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Abstract. Soft constraints are very flexible and expressive. However, they may
also be very complex to handle. For this reason, it may be convenient in several
cases to pass to an abstract version of a given soft problem, and thenbring some
useful information from the abstract problem to the concrete one. This will hope-
fully make the search for a solution, or for an optimal solution, of the concrete
problem, faster.
In this paper we review the main concepts and properties of our abstraction frame-
work for soft constraints, and we show some experimental results of itsapplica-
tion to the solution of fuzzy constraints.

1 Introduction
Soft constraints allow to model faithfully many real-life problems, especially those
which possess features like preferences, uncertainties, costs, levels of importance, and
absence of solutions. Formally, a soft constraint problem (SCSP) is just like a classi-
cal constraint problem (CSP), except that each assignment of values to variables in the
constraints is associated to an element taken from a set (usually ordered). These ele-
ments will then directly represent the desired features, since they can be interpreted, for
example, as levels of preference, or costs, or levels of certainty.

SCSPs are more expressive than classical CSPs, but they are also more difficult to
process and to solve, mainly because they are optimization rather than satisfaction prob-
lems. For this reason, it may be convenient to work on a simplified version of the given
problem, trying however to not loose too much information. In [3, 1, 2], an abstraction
framework for soft constraints has been proposed, where, from a given SCSP, a new
simpler SCSP is generated representing an “abstraction” ofthe given one. Then, the
abstracted version is processed (that is, solved or checkedfor consistency), and some
information gathered during the solving process is broughtback to the original problem,
in order to transform it into a new (equivalent) problem easier to solve.

All this process has the main aim of finding an optimal solution, or an approximation
of it, for the original SCSP, with less time or space w.r.t. a solution process that does



not involve the abstraction phase. It is also useful when we don’t have any solver for
the class of soft problems we are interested in, but we do haveit for another class, to
which we can abstract to. In this way, we rely on existing solvers to automatically build
new solvers.

Many properties of the abstraction framework have been proven in [3]. The most
interesting one, which will be used in this paper, is that, given any optimal solution
of the abstract problem, we can find upper and lower bounds foran optimal solution
for the concrete problem. If we are satisfied with these bounds, we could just take the
optimal solution of the abstract problem as a reasonable approximation of an optimal
solution for the concrete problem.

In this paper we extend this and other results described in [3] to build a new al-
gorithm to solve the concrete problem by using abstraction steps. More in detail, we
prove that using the value of the optimal tuple in the abstract problem as a bound for
the abstraction mapping, leads to building each time new abstract problem with better
and better corresponding optimal concrete solution. When nomore solutions are found,
we can be sure that the last found optimum in the abstract problem is indeed the optimal
solution of the concrete one.

Besides devising a new solving algorithm based on such results and on the abstrac-
tion framework, we also describe the results of several experiments which show the
behavior of three variants of such algorithm over fuzzy constraint problems [7, 13, 14].
In these experiments, fuzzy problems are abstracted into classical CSPs, and solved via
iterative abstraction of the given problem in different classical CSPs. The behavior of
the three versions of our algorithm is then compared to that of Conflex, a solver for
fuzzy CSPs. This paper is an extended and improved version of[12].

2 Soft constraints
A soft constraint [5] is just a classical constraint where each instantiation of its variables
has an associated value from a partially ordered set. Combining constraints will then
have to take into account such additional values, and thus the formalism has also to
provide suitable operations for combination (×) and comparison (+) of tuples of values
and constraints. This is why this formalization is based on the concept of semiring,
which is just a set plus two operations satisfying certain properties:〈A,+,×,0,1〉.

If we consider the relation≤S over A defined asa≤S b iff a+b = b, then we have
that:

– ≤S is a partial order;
– + and× are monotone on≤S;
– 0 is its minimum and1 its maximum;
– 〈A,≤S〉 is a complete lattice and+ is its lub.

Moreover, if× is idempotent, then〈A,≤S〉 is a complete distributive lattice and×
is its glb. Informally, the relation≤S gives us a way to compare (some of the) values in
the setA. In fact, when we havea≤S b, we will say thatb is better than a. Extending
the partial order≤S among tuples of values, also a partial order among constraints is
induced.

Given a c-semiringS= 〈A,+,×,0,1〉, a finite setD (the domain of the variables),
and an ordered set of variablesV, a constraint is a pair〈de f,con〉 wherecon⊆V and
de f : D|con| → A. Therefore, a constraint specifies a set of variables (the ones incon),



and assigns to each tuple of values ofD of these variables an element of the semiring
setA. This element can then be interpreted in several ways: as a level of preference, or
as a cost, or as a probability, etc. The correct way to interpret such elements depends on
the choice of the semiring operations.

Constraints can be compared by looking at the semiring values associated to the
same tuples: Consider two constraintsc1 = 〈de f1,con〉 andc2 = 〈de f2,con〉, with |con|=
k. Thenc1 vS c2 if for all k-tuplest, de f1(t) ≤S de f2(t). The relationvS induces a par-
tial order. In the following we will also use the obvious extension of this relation to sets
of constraints, and also to problems (seen as sets of constraints).

Note that a classical CSP is a SCSP where the chosen c-semiring is:

SCSP= 〈{ f alse, true},∨,∧, f alse, true〉.

Fuzzy CSPs [7, 13, 14], which will be the main subject of this paper, can instead be mod-
eled in the SCSP framework by choosing the c-semiring:SFCSP= 〈[0,1],max,min,0,1〉.

Given two constraintsc1 = 〈de f1,con1〉 andc2 = 〈de f2,con2〉, their combination
c1⊗c2 is the constraint〈de f,con〉 defined bycon= con1∪con2 andde f(t)= de f1(t ↓con

con1
)×de f2(t ↓con

con2
). In words, combining two constraints means building a new constraint

involving all the variables of the original ones, and which associates to each tuple of
domain values for such variables a semiring element which isobtained by multiplying
the elements associated by the original constraints to the appropriate sub-tuples.

Given a constraintc= 〈de f,con〉 and a subsetI of V, theprojectionof c overI , writ-
tenc⇓I , is the constraint〈de f′,con′〉wherecon′ = con∩I andde f′(t ′)= ∑t/t↓con

I∩con=t ′ de f(t).
Informally, projecting means eliminating some variables.This is done by associating to
each tuple over the remaining variables a semiring element which is the sum of the el-
ements associated by the original constraint to all the extensions of this tuple over the
eliminated variables.

Thesolutionof a SCSP problemP= 〈C,con〉 is the constraintSol(P) = (
⊗

C)⇓con:
we combine all constraints, and then project over the variables incon. In this way we
get the constraint overcon which is “induced” by the entire SCSP. Optimal solutions
are those solutions which have the best semiring element among those associated to
solutions. The set of optimal solutions of an SCSPP will be written asOpt(P). In the
following, we will sometimes call “a solution” one tuple of domain values for all the
problem’s variables (overcon), plus its associated semiring element. Figure 1 shows an
example of fuzzy CSP and its solutions.

a b b ... min(1,1) = 1

a b a ... min(1,1) = 1

a a b ... min(0,0.1) = 0

a a a ... min(0,0.3) = 0

Solutions:

x

b a a ... min(0.5,0.3) = 0.3
a b b ... 1

a b a ... 1

Best solutions:

b b b ... min(0.7,1) = 0.7

b b a ... min(0.7,1) = 0.7

b a b ... min(0.5,0.1) = 0.1b b ... 1

y z

b a ... 1

a b ... 0.1

a a ... 0.3

b b ... 0.7

b a ... 0.5

a b ... 1

a a ... 0

Fig. 1: A fuzzy CSP and its solutions.



Consider two problemsP1 andP2. ThenP1 vP P2 if Sol(P1)vS Sol(P2). If P1 vP P2

andP2 vP P1, then they have the same solution, thus we say that they are equivalent and
we writeP1 ≡ P2.

SCSP problems can be solved by extending and adapting the technique usually used
for classical CSPs. For example, to find the best solution we could employ a branch-and-
bound search algorithm (instead of the classical backtracking), and also the successfully
used propagation techniques, like arc-consistency [11], can be generalized to be used
for SCSPs. The detailed formal definition of propagation algorithms (sometimes called
alsolocal consistencyalgorithms) for SCSPs can be found in [5]. For the purpose of this
paper, what is important to say is that apropagation ruleis a function which, taken an
SCSP, solves a subproblem of it. It is possible to show that propagation rules are idem-
potent, monotone, and intensive functions (over the partial order of problems) which do
not change the solution set. Given a set of propagation rules, a local consistency algo-
rithm consists of applying them in any order until stability. It is possible to prove that
local consistency algorithms defined in this way have the following properties if the
multiplicative operation of the semiring is idempotent: equivalence, termination, and
uniqueness of the result.

Thus we can notice that the generalization of local consistency from classical CSPs
to SCSPs concerns the fact that, instead of deleting values or tuples, obtaining local
consistency in SCSPs means changing the semiring values associated to some tuples
or domain elements. The change always brings these values towards the worst value
of the semiring, that is, the0. Thus, it is obvious that, given an SCSP problemP and
the problemP′ obtained by applying some local consistency algorithm toP, we have
P′ vS P.

3 Abstraction

The main idea [6] is to relate the concrete and the abstract scenarios by a pair of func-
tions, theabstractionfunctionα and theconcretizationfunctionγ, which form a Galois
connection.

Let (C ,v) and (A ,≤) be two posets (the concrete and the abstract domain). A
Galois connection〈α,γ〉 : (C,v) 
 (A,≤) is a pair of mapsα : C → A andγ : A → C

such that 1.α and γ are monotonic, 2. for eachx ∈ C ,x v γ(α(x)) and 3. for each
y∈ A ,α(γ(y))≤ y. Moreover, a Galois insertion (ofA in C ) 〈α,γ〉 : (C ,v) 
 (A ,≤) is
a Galois connection whereα · γ is the identity overA , that is,IdA .

An example of a Galois insertion can be seen in Figure 2. Here,the concrete lattice
is 〈[0,1],≤〉, and the abstract one is〈{0,1},≤〉. Functionα maps all real numbers in
[0,0.5] into 0, and all other integers (in(0.5,1]) into 1. Functionγ maps 0 into 0.5 and
1 into 1.

Consider a Galois insertion from(C ,v) to (A ,≤). Then, ifv is a total order, so is
≤.

Most of the times it is useful, and required, that the abstract operators show a certain
relationship with the corresponding concrete ones. This relationship is calledlocal cor-
rectness. Let f : C n → C be an operator over the concrete lattice, and assume thatf̃ is its
abstract counterpart. Theñf is locally correct w.r.t.f if ∀x1, . . . ,xn ∈ C , f (x1, . . . ,xn) v
γ( f̃ (α(x1), . . . ,α(xn))).
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Fig. 2: A Galois insertion.

3.1 Abstracting soft CSPs

The main idea of the abstraction framework presented in [3] is very simple: we just
want to pass, via the abstraction, from an SCSPP over a certain semiringS to another
SCSPP̃ over the semiring̃S, where the lattices associated toS̃ andS are related by a
Galois insertion as shown above.

Consider theconcreteSCSP problemP = 〈C,con〉 over semiringS, where
– S= 〈A,+,×,0,1〉 and
– C = {c0, . . . ,cn} with ci = 〈coni ,de fi〉 andde fi : D|coni | → A;

we define anabstractSCSP problem̃P = 〈C̃,con〉 over the semiring̃S, where
– S̃= 〈Ã,+̃,×̃, 0̃, 1̃〉;
– C̃ = {c̃0, . . . , c̃n} with c̃i = 〈coni , ˜de fi〉 and ˜de fi : D|coni | → Ã;
– if L = 〈A,≤〉 is the lattice associated toSandL̃ = 〈Ã,≤̃〉 the lattice associated tõS,

then there is a Galois insertion〈α,γ〉 such thatα : L → L̃;
– ×̃ is locally correct with respect to×.

Notice that the kind of abstraction we consider in this paperdoes not change the
structure of the SCSP problem. The only thing that is changedis the semiring.

Notice also that, given two problems over two different semirings, there may exist
zero, one, or also many abstractions (that is, a Galois insertion between the two semir-
ings) between them. This means that given a concrete problemoverS and an abstract
semiringS̄, there may be several ways to abstract such a problem overS̄.

Example 1.As an example, consider any SCSP over the semiring for optimization
〈R −∪{−∞},max,+,−∞,0〉 and suppose we want to abstract it onto the semiring for
fuzzy reasoning〈[0,1],max,min,0,1〉. In other words, instead of computing the max-
imum of the sum of all costs (which are negative reals), we just want to compute the
maximum of their minimum value, and we want to normalize the costs over[0,1]. No-
tice that the abstract problem has an idempotent× operator (which is the min). This
means that in the abstract framework we can perform local consistency over the prob-
lem in order to find inconsistencies.

Example 2.Another example is the abstraction from the fuzzy semiring to the classical
one, which will be widely used in the rest of this paper:

SCSP= 〈{0,1},∨,∧,0,1〉.



Here functionα maps each element of[0,1] into either 0 or 1. For example, one could
map all the elements in[0,x] onto 0, and all those in(x,1] onto 1, for some fixedx.
Figure 2 represents this example withx = 0.5.

3.2 Properties of the abstraction

We will now summarize the main results about the relationship between a concrete
problem and an abstraction of it.

Let us consider the scheme depicted in Figure 3. Here and in the following pictures,
the left box contains the lattice of concrete problems, and the right one the lattice of
abstract problems. The partial order in each of these lattices is shown via dashed lines.
Connections between the two lattices, via the abstraction and concretization functions,
is shown via directed arrows. In the following, we will callS= 〈A,+,×,0,1〉 the con-
crete semiring and̃S= 〈Ã,+̃,×̃, 0̃, 1̃〉 the abstract one. Thus we will always consider a
Galois insertion〈α,γ〉 : 〈A,≤S〉 
 〈Ã,≤S̃〉.

abstract problemsconcrete problems

P

α
γ

α

γ( (P))α
α (P) = P

~

Fig. 3: The concrete and the abstract problem.

In Figure 3,P is the starting SCSP problem. Then with the mappingα we getP̃ =
α(P), which is an abstraction ofP. By applying the mappingγ to P̃, we get the problem
γ(α(P)). Let us first notice that these two problems (P andγ(α(P))) are related by a
precise property:

PvS γ(α(P)).

Notice that this implies that, if a tuple inγ(α(P)) has semiring value0, then it
must have value0 also inP. This holds also for the solutions, whose semiring value
is obtained by combining the semiring values of several tuples. Therefore, by passing
from P to γ(α(P)), no new inconsistencies are introduced. However, it is possible that
some inconsistencies are forgotten.

Example 3.Consider the abstraction from the fuzzy to the classical semiring, as de-
scribed in Figure 2. Then, if we callP the fuzzy problem in Figure 1, Figure 4 shows
the concrete problemP, the abstract problemα(P), and its concretizationγ(α(P)). It is
easy too see that, for each tuple in each constraint, the associated semiring value inP is
lower than or equal to that inγ(α(P)).

If the abstraction preserves the semiring ordering (that is, applying the abstraction
function and then combining gives elements which are in the same ordering as the
elements obtained by combining only), then the abstractionis calledorder-preserving,
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Fig. 4: An example of the abstraction fuzzy-classical.

and in this case there is also an interesting relationship between the set of optimal
solutions ofP and that ofα(P). In fact, if a certain tuple is optimal inP, then this
same tuple is also optimal inα(P).

Example 4.Consider again the previous example. The optimal solutionsin P are the
tuples〈a,b,a〉 and〈a,b,b〉. It is easy to see that these tuples are also optimal inα(P).
In fact, this is a classical constraint problem where the solutions are tuples〈a,b,a〉,
〈a,b,b〉, 〈b,b,a〉, and〈b,b,b〉.

Thus, if we want to find an optimal solution of the concrete problem, we could find
all the optimal solutions of the abstract problem, and then use them on the concrete
side to find an optimal solution for the concrete problem. Assuming that working on
the abstract side is easier than on the concrete side, this method could help us find an
optimal solution of the concrete problem by looking at just asubset of tuples in the
concrete problem.

Another important property, which holds for any abstraction, concerns computing
bounds that approximate an optimal solution of a concrete problem. In fact, any optimal
solution, sayt, of the abstract problem, say with value ˜v, can be used to obtain both an
upper and a lower bound of an optimum inP. In fact, we can prove that there is an
optimal solution inP with value betweenγ(ṽ) and the value oft in P [3, Theorem 29].

Thus, if we think that approximating the optimal value with avalue within these two
bounds is satisfactory, we can taket as an approximation of an optimal solution ofP.
Notice that this theorem does not need the order-preservingproperty in the abstraction,
thus any abstraction can exploit this result.

Example 5.Consider again the previous example. Now take any optimal solution of
α(P), for example tuple〈b,b,b〉. Then the above result states that there exists an optimal
solution ofP with semiring valuev between the value of this tuple inP, which is 0.7,
andγ(1) = 1. In fact, there are optimal solutions with value 1 inP.



However, a better lower bound can be computed in the special case of an abstraction
where the semirings are totally ordered and have idempotentmultiplicative operations.
In this case, any abstraction is order-preserving. In fact,consider an abstraction between
totally ordered semirings with idempotent multiplicativeoperations. Given an SCSP
problemP overS, consider an optimal solution ofα(P), sayt, with semiring value ˜v in
α(P). Consider also the setV = {vi | α(vi) = ṽ}. Then there exists an optimal solution
t̄ of P, say with value ¯v, such thatmin(V) ≤ v̄≤ max(V).

3.3 New Properties

When dealing with the mapping from fuzzy to classical CSPs we can also prove other
important results. Consider an abstraction that maps all the semiring values better than
the fuzzy valueα into 1 (that is, the booleantrue) and all the fuzzy values worse than
or equal thanα to 0 (that is, the boolean valuef alse). Let us also callP the fuzzy CSP
andα(P) the corresponding abstracted CSP. Then we can prove that:

Given an SCSP problemP over the fuzzy semiring, and the corresponding abstract
problemα(P) over the boolean semiring, obtained by mapping all values lower than or
equal thanα to f alseand all the values bigger thanα to true.

– if α(P) has no solution, problemPhas an optimal solution with an associated semir-
ing fuzzy value worse than or equal thanα;

– if P has a solution tuplet with associated semiring levelα, andα(P) has no solu-
tion, tuplet is an optimal solution forP.
These properties will be very useful in devising the three versions of the abstraction-

based algorithm we will define in the next section.

4 Solving by iterative abstraction
The results of the previous section can be the basis for a constraint solving method, or
more precisely a family of methods, where abstraction will be used to compute or to
approximate the solution of a concrete problem.

Here we will focus on the version of this solving method whichapplies to fuzzy
CSPs, because our experimental results will focus on this class of soft CSPs. The gen-
eral version of the algorithm is given in [3].

A method to solve a fuzzy CSP is to reduce the fuzzy problem to asequence of
classical (boolean) CSPs to be solved by a classical solver.This method has been for
instance recently implemented in the JFSolver [10].

Let us formalize this algorithm within our abstraction framework. We want to ab-
stract a fuzzy CSPP = 〈C,con〉 into the boolean semiring. Let us consider the abstrac-
tion α which maps the values in [0,0.5] to 0 and the values in ]0.5,1]to 1, which is
depicted in Figure 2. Let us now consider the abstract problem P̃ = α(P) = 〈C̃,con〉.
There are two possibilities, depending whetherα(P) has a solution or not.

1. If α(P) has a solution, then (by the previous results)P has an optimal solution̄t with
valuev̄, such that 0.5≤ v̄≤ 1. We can now further cut this interval in two parts, e.g.
[0.5,0.75] and ]0.75, 1], and consider now the abstractionα′ which maps the values
in [0,0.75] to 0 and the values in ]0.75,1] to 1, which is depicted in Figure 5. If
α′(P) has a solution, thenP has a corresponding optimal solution with fuzzy value
between 0.75 and 1, otherwise the optimal solution has fuzzyvalue between 0.5



and 0.75, because we know from the previous iteration that the solution is above
0.5. If tighter bounds are needed, one could further iteratethis process until the
desired precision is reached.

0

1

α

γ1

0

0.75

α

γ

’

’

Fig. 5: An abstraction from the fuzzy semiring to the boolean one, cut level = 0.75.

2. If α(P) has no solution, then (by the previous results)P has an optimal solution̄t
with valuev̄, such that 0≤ v̄≤ 0.5. We can now further cut this interval in two parts,
e.g. [0,0.25] and ]0.25,0.5[ , and consider now the abstraction α′′ which maps the
values in [0,0.25] to 0 and the values in ]0.25,1] to 1, which is depicted in Figure
6. If α′′(P) has a solution, thenP has a corresponding optimal solution with fuzzy
value between 0.25 and 0.5, otherwise the optimal solution has fuzzy value between
0 and 0.25. And so on and so forth.

0

1

α

1

0

0.25 γ

α

γ

’’

’’

Fig. 6: An abstraction from the fuzzy semiring to the boolean one, cut level = 0.5.

Example 6.For example, consider again the fuzzy constraint problem and the initial
abstraction of Figure 4. This abstraction uses a cut level of0.5 and generates the clas-
sical constraint problem in the right part of Figure 4. This problem has solutions (for
example,x = a, y = b, andz= a), thus the algorithm above sets the new cut level at
0.75. The new abstracted problem is still soluble: for example, the assignment above is
still a solution. Thus the set the new cut level to 0.875. Again, the abstracted problem
has solutions (it is actually the same problem as before), sowe set the new cut level
to 0.9375. The abstracted problem has again solutions. If wehave reached the desired



precision (assume that we are happy with a tolerance of 0.1, we can conclude the al-
gorithm by reporting the existence of a solution for the initial fuzzy CSPs with value
higher than, or equal to 0.9375. More precisely, the iterative algorithm reports that there
is a solution in the interval [0.9375,1].

Observe that the dichotomy method used in this example is notthe only one that
be can used: we can cut each interval not necessarily in the middle but at any point at
will (e.g., if some heuristic method allows us to guess in which part of the semiring
the optimal solution is). The method will work as well, although the convergence rate,
and thus the performance, could be different. In particularwe can use the results of the
previous section and cut each time at levelα corresponding to the value of the tuple
t that is optimal in the abstract problem (let’s call this heuristic current best). We can
then continue this procedure until we find no solutions. At this point we are sure that
the tuplet found at the previous step is an optimal solution for the concrete problemP.

Example 7.In the example above, this version of the algorithm would work as follows.
First, the fuzzy problem is cut at level 0.5, and its abstracted version is the one at the
right in Figure 4. This problem has solutions, so we take any solution, for example
x = b, y = b, andz = b, and we compute its value in the fuzzy problem. In this case
the value is 0.7. By setting the new cut level to 0.7, the new abstracted problem has still
solutions (although tuple ¡b,b¿ between x and y has now value0), so we take any of such
solutions, sayx = a, y = b, andz= b, and we compute its value in the fuzzy problem,
which is 1. Now the new abstracted problem has no solution, sowe stop reportingx= a,
y = b, andz= b as an optimal solution for the initial fuzzy problem.

5 Experimental setting and results
Our experimental setting involves a generator of fuzzy SCSPs and the implementation
of three versions of the iterative algorithm defined in the previous section. More pre-
cisely, the three algorithms we will consider are the following ones:

A1 : Algorithm A1 sets the cut levelα to cut the current interval in two equal parts at
each abstraction step, as defined in the previous section. Itstops when a precision
of 1/10 is reached (that is, the size of the considered interval is smaller than or equal
to 0.1).

A2 : Algorithm A2 sets the cut levelα to the semiring level of the current best solution
found. It stops when a precision of 1/10 is reached.

A3 : Algorithm A3 behaves as algorithm A2, except that it stops when no solution in
the abstract problem is found. At this point, the last solution found is an optimal
solution of the concrete problem.

The generator generates binary fuzzy CSPs with a certain number of variables (n),
number of values per variable (m), density (d, which is the percentage of constraints
over the maximum possible number) and tightness (that is, percentage of tuples with
preference 0, denoted by t). For each set of parameters, we generate three instance
problems, and we show the mean result on them.

In all our experiments, which have been performed on a Pentium 3 processor at
850 MHz, we solve concrete fuzzy CSPs via Conflex [7] and, within the abstraction-
based algorithms, we solve their abstracted boolean versions via Conflex as well. Since



Conflex is especially designed to solve fuzzy CSPs, it has some overhead when solving
classical CSPs. Thus we may imagine that by using a solver forboolean CSPs we may
get a better performance for the proposed algorithms.

Conflex solves fuzzy constraint problems by using a branch and bound approach,
combined with constraint propagation. Moreover, it allowsusers to set a threshold (be-
tween 0 and 1) which is used to disregard those solutions withvalues below the thresh-
old (and thus also to perform pruning in the search tree).
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Fig. 7: Time for algorithms A and C, tightness 10%, 30% and 50%.

We start our tests by comparing algorithm A1 to Conflex. Figure 7 shows the time
needed to find an optimal solution, or to discover that no solution exists, for both A1
(denoted by A in this pictures since it is the only abstraction-based algorithm) and
Conflex (denoted byC), with a varying density over the x axis, and varying tightness
in the three figures (t=10,30 and 50). The number of variablesis fixed to 25, while the
domain size is 5. For these experiments, we set the initial threshold 0.01 for algorithmC
(thus not much pruning is possible initially because of the threshold), and the initial cut
level to 0.5. The filled points denote problems with solutions, while the empty points
denote problems with no solution.

The graphs show very clearly that, in the presence of solutions, method A1 is better,
while Conflex is more convenient when there is no solution. This is predictable: in



fact, the iterative algorithm A1, in presence of no solution, would nevertheless continue
shrinking the interval until the desired precision.
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Fig. 8: Time for A and C, varying number of variables, tightness 10% and50%.

Let us now see what happens when the number of variables varies. The results are
shown in Figure 8, where the x axis shows the number of variables. Density is set to
50%, while tightness varies (10% and 50 %). Again, the threshold in C is 0.01 and
the initial cut level is 0.5. The graphs show again that the abstraction-based method
is convenient in solving problems with solutions, while theclassical method (that is,
Conflex in our experiments) is better when there is no solution.

One could argue that a threshold of 0.01 given to Conflex is a very bad situation
for this algorithm, since it cannot perform almost any pruning because of such a low
threshold. However, it has to be noticed that, if we give a threshold which is higher than
the value of the optimal solution, then Conflex would not find the optimal solutions.
Nevertheless, we run some experiments with different thresholds.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10  15  20  25  30  35  40

T
im

e 
(s

ec
/1

00
)

Tightness

N=20, m=5, d=30

C, alpha = 0.01
C, alpha = 0.1
C, alpha = 0.2
C, alpha = 0.3

A

Fig. 9: Time for A and C (with varying threshold), density 30%.



Figure 9 shows the time needed by Conflex with different thresholds (from 0.1 to
the first threshold which generates no solution) in different density/tightness scenarios.
We can see that algorithm A1 has a balanced performance when the tightness varies,
while Conflex, as predictable, behaves better when the threshold is close to the value of
the optimal solution (which can be deduced by the first threshold which generates no
solution). Therefore, if we can guess a threshold which is close to the optimal solution
value, then usingC is better. However, in absence of this information, we should rather
use the abstraction-based method, which gives a good performance in all situations.
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Fig. 10: Time for A, different initial cut levels, tightness 10%, 30%, and 60%.

We may also wonder about the influence of the initial cut level, which up to now
has always been 0.5, over the behaviour of the iterative abstraction method. Figures 10
shows the time needed for method A1 when tightness, density,and initial cut level vary.
It is easy to see that, with high tightness and density, it is better to set a low initial cut
level. This is probably because a high tightness and densityusually imply low values for
the optimal solutions, thus starting with a high cut level would generate more iterations
to get down to the interval containing the optimal solution,if any.

We now pass to consider the other two variants of the originalabstraction algorithm:
A2 and A3. Figure 11 shows the time needed to find an optimal solution, or to discover
that no solution exists, for both the iterative algorithms A1, A2, and A3, and C, with a
varying density over the x axis, an tightness t = 10%. The number of variables is fixed to
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Fig. 11: Time for algorithms A1, A2, A3, and C, tightness 10%.

25 and the domain size is 5. For these experiments, we set as before an initial threshold
of 0.01 in C and an initial cut level of 0.5. The graphs show howalgorithm A1, A2, and
A3 have similar performance, and all of them are better than Cwhen the tightness is
not too high. With high tightness, algorithm A3 is worse thanC. In fact, the iterative
algorithm A3 would spend more time in shrinking the intervals until a precise solution
is found.
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Let us now compare C to the iterative abstraction algorithmswhen the number of
variables varies (over the x axis). Density is set to 50%, tightness to 10%, and threshold
to 0.01. The results are shown in Figure 12. Again, the graphsshow that the abstraction-
based methods are convenient in solving problems with solutions. We also notice how
algorithm A2 is better than A1 when the number of variables increase.

The next experiment shows the comparison of A1, A2, and A3 with C over com-
binations of densities and tightnesses which generate mostly problems with solutions.
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Figure 13 shows the results for problems with density 70%. Asbefore, algorithms A1
and A2 are better than C. We recall that algorithm A3 always finds an exact solution,
whilst method A1 only stops when the desired precision is reached.

Summarizing, we can learn the following lessons from these last experiments:

– With a small number of variables (25):
• A2 is more expensive than A1; therefore, it is not worthed to use the value of

the abstract solutions to decide the next cut level;
• A3 is more expensive than A1, but it obtains an optimal solution, not an interval

where optimal solutions are contained.
– As the number of variables increases:

• A2 is less expensive than A1;
• A3 is more expensive but still convenient w.r.t. C when tightness is not very

high.

6 Related Work
Besides Conflex, there exist other systems which allow to solve soft constraints in gen-
eral and thus also fuzzy constraints.

One is the CLP(FD,S) [9] language, which is a constraint logic programming lan-
guage where the underlying constraint solver can handle soft constraints. In particular,
CLP(FD,S) is a language for modeling and solving semiring-based constraints. The
programmer can specify the semiring to be used, thus creating a specific instance of the
language, which can handle soft constraints over that semiring. When the semiring to
be used has an idempotent combination operator, like for instance for fuzzy CSPs, local
propagation techniques are used in the solution process, which is based on a branch and
bound approach.

Another one is the Constraint Handling Rules (CHR) [8] system. CHR is a high
level formalism to specify constraint solvers and propagation algorithms. It has been
originally designed to model and solve classical constraints, but recently [4] it has been
extended to handle also semiring-based soft constraints. This extension solves soft con-
straints by performing local propagation (like node and arcconsistency), embedded in



one of the two available complete solvers, based on dynamic programming and branch
and bound, respectively.

In the experimental work reported in this paper, we did not implement any specific
propagation technique or solver: we just solved fuzzy constraint problems by using
several times the Conflex solver on classical constraint problems, and we compared
this method to using Conflex directly on the given fuzzy problem. For this reason, our
results are not directly comparable with [9] or [4].

However, we can try to give an indirect comparison of our results with the CLP(FD,S)
system. In fact, in [9] the Conflex system is compared with CLP(FD,S) when solving
fuzzy CSPs. The results shown in [9] show that CLP(FD,S) is 3 to 6 times faster than
the Conflex system. Our implementation, which is very naive,performs 3 times better
than Conflex in average. Thus, we are comparable to CLP(FD,S), which is an optimized
system for soft constraints. We plan to implement local propagation techniques during
the abstraction steps. We believe that this will burst the performance of our technique,
and make it more convenient than CLP(FD,S). We notice however that CLP(FD,S) is
unfortunately not maintained any longer, thus it will be difficult to make a fair and
complete comparison.

7 Conclusions and future work
We have run several experiments to study the behavior of three versions of an iterative
abstraction-based algorithm to solve fuzzy CSPs. The main lesson learnt from these
experiments is that, when we work with problems for which we can guess the existence
of some solutions, the abstraction methods are more convenient. This holds also when
we don’t have any information on the value of the optimal solutions. Among the three
versions of the algorithm, the first two (A1 and A2) are the best ones. However, since
A2 always finds a solution and not an approximation of it, it isto be chosen.

The iterative abstraction methodology we have tested lookspromising and suitable
to solve fuzzy CSPs. We recall that our experiments used Conflex for solving both the
concrete fuzzy problem instances and also the abstract boolean ones. So we may guess
that by using a classical boolean CSP solver to solve the abstract version, the abstraction
method would result even more convenient.

Our results do not say anything about the convenience of our methodology on other
classes of soft constraints. We plan to study the applicability of the abstraction method-
ology to solve also other classes of soft CSPs. It would be interesting also to study the
interaction between the described solving methodology based on abstraction and the
notion of global constraints.
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