastantiation of its variables
has an associated value from a partially ordered set. Cangbgonstraints will then
have to take into account such additional values, and theigaitmalism has also to
provide suitable operations for combination)@nd comparison (+) of tuples of values
and constraints. This is why this formalization is based e ¢oncept of semiring,
which is just a set plus two operations satisfying certaopprties:(A,+, x,0,1).
If we consider the relatiors over A defined aa <sb iff a+b = b, then we have
that:
— <gis a partial order;
— + and x are monotone OKg;
— 0is its minimum andL its maximum;
— (A, <g) is a complete lattice angl is its lub.
Moreover, if x is idempotent, thetA, <s) is a complete distributive lattice and
is its glb. Informally, the relatior<s gives us a way to compare (some of the) values in
the setA. In fact, when we hava <gb, we will say thath is better than aExtending
the partial ordeKs among tuples of values, also a partial order among contdran
induced.
Given a c-semiring = (A, +, x,0,1), a finite setD (the domain of the variables),
and an ordered set of variablés a constraint is a paifde f,con) whereconC V and
def:DIc" — A Therefore, a constraint specifies a set of variables (tles arcon),



and assigns to each tuple of valuedobf these variables an element of the semiring
setA. This element can then be interpreted in several ways: aghdépreference, or
as a cost, or as a probability, etc. The correct way to iné¢igarch elements depends on
the choice of the semiring operations.

Constraints can be compared by looking at the semiring saissociated to the
same tuples: Consider two constraiaits= (de f,con) andc, = (de £, con), with |con =
k. Thency Csc; if for all k-tuplest, defi(t) <sdef(t). The relationCsinduces a par-
tial order. In the following we will also use the obvious ex¢éon of this relation to sets
of constraints, and also to problems (seen as sets of consjra

Note that a classical CSP is a SCSP where the chosen c-sgisirin

Scsp= ({falsetrue}, v, A, falsetrue).

Fuzzy CSPs[7, 13, 14], which will be the main subject of tlapgr, can instead be mod-
eled in the SCSP framework by choosing the c-semiggsp= ([0, 1], max min,0, 1).

Given two constraints; = (def;,con) andc, = (de, cor), their combination
C1®Cz is the constraintde f, con) defined bycon= cony Ucorp andde f(t) = de fi(t [go
) xdeb(t [&on,)- In words, combining two constraints means building a nemstraint
involving all the variables of the original ones, and whidsaciates to each tuple of
domain values for such variables a semiring element whicditgined by multiplying
the elements associated by the original constraints togpeoariate sub-tuples.

Given a constraint = (def,con) and a subsétofV, theprojectionof c overl, writ-
tency, is the constraintde f', corf) wherecorl = connl andde f (') = 5 1 con _y defi(t).
Informally, projecting means eliminating some variablEsis is done by associating to
each tuple over the remaining variables a semiring eleméithwis the sum of the el-
ements associated by the original constraint to all thensib@s of this tuple over the
eliminated variables.

Thesolutionof a SCSP probler® = (C,con) is the constrainol(P) = (Q C) Jcon:
we combine all constraints, and then project over the vigaim con In this way we
get the constraint ovaeronwhich is “induced” by the entire SCSP. Optimal solutions
are those solutions which have the best semiring elemenhgnimse associated to
solutions. The set of optimal solutions of an SASRill be written asOpt(P). In the
following, we will sometimes call “a solution” one tuple obdhain values for all the
problem’s variables (overon), plus its associated semiring element. Figure 1 shows an
example of fuzzy CSP and its solutions.

Solutions:
( : ( : @ aaa..min(0,0.3) =0
aab..min(0,0.1)=0 Best solutions:
aa..o0 aa..03 aba..min(1,1)=1 aba.1
ab..1 ab..01 abb..min(1,1)=1 abb..1
ba..05 ba..1l baa...min(0.5,0.3) = 0.3
bb..0.7 bb..1 bab...min(0.5,0.1) = 0.1

bba..min(0.7,1) = 0.7
bbb..min0.7,1)=0.7

Fig. 1: A fuzzy CSP and its solutions.



Consider two problemB; andP,. ThenP; Cp P, if Sol(Py) CsSol(R,). If P Cp P,
andP, Cp Py, then they have the same solution, thus we say that they aneaéent and
we write P, = P».

SCSP problems can be solved by extending and adapting thadee usually used
for classical CSPs. For example, to find the best solutionomtdeemploy a branch-and-
bound search algorithm (instead of the classical backinggkand also the successfully
used propagation techniques, like arc-consistency [Hl,be generalized to be used
for SCSPs. The detailed formal definition of propagatioratgms (sometimes called
alsolocal consistencglgorithms) for SCSPs can be found in [5]. For the purposhisf t
paper, what is important to say is thap@pagation ruleis a function which, taken an
SCSP, solves a subproblem of it. It is possible to show th@igation rules are idem-
potent, monotone, and intensive functions (over the gdamttker of problems) which do
not change the solution set. Given a set of propagation,ralegal consistency algo-
rithm consists of applying them in any order until stabilityis possible to prove that
local consistency algorithms defined in this way have thkefohg properties if the
multiplicative operation of the semiring is idempotenturglence, termination, and
unigueness of the result.

Thus we can notice that the generalization of local consistérom classical CSPs
to SCSPs concerns the fact that, instead of deleting valuagtes, obtaining local
consistency in SCSPs means changing the semiring valuesiatesl to some tuples
or domain elements. The change always brings these valuesds the worst value
of the semiring, that is, th@. Thus, it is obvious that, given an SCSP problErand
the problemP’ obtained by applying some local consistency algorithr® tave have
P CsP.

3 Abstraction

The main idea [6] is to relate the concrete and the abstractsios by a pair of func-
tions, theabstractionfunctiona and theconcretizatiorfunctiony, which form a Galois
connection.

Let (C,C) and (4, <) be two posets (the concrete and the abstract domain).
Galois connectiorja,y) : (C,C) = (A,<) isapairof mapsi: C — 4andy: 4 — C
such that 1.0 andy are monotonic, 2. for eack e C,x C y(a(x)) and 3. for each
y € 4,a(y(y)) <y. Moreover, a Galois insertion (1 in C) (a,y) : (C,C) = (4,<) is
a Galois connection where- y is the identity over?, that is,|d 5.

An example of a Galois insertion can be seen in Figure 2. Hieeszoncrete lattice
is ([0,1], <), and the abstract one {$0,1}, <). Functiona maps all real numbers in
[0,0.5] into 0, and all other integers (i{®.5, 1]) into 1. Functiony maps 0 into & and
linto 1.

Consider a Galois insertion froft,C) to (A4, <). Then, ifC is a total order, so is
<.

Most of the times it is useful, and required, that the abstiperators show a certain
relationship with the corresponding concrete ones. Tladiomship is calledocal cor-
rectnessLet f : C" — ( be an operator over the concrete lattice, and assumé thits
abstract counterpart. Thenis locally correct w.r.tf if Vxq,...,% € C, f(X1,..., %) C

y(f(a(xa), .-, a(xn)))-



concrete lattice abstract lattice

Fig. 2: A Galois insertion.

3.1 Abstracting soft CSPs

The main idea of the abstraction framework presented ing3jery simple: we just
want to pass, via the abstraction, from an SESdver a certain semirin§to another
SCSPP over the semirings, where the lattices associated3@nd S are related by a
Galois insertion as shown above.

Consider theoncreteSCSP problenP = (C, con) over semiringS, where

- S= (A +,x,0,1) and

— C={co,...,cn} with ¢, = (con,def) anddef : DI7| — A,

- 8= (A F,%,0,1);

— € ={Cy,...,6} with & = (con,def) anddef : DIl — A;

— if L= (A <) is the lattice associated ®andi = (A, <) the lattice associated

then there is a Galois insertidqa, y) such that : L — L;

— X is locally correct with respect ta.

Notice that the kind of abstraction we consider in this pajms not change the
structure of the SCSP problem. The only thing that is charg#te semiring.

Notice also that, given two problems over two different sémgs, there may exist
zero, one, or also many abstractions (that is, a Galoistinedretween the two semir-
ings) between them. This means that given a concrete protent and an abstract
semiringS, there may be several ways to abstract such a problenSover

Example 1.As an example, consider any SCSP over the semiring for arstion
(R~ U{—o},max +,—,0) and suppose we want to abstract it onto the semiring for
fuzzy reasoning|[0, 1],max min,0,1). In other words, instead of computing the max-
imum of the sum of all costs (which are negative reals), we st to compute the
maximum of their minimum value, and we want to normalize tbsts ovel0, 1]. No-

tice that the abstract problem has an idempoterperator (which is the min). This
means that in the abstract framework we can perform locadistancy over the prob-
lem in order to find inconsistencies.

Example 2.Another example is the abstraction from the fuzzy semiraé classical
one, which will be widely used in the rest of this paper:

Ssp= ({0,1},V,A,0,1).



Here functiona maps each element {3, 1] into either 0 or 1. For example, one could
map all the elements ifD,x] onto 0, and all those ifix,1] onto 1, for some fixeck.
Figure 2 represents this example witk- 0.5.

3.2 Properties of the abstraction

We will now summarize the main results about the relatigms¢fétween a concrete
problem and an abstraction of it.

Let us consider the scheme depicted in Figure 3. Here ane ifotlowing pictures,
the left box contains the lattice of concrete problems, dadright one the lattice of
abstract problems. The partial order in each of these éatiic shown via dashed lines.
Connections between the two lattices, via the abstractidncancretization functions,
is shown via directed arrows. In the following, we will c8li= (A, +, x,0,1) the con-
crete semiring ang= <A, T, %,0, 1) the abstract one. Thus we will always consider a
Galois insertion(a,y) : (A, <s) = (A, <g).

concrete problems abstract problems

y(a (P))

Fig. 3: The concrete and the abstract problem.

In Figure 3,P is the starting SCSP problem. Then with the mapginge getP =
a(P), which is an abstraction ¢f. By applying the mappingto P, we get the problem
y(a(P)). Let us first notice that these two problensdndy(a(P))) are related by a
precise property:

PCsy(a(P)).

Notice that this implies that, if a tuple ina(P)) has semiring valu®, then it
must have valu® also inP. This holds also for the solutions, whose semiring value
is obtained by combining the semiring values of severalasipl herefore, by passing
from P to y(a(P)), no new inconsistencies are introduced. However, it isiplesthat
some inconsistencies are forgotten.

Example 3.Consider the abstraction from the fuzzy to the classicaliseg) as de-
scribed in Figure 2. Then, if we cdft the fuzzy problem in Figure 1, Figure 4 shows
the concrete probler, the abstract problem(P), and its concretizatiog(a(P)). It is
easy too see that, for each tuple in each constraint, theiasst semiring value iR is
lower than or equal to that ig(a(P)).

If the abstraction preserves the semiring ordering (thapglying the abstraction
function and then combining gives elements which are in #raesordering as the
elements obtained by combining only), then the abstradti@alledorder-preserving
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aa..05 aa..05
ab.1 ab..05
ba..05 ba..1l
bb..1 bb..1

V(P y

®

® ® ® 7| fw i
aa..0 aa..03 bb..1 bb..1

ab.1 ab..0.1 a(p)

ba.05 ba ..1
bb. 07 bb..1

Fig. 4: An example of the abstraction fuzzy-classical.

and in this case there is also an interesting relationshiwdsn the set of optimal
solutions ofP and that ofa(P). In fact, if a certain tuple is optimal iR, then this
same tuple is also optimal m(P).

Example 4.Consider again the previous example. The optimal solutiorisare the
tuples(a,b,a) and(a,b,b). It is easy to see that these tuples are also optimal ).
In fact, this is a classical constraint problem where theitsmhs are tuplega, b, a),
(a,b,b), (b,b,a), and(b, b, b).

Thus, if we want to find an optimal solution of the concretelyean, we could find
all the optimal solutions of the abstract problem, and theas thhem on the concrete
side to find an optimal solution for the concrete problem.uhsing that working on
the abstract side is easier than on the concrete side, thigtheould help us find an
optimal solution of the concrete problem by looking at justudoset of tuples in the
concrete problem.

Another important property, which holds for any abstratticoncerns computing
bounds that approximate an optimal solution of a concraiblpm. In fact, any optimal
solution, sayt, of the abstract problem, say with valuecan be used to obtain both an
upper and a lower bound of an optimummn In fact, we can prove that there is an
optimal solution inP with value betweer(V) and the value of in P [3, Theorem 29].

Thus, if we think that approximating the optimal value withedue within these two
bounds is satisfactory, we can takas an approximation of an optimal solutionff
Notice that this theorem does not need the order-presepriogerty in the abstraction,
thus any abstraction can exploit this result.

Example 5.Consider again the previous example. Now take any optimatien of
a(P), for example tupléb, b, b). Then the above result states that there exists an optimal
solution of P with semiring valuev between the value of this tuple By which is Q7,
andy(1) = 1. In fact, there are optimal solutions with value 1Fn



However, a better lower bound can be computed in the speasal af an abstraction
where the semirings are totally ordered and have idempaotatiiplicative operations.
In this case, any abstraction is order-preserving. In fwtsider an abstraction between
totally ordered semirings with idempotent multiplicatieperations. Given an SCSP
problemP overS, consider an optimal solution of(P), sayt, with semiring valuev in
a(P). Consider also the set= {v; | a(v;) = V}. Then there exists an optimal solution
t of P, say with valuev, such thamin(V) < v< maxV).

3.3 New Properties

When dealing with the mapping from fuzzy to classical CSPs areaiso prove other
important results. Consider an abstraction that maps ebémiring values better than
the fuzzy valuex into 1 (that is, the booleattue) and all the fuzzy values worse than
or equal tharu to O (that is, the boolean valualseé. Let us also calP the fuzzy CSP
anda (P) the corresponding abstracted CSP. Then we can prove that:

Given an SCSP problef over the fuzzy semiring, and the corresponding abstract
problema (P) over the boolean semiring, obtained by mapping all valuesidhan or
equal tharo to falseand all the values bigger thanto true.

— if a(P) has no solution, problefhas an optimal solution with an associated semir-
ing fuzzy value worse than or equal than

— if P has a solution tuplewith associated semiring leval, anda(P) has no solu-
tion, tuplet is an optimal solution foP.

These properties will be very useful in devising the thresieams of the abstraction-
based algorithm we will define in the next section.

4 Solving by iterative abstraction

The results of the previous section can be the basis for dredmtssolving method, or
more precisely a family of methods, where abstraction wéllused to compute or to
approximate the solution of a concrete problem.

Here we will focus on the version of this solving method whagplies to fuzzy
CSPs, because our experimental results will focus on thssabf soft CSPs. The gen-
eral version of the algorithm is given in [3].

A method to solve a fuzzy CSP is to reduce the fuzzy problem secaence of
classical (boolean) CSPs to be solved by a classical sdliias.method has been for
instance recently implemented in the JFSolver [10].

Let us formalize this algorithm within our abstraction framwork. We want to ab-
stract a fuzzy CSIP = (C, con) into the boolean semiring. Let us consider the abstrac-
tion a which maps the values in [0,0.5] to 0 and the values in ]0.811, which is
depicted in Figure 2. Let us now consider the abstract protile= a(P) = (C,con).
There are two possibilities, depending whethéP) has a solution or not.

1. If a(P) has a solution, then (by the previous resulté)as an optimal solutiorwith
valuev, such that & < v < 1. We can now further cut this interval in two parts, e.g.
[0.5,0.75] and ]0.75, 1], and consider now the abstraationhich maps the values
in [0,0.75] to 0 and the values in ]0.75,1] to 1, which is dégicin Figure 5. If
o’(P) has a solution, theR has a corresponding optimal solution with fuzzy value
between 0.75 and 1, otherwise the optimal solution has fuahye between 0.5



and 0.75, because we know from the previous iteration theastiution is above
0.5. If tighter bounds are needed, one could further itettsiteprocess until the

desired precision is reached.

'
0.75
|

! }\v\

Fig. 5: An abstraction from the fuzzy semiring to the boolean one, cut+e0e75.

2. If a(P) has no solution, then (by the previous resuRg)as an optimal solution
with valuev, such that &< v < 0.5. We can now further cut this interval in two parts,
e.g. [0,0.25] and ]0.25,0.5[ , and consider now the abstmact” which maps the
values in [0,0.25] to 0 and the values in ]0.25,1] to 1, whighiépicted in Figure
6. If a”(P) has a solution, theR has a corresponding optimal solution with fuzzy
value between 0.25 and 0.5, otherwise the optimal solutsrfizzy value between
0 and 0.25. And so on and so forth.

— ar | —

| ]
o.z?k— v l

Fig. 6: An abstraction from the fuzzy semiring to the boolean one, cute0e5.

Example 6.For example, consider again the fuzzy constraint problechtha initial
abstraction of Figure 4. This abstraction uses a cut level®find generates the clas-
sical constraint problem in the right part of Figure 4. Thisldem has solutions (for
examplex = a, y = b, andz = a), thus the algorithm above sets the new cut level at
0.75. The new abstracted problem is still soluble: for eXarthe assignment above is
still a solution. Thus the set the new cut level to 0.875. Agttie abstracted problem
has solutions (it is actually the same problem as before)yesget the new cut level
to 0.9375. The abstracted problem has again solutions. Have reached the desired



precision (assume that we are happy with a tolerance of Glgam conclude the al-
gorithm by reporting the existence of a solution for theiahifuzzy CSPs with value
higher than, or equal to 0.9375. More precisely, the iteeaigorithm reports that there
is a solution in the interval [0.9375,1].

Observe that the dichotomy method used in this example isheobnly one that
be can used: we can cut each interval not necessarily in thdlenlbut at any point at
will (e.g., if some heuristic method allows us to guess inchhpart of the semiring
the optimal solution is). The method will work as well, altlgi the convergence rate,
and thus the performance, could be different. In particeiacan use the results of the
previous section and cut each time at lemetorresponding to the value of the tuple
t that is optimal in the abstract problem (let’s call this hstic current best. We can
then continue this procedure until we find no solutions. Ad phoint we are sure that
the tuplet found at the previous step is an optimal solution for the cetecproblen.

Example 7.In the example above, this version of the algorithm wouldknas follows.
First, the fuzzy problem is cut at level 0.5, and its abs&datersion is the one at the
right in Figure 4. This problem has solutions, so we take asiyt®n, for example
x=Db, y=Db, andz= b, and we compute its value in the fuzzy problem. In this case
the value is 0.7. By setting the new cut level to 0.7, the nestrabted problem has still
solutions (although tuple jb,b¢, between x and y has now @g|e® we take any of such
solutions, sax = a, y = b, andz = b, and we compute its value in the fuzzy problem,
which is 1. Now the new abstracted problem has no solutiowgesstop reportinge = a,

y = b, andz = b as an optimal solution for the initial fuzzy problem.

5 Experimental setting and results

Our experimental setting involves a generator of fuzzy SSC&RI the implementation
of three versions of the iterative algorithm defined in thevjous section. More pre-
cisely, the three algorithms we will consider are the foilogvones:

Al : Algorithm A1l sets the cut levat to cut the current interval in two equal parts at
each abstraction step, as defined in the previous sectistop$ when a precision
of 1/10 is reached (that is, the size of the considered iaté&wmaller than or equal
to 0.1).

A2 : Algorithm A2 sets the cut levet to the semiring level of the current best solution
found. It stops when a precision of 1/10 is reached.

A3 : Algorithm A3 behaves as algorithm A2, except that it steghen no solution in
the abstract problem is found. At this point, the last solutiound is an optimal
solution of the concrete problem.

The generator generates binary fuzzy CSPs with a certaimeuof variables (n),
number of values per variable (m), density (d, which is thee@etage of constraints
over the maximum possible number) and tightness (that ieepéage of tuples with
preference 0, denoted by t). For each set of parameters, meraje three instance
problems, and we show the mean result on them.

In all our experiments, which have been performed on a Pen8urocessor at
850 MHz, we solve concrete fuzzy CSPs via Conflex [7] and, iwithe abstraction-
based algorithms, we solve their abstracted boolean versia Conflex as well. Since



Conflex is especially designed to solve fuzzy CSPs, it hagsmrarhead when solving
classical CSPs. Thus we may imagine that by using a solvdrdiolean CSPs we may
get a better performance for the proposed algorithms.

Conflex solves fuzzy constraint problems by using a branchtaund approach,
combined with constraint propagation. Moreover, it allavgers to set a threshold (be-
tween 0 and 1) which is used to disregard those solutionswaities below the thresh-
old (and thus also to perform pruning in the search tree).

AVs. C, n=25, m=5, tightness=10 AVs. C, n=25, m=5, tightness=30

500 -

400 -

ec/100)
ec/100)

300 -

Time (st
Time (st

200 -

100

ec/100)

Time (st

Fig. 7: Time for algorithms A and C, tightness 10%, 30% and 50%.

We start our tests by comparing algorithm Al to Conflex. Féglishows the time
needed to find an optimal solution, or to discover that notamilexists, for both Al
(denoted by A in this pictures since it is the only abstractimsed algorithm) and
Conflex (denoted b{), with a varying density over the x axis, and varying tiglgme
in the three figures (t=10,30 and 50). The number of variabléged to 25, while the
domain size is 5. For these experiments, we set the initiestiold 0.01 for algorithr@
(thus not much pruning is possible initially because of tireshold), and the initial cut
level to 0.5. The filled points denote problems with solusiowhile the empty points
denote problems with no solution.

The graphs show very clearly that, in the presence of saistimethod Al is better,
while Conflex is more convenient when there is no solutionis T predictable: in



fact, the iterative algorithm A1, in presence of no solutieould nevertheless continue
shrinking the interval until the desired precision.

Avs. C: m=4, d=50, t=10 Avs. C: m=4, d=50, =50

ec/100)
g
8
ec/100)

Time (st
Time (st

Number of variables Number of variables

Fig. 8: Time for A and C, varying number of variables, tightness 10%509d.

Let us now see what happens when the number of variablesvatie results are
shown in Figure 8, where the x axis shows the number of vaaldensity is set to
50%, while tightness varies (10% and 50 %). Again, the tholesin C is 0.01 and
the initial cut level is 0.5. The graphs show again that thstraletion-based method
is convenient in solving problems with solutions, while tassical method (that is,
Conflex in our experiments) is better when there is no satutio

One could argue that a threshold of 0.01 given to Conflex isra lvad situation
for this algorithm, since it cannot perform almost any pngnbecause of such a low
threshold. However, it has to be noticed that, if we give aghold which is higher than
the value of the optimal solution, then Conflex would not fihd bptimal solutions.
Nevertheless, we run some experiments with different Huolels.

N=20, m=5, d=30

(sec/100)

Time.

. . . . .
10 15 20 25 30 35 40
Tightness

Fig. 9: Time for A and C (with varying threshold), density 30%.



Figure 9 shows the time needed by Conflex with different tiokts (from 0.1 to
the first threshold which generates no solution) in diffedEnsity/tightness scenarios.
We can see that algorithm Al has a balanced performance \eetightness varies,
while Conflex, as predictable, behaves better when thethtblé s close to the value of
the optimal solution (which can be deduced by the first tholestvhich generates no
solution). Therefore, if we can guess a threshold whichdseto the optimal solution
value, then usin@ is better. However, in absence of this information, we stioather
use the abstraction-based method, which gives a good pefae in all situations.

A:n=25, m=5, t=10

A:n=25, m=5, t=30
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Fig. 10: Time for A, different initial cut levels, tightness 10%, 30%, a0&6

We may also wonder about the influence of the initial cut lewdlich up to now
has always been 0.5, over the behaviour of the iterativeatigin method. Figures 10
shows the time needed for method Al when tightness, deasityinitial cut level vary.
It is easy to see that, with high tightness and density, ietsdp to set a low initial cut
level. This is probably because a high tightness and densitglly imply low values for
the optimal solutions, thus starting with a high cut levelddogenerate more iterations
to get down to the interval containing the optimal solutid@any.

We now pass to consider the other two variants of the origihairaction algorithm:
A2 and A3. Figure 11 shows the time needed to find an optimatisol, or to discover
that no solution exists, for both the iterative algorithnis, A2, and A3, and C, with a
varying density over the x axis, an tightness t = 10%. The remnbvariables is fixed to
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Fig. 11:

ALA2,A3 vs. C, n=25, m=5, tightness=10

Density

Time for algorithms A1, A2, A3, and C, tightness 10%.

25 and the domain size is 5. For these experiments, we sefas @ initial threshold
of 0.01 in C and an initial cut level of 0.5. The graphs show fabgorithm A1, A2, and
A3 have similar performance, and all of them are better thawh€n the tightness is
not too high. With high tightness, algorithm A3 is worse tt@nin fact, the iterative
algorithm A3 would spend more time in shrinking the intesvahtil a precise solution

is found.

Time (sec/100)
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Fig. 12: Time for A1, A2, A3, and C, varying number of variables, tigiss 10%.

Let us now compare C to the iterative abstraction algoritlrhen the number of
variables varies (over the x axis). Density is set to 50%httigss to 10%, and threshold
t0 0.01. The results are shown in Figure 12. Again, the grapbe that the abstraction-

based methods are

convenient in solving problems withisolsit We also notice how

algorithm A2 is better than A1 when the number of variableséase.
The next experiment shows the comparison of Al, A2, and A8 @itover com-
binations of densities and tightnesses which generatelyrmstblems with solutions.
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Fig. 13: Time for A1, A2, A3, and C, density 70%, tightness 10%.

Figure 13 shows the results for problems with density 70%béfere, algorithms Al
and A2 are better than C. We recall that algorithm A3 alwaydsfian exact solution,
whilst method Al only stops when the desired precision ishred.

Summarizing, we can learn the following lessons from thasedxperiments:

— With a small number of variables (25):
e A2 is more expensive than Al; therefore, it is not worthedge the value of
the abstract solutions to decide the next cut level;
e A3is more expensive than Al, but it obtains an optimal sofytnot an interval
where optimal solutions are contained.
— As the number of variables increases:
e A2 is less expensive than Al,;
e A3 is more expensive but still convenient w.r.t. C when tigd#s is not very
high.

6 Related Work

Besides Conflex, there exist other systems which allow teessbft constraints in gen-
eral and thus also fuzzy constraints.

One is the CLP(FD,S) [9] language, which is a constraintdggbgramming lan-
guage where the underlying constraint solver can handtecenstraints. In particular,
CLP(FD,S) is a language for modeling and solving semiringédal constraints. The
programmer can specify the semiring to be used, thus cgeatapecific instance of the
language, which can handle soft constraints over that sgmiWhen the semiring to
be used has an idempotent combination operator, like ftamies for fuzzy CSPs, local
propagation techniques are used in the solution processhwbased on a branch and
bound approach.

Another one is the Constraint Handling Rules (CHR) [8] syst€HR is a high
level formalism to specify constraint solvers and prop@agaalgorithms. It has been
originally designed to model and solve classical constsalwut recently [4] it has been
extended to handle also semiring-based soft constraihis €ktension solves soft con-
straints by performing local propagation (like node andamesistency), embedded in



one of the two available complete solvers, based on dynaragramming and branch
and bound, respectively.

In the experimental work reported in this paper, we did ngilement any specific
propagation technique or solver: we just solved fuzzy caidt problems by using
several times the Conflex solver on classical constrainblpros, and we compared
this method to using Conflex directly on the given fuzzy peoil For this reason, our
results are not directly comparable with [9] or [4].

However, we can try to give an indirect comparison of our itesuth the CLP(FD,S)
system. In fact, in [9] the Conflex system is compared with (AIRS) when solving
fuzzy CSPs. The results shown in [9] show that CLP(FD,S) is 8 times faster than
the Conflex system. Our implementation, which is very ngdezforms 3 times better
than Conflex in average. Thus, we are comparable to CLP(FRI%9h is an optimized
system for soft constraints. We plan to implement local pgagion techniques during
the abstraction steps. We believe that this will burst théopmance of our technique,
and make it more convenient than CLP(FD,S). We notice howtiag CLP(FD,S) is
unfortunately not maintained any longer, thus it will befidiflt to make a fair and
complete comparison.

7 Conclusions and future work

We have run several experiments to study the behavior of tveesions of an iterative
abstraction-based algorithm to solve fuzzy CSPs. The negisoh learnt from these
experiments is that, when we work with problems for which &g guess the existence
of some solutions, the abstraction methods are more cawverihis holds also when
we don’t have any information on the value of the optimal sohs. Among the three
versions of the algorithm, the first two (A1 and A2) are thetlme®es. However, since
A2 always finds a solution and not an approximation of it, tbi®e chosen.

The iterative abstraction methodology we have tested Ipodsiising and suitable
to solve fuzzy CSPs. We recall that our experiments used &ofdl solving both the
concrete fuzzy problem instances and also the abstract&oanes. So we may guess
that by using a classical boolean CSP solver to solve theaabsersion, the abstraction
method would result even more convenient.

Our results do not say anything about the convenience of etinadology on other
classes of soft constraints. We plan to study the applitgbil the abstraction method-
ology to solve also other classes of soft CSPs. It would kerésting also to study the
interaction between the described solving methodologgdbam abstraction and the
notion of global constraints.
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