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Abstract constraints are satisfied. Constraint satisfaction is applica-
ble to a wide variety of problems arising in scheduling, de-
The partial constraint satisfaction paradigm focuses on sign, configuration, machine vision, temporal reasoning and
solving relaxations of problems that either do not admit planning [13].
solutions, or that are either impractical or impossible to Many extensions to the CSP paradigm have been pro-
solve completely. The semiring-based framework for softposed. In the context of this paper two of these exten-
constraints is a unifying model for a variety of extensions sions are particularly relevant: partial constraint satisfac-
of the constraint satisfaction formalism. For example, the tion [6, 7] and the semiring-based framework for soft con-
semiring-based framework can represent weighted, fuzzystraints [1, 3, 4].
probabilistic and set-based constraint satisfaction prob-  Partial constraint satisfaction involves finding values for
lems. In this paper, we discuss how the semiring-baseda subset of the variables that satisfy a subset of the con-
framework for soft constraints can be used to model partial straints [7]. It can also be viewed as involving the weak-
constraint satisfaction problems. We show how the semir-ening of a problem in order to accept more value combi-
ing framework can be used to capture a notion of distance nations. Essentially, in partial constraint satisfaction we fo-
between a solution and a problem based on the known dis-cus on relaxing a problem so that a satisfactory solution can
tance metrics used in the partial constraint satisfaction lit- be found. As we shall see in Section 2, three distance met-
erature. These solution-problem distance metrics can berics were defined in the original paper on partial constraint
seen as providing lower-bounds on the distance between asatisfaction [7] that define various ways in which a problem
problem and its relaxation. can be relaxedd The most popular of these distance met-
rics is known as Max-CSP: find an assignment of values to
the variables that maximizes the number of constraints that
. are satisfied [8, 10, 14].
1. Introduction Some work already exists that relates the partial con-
straint satisfaction paradigm to soft constraints. Schteat.
fave defined a mapping for the Max-CSP distance metric to
the valued constraint satisfaction framework for soft con-
traints [12]. We could easily combine this mapping with
he known relationship between valued constraint satisfac-
tion and the semiring-based framework, described in [2], to
obtain a possible mapping from Max-CSPs to Soft-CSPs.
However, this just gives us one form of partial constraint

an important paradigm in Artificial Intelligence [9]. Infor-

mally, a constraint satisfaction problem (CSP) is defined by
a set of variables, each of which has a corresponding set o
possible values called its domain, and the task is to find a
value for each variable from its domain so that the set of
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lem space. Therefore, partial constraint satisfaction can be
viewed as search through a problem space.
{ (cordovans, gray), The partial-order defined over the problem sp&eis
reskers denims) | defined in terms of the set of solutions to problems. Specif-
ically, P, < Ps iff sols(P1) 2 sols(Ps), wheresols(P)
denotes the set of solutions to probleth We can read
P, < P, as“P; is obtained by weakening the constraints in
P,"”. When a problem is weakened, we mean that the con-
straints in the problem allow more consistent assignments
Figure 1. Example of an over-constrained and, as a consequence, the set of solutions may increase.
problem. The manner in which a problem is weakened depends on
the distance metric)/, that is used. A number of metrics
have been proposed in the literature: solution subset dis-
satisfaction. In this paper we present a complete and uni-tance, augmentation distance and Max-CSP distance. We

form treatment of the three distance metrics underpinning Shall discuss each briefly in turn below.

partial constraint satisfaction, as presented in the literature.Solution Subset Distance Fhis distance metric is defined
as the number of solutions not shared between problems

2. Partial Constraint Satisfaction and P’. When P’ < P this metric reflects the number of
solutions that have been added in order to relax proldfem

To introduce partial constraint satisfaction, consider the Augmentation Distance —This distance metric is slightly
problem presented in Figure 1, known as the Robot Dress-different to solution subset distance. In fact, this distance
ing Problem [7]. The nodes in this graph represent the threemetric counts the number of constraint values that are not
variables —shoes, shirt and slacks — representing the  shared by problem# and P’. This represents the number

items of clothing that must be chosen. Each node is also la-of augmentations to the constraints in problErthat are re-

beled with a set of values for the corresponding variable, i.e. quired to reach its relaxatioR’.
the domain of each yarlable. The arcs.tha.t connect the Va”'Max-CSP Distance —This is the most well-studied dis-
ables are labeled with the legal combinations of values for ; . - .

; . . . tance metric of the three. It involves finding a solution that
each of the variables, i.e. the constraints between the vari-

ables. By analysis, we can see that this problem does not ad\_nolates the minimum number of constraints in the prob-

mit any solutions, i.e. it is over-constrained. Therefore, we lsef[:gintgfhgte;rrg \l/?orlla(?[rergally defined as the number of con-
need to find a “pragmatic” solution to this problem, which The abjective of relaxing a problem is to find more so-
may involve tolerating at least one constraint being violated; , . . .
or buying some more shoes, shirts or slacks; or acceptingwtlons' However, .relaxmg a problem QOes not always give
that certain clothing combinations are acceptable. This is 1>¢ to more solutions. It is qw(e pOSS.Ib|e that many relax-
the typical problem we face in partial constraint satisfac- ations of a problem do not admit solutions.
tion. The various options we mentioned above for overcom- .
ing this problem are forms of constraint relaxation. 3. Soft Constraints

Taking a more formal view, Freuder and Wallace [7] o .
define a partial constraint satisfaction problem as a triple: ~ S€veral formalizations of the conceptsft constraints
(P,U), (PS8, <), (M, (N,S))). Informally, the problem is are currently avgll_able. In the foIonvmg, we refer to the one
defined in terms of an initial constraint satisfaction problem Pased on c-semirings [1, 3, 4], which can be shown to gen-
P, a set of “universesl representing the possible values ©ralize and express many of the others [2]. A soft constraint
for each of the variables iR, a problem spac®s contain- may be seen as a con;tralnt where each |n§tant|at|on of its
ing P and a partial-order over problema/ is a distance var_lables has an associated value from a partially ordered set
metric on that space, andV, S) are necessary and suffi- which can be interpreted as a set of preference values. Com-

cient solution distances betwe@hand an acceptable solu- bining constraints will then have to take into account such
tion. additional values, and thus the formalism has also to pro-

A solutionto a partial constraint satisfaction problem can Vide suitable operations for combinatior)(and compari- -
be defined as a problef®’ from the problem spacs son (+) of _tupl_es of values and constraints. Th|s_|§ why tr_ns
along with a solution to that problem where the distance of for_mal|zat|on is based on the concept of c-semiring, which
P’ from P'is less thanV. A solution is sufficient if the dis- 'S JuSt @ et plus two operations.
tance is less than or equal b An optimal solutionis one Semirings.A semiring is a tuple A, +, x, 0, 1) such that:
where the distance d?’ from P is minimal over the prob- 1. Aisasetand,1 € A; 2.+ is commutative, associative

{cordovans, sneakers}
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{ (green,gray),
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ando is its unit element; 3x is associative, distributes over
+, 1 is its unit element ané is its absorbing element. A c-
semiring is a semiringA4, +, x, 0, 1) such that:+ is idem-
potent,1 is its absorbing element and is commutative.
Let us consider the relationg over A such thatr <g b iff
a+ b ="b. Thenitis possible to prove that (see [3]):<s

is a partial order; 24+ and x are monotone org; 3.0

is its minimum andl its maximum; 4.(A, <g) is a com-
plete lattice and, for alt,b € A, a + b = lub(a, b) (Where
lub is theleast upper bound Moreover, if x is idempotent,
then:+ distributes ovelrx; (A, <g) is a complete distribu-
tive lattice andx its glb (greatest lower bounrjdInformally,
the relation<g gives us a way to compare semiring val-
ues and constraints. In fact, when we have s b, we will
say that is better than aln the following, when the semir-
ing will be clear from the contexty; <g b will be often in-
dicated bya < b.

Constraint ProblemsGiven a semiring S
(A,+, %,0,1) and an ordered set of variablé$ over
a finite domain D, a constraint is a function which,
given an assignmeni : V — D of the variables, re-
turns a value of the semiring. By using this notation
we defineC = n — A as the set of all possible con-
straints that can be built starting frof) D andV'.

Note that in thisunctionalformulation, each constraint

suitable semiring structureSf,.., = ([0, 1], maz, %, 0, 1),
Sweight = (R, min, +,+00,0), ...).

Figure 2 shows the graph representation of a fuzzy CSP.
Variables and constraints are represented respectively by
nodes and by undirected (unary for and c3 and binary
for ¢;) arcs, and semiring values are written to the right of
the corresponding tuples. The variables of interest (that is
the setcon) are represented with a double circle. Here we
assume that the domain of the variables contains only el-
ements: andb and c.

{a) = 0.9
(b) — 0.1 {a,a) = 0.8 (a) = 0.9

(e} = 0.9 (a,b) = 0.2 Ez; : g'i
1 (a,c) = 0.2 . 3
® e 0
(b

,b) = 0
(b,c) — 0.1

€2

{(c,a) = 0.8
(c,b) = 0.2
(c,c) = 0.2

Figure 2. A fuzzy CSP.

Combining and projecting soft constraint&iven the set
C, the combination functior® : C x C — C is defined as

is a function (as defined in [4]) and not a pair (as defined in (c1 ® c2)n = c1n X s ca2n. Informally, combining two con-

[3]). Such a function involves all the variables ¥ but it

straints means building a new constraint whose support in-

depends on the assignment of only a finite subset of themvolves all the variables of the original ones, and which as-

So, for instance, a binary constraify, over variables:
andy, is a functiorc, , : V. — D — A, but it depends only
on the assignment of variablés, y} C V. We call this sub-
set thesupportof the constraint. More formally, consider a
constraintc € C. We define its support asipp(c) = {v €
V| 3n,dy, da.cnfv := di] # enfv := da]}, where

d
nv'

Note thaten[v := d;] means:’ wherer is n modified with
the assignment := d; (that is the operatof| has prece-
dence over application). Note also thatis the application
of a constraint function: : V. — D — A to a function
n: D — A; what we obtain, is a semiring valug = a.

A soft constraint satisfaction proble(®CSP) is a pair
(C,con) wherecon C V andC is a set of constraints:

if v="1",

=dv = ]
otherwise

nlv

sociates with each tuple of domain values for such variables
a semiring element which is obtained by multiplying the el-
ements associated by the original constraints to the appro-
priate sub-tuples. It is easy to verify thatpp(c; ® co) C
supp(c1) U supp(c2).

Given a constraint € C and a variable € V, the pro-
jectionof c over V' — {v}, writtenc |}y _¢,y) is the con-
straintc’ s.t.c'n = ) ;. enfv = d].

Solutions. A solutionof an SCSFP = (C, con) is the con-
straintSol(P) = (Q C) Jcon- Thatis, we combine all con-
straints, and then project over the variablegan. In this
way we get the constraint with support (not greater than)
con which is “induced” by the entire SCSP. Note that when
all the variables are of interest we do not need to perform
any projection.

For example, the solution of the fuzzy CSP of Figure 2
associates a semiring element to every domain value of vari-

con is the set of variables of interest for the constraint ablex. Such an element is obtained by first combining all
set C, which however may concern also variables not in the constraints together. For instance, for the tuple:)
con. Note that a classical CSP is a SCSP where the choseifthat is,x = y = a), we have to compute the minimum be-

c-semiring is:Scsp = ({false,true}, Vv, A, false, true).
Fuzzy CSPs [5, 11] can instead be modeled

tween0.9 (which is the value assigned to = « in con-

in strainte,), 0.8 (which is the value assigned t@ = a,y =

the SCSP framework by choosing the c-semiring a) inc;) and0.9 (which is the value foy = ain ¢3). Hence,

Sresp = ([0, 1], mazx, min, 0, 1). Many other “soft” CSPs

the resulting value for this tuple 8. We can do the same

(Probabilistic, weighted, ...) can be modeled by using a work for tuple {(a,b) — 0.2, {a,¢) — 0.2, {b,a) — 0,



(b,b) — 0, (b,c) — 0.1, {¢,a) — 0.8, {¢,b) — 0.2 and
(¢,¢) — 0.2. The obtained tuples are then projected over
variablex, obtaining the solutiofia) — 0.8, (b) — 0.1 and

(c) — 0.8.

represents how far it is from the solutions of the initial crisp

problem. This gives us a lower-bound on the distance be-
tween the original problem and its relaxation that has this
particular complete assignment as a solution. Furthermore,

Solutions are constraints in themselves and can be or-based upon the distance between solution and problem, a

dered by extending thg s order. We say that a constraint
¢y is at least as constraining as constrainif ¢; Cg co,
where for any assignmentof variables then

c1 Esco=cin <scan

Thus, ifc; Cg ¢o holds, then constraint; may be thought
of as a more restrictive replacement of constraingindcs
as a relaxation of; .

4. From PCSPs to Semiring-based CSPs

One of the main difficulties we have to deal with when
translating from the partial constraint satisfaction frame-
work to the semiring framework is handling the different
approaches to the reasoning about overconstraindness th
are used in both paradigms. Below we shall compare the
different approaches and describe how they can be recon
ciled.

Different measures of over-constrainednesBreuder and
Wallace define a notion of metrlwetween constraint prob-
lemsand a way to relax/weaken a problem. As discussed
above, Freuder and Wallace in [7] note that each way can
be seen as adding additional tuples to constraints.

In the semiring framework Bistarelli, Montanari and
Rossi defined & operator in the semiring that can be used
to compare instantiations of constraints (usig or Cg).

In [1, 3] theCg order has also been used to compare prob-
lems, by saying thaP; Cg P» if Q C; C Q) C> (WhenPy

has constraint€’; and P, has constraint€’;), whereP; is

a relaxation ofP; .

Representing PCSP distance in the SCSP semirifighe-
partial constraint satisfaction framework deals with crisp
CSPs plus a notion of partial ordering amongst problems
in terms of their solutions. If we relax problef we ob-

tain a problemP; that is strictly better with respect to the
distance defined in the PCSP. The key idea is to use the soft
ness levels of semiring-based SCSPs to represent how muc
we relax a problem. Since the measure of “how much” we
have relaxed a problem depends on the PCSP distance me
ric used, we have to use potentially different mappings from

e

distance metric between problems can be defined.

If we start from a crisp problen® that has some set of
solutions, we would expect to find the same solutions in the
corresponding SCSP probleRi with an associated semir-
ing valuel, wherel is the best element of the semiring. The
semirings that we will use in the rest of the section will have
0 as the best level. Using this semiring, the higher the semir-
ing level, the worse the solution will be with respect to the
distance from the original problem. Solutions with semir-
ing level worse than (that is greater thaf) represent so-
lutions that can be added to the problem only if it is relaxed.
The level of the semiring for a given solution represents the
amount of relaxation (distance) we have to perform in or-
der to obtain this solution. If we want to collect all the so-
lutions whose distance is within a given boundwe just

feed to consider all solutions better than the bound

Below we define semiring-based mappings for the vari-
ous metrics defined by Freuder and Wallace [7].

4.1. Max-CSP Distance

Freuder and Wallace defined the Max-CSP distance as
the process of maximising the number of constraints that
are satisfied by a solution [6, 7]. This notion can be eas-
ily cast in the semiring framework since this distance re-
lation is already defined in terms of solutions (and not
among problems). Therefore, maximizing the number of
satisfied constraints is equivalent to minimizing the number
of the violated ones. Following this idea we can map a crisp
problem P with a set of constraint§’ to an SCSP prob-
lem P’ with constraintsC’ over the semiringSyycsp =
(N*, min, 4, +00,0)2. We can map each constrainin P
to a corresponding soft constraidtin P’ over the same
variables such that'n = 0 when the tuple; satisfies the
constrainic, andc’n = 1 when the tupley violates it.

Combining the constraints in the SC$P we obtain its
Solution. A solutionn of the original problemP will lead
fb a solution of the SCSP’ with semiring level0, while
non-solutions of the original problem will lead to semiring
fevels higher (worse) thai If a solutions) violatesk con-
straints, the solution of the SCSP fp(that is@) C'n) will

PCSP to SCSP and also different semirings to represent thg,aye semiring levet.

different metrics of distance we wish to use.
Collecting Solutions added due to Relaxatiofrecall that

the PCSP framework deals with crisp CSPs. Therefore, the

semiring level that is associated with each solution must not
be regarded as a measure of the quality of a solution. In-

stead, the level associated with each complete assignment

Theorem 1 Consider a crisp CSPP and the cor-
responding SCSPP’ over the semiringSwcsp

2 This structure, with real instead of natural numbers, has already been
proven to be a semiring in [1, 3].



(Nt min, +, +00,0), obtained using the mapping de- e 7 is a solution ofP iff  has semiring leve) in P’;

scribed above. Then, e 7 is not a solution of iff 7 has semiring level in P'.

is a solution ofP iff ) has semiring leved in P’; : . L .
* 7 n g Relaxing a problem using this distance metric means

e 7is violatingk constraints inP iff n has semiring level  adding tuples to constraints such that new solutions will be
kin P’ added to the problem. Notice that using this distance we do

not care about the number of constraint violations we have

to tolerate in order to add a new assignment in the solution

set. Regardless of how many constraints the new assignment

7 violates, we will have alway§&) C'n = 1. Therefore, we

can only define two thresholds with this distance:

If we want to relax the initial problen® by a quantity,
that is we can afford to violate constraints in solutions to
the problem, this is captured in the SCBPby looking for
all solutions with a semiring level that is better (lower) than
(08

e Threshold0: we do not want to add more solutions to
4.2. Solution Subset Distance the original problem;

e Thresholdl: we want to add additional solutions to the

Freuder and Wallace defined the solution subset distance original problem.

between two comparable problerts and P, according to
<g, as the number of solutions &% that are not solutions
of P,. 4.3. Augmentation Distance

This distance metric compares two problems and de- . . ) )
scribes how far the solutions of them are from each other. ~ The augmentation distance metric was defined as the
Before translating this distance into the SCSP framework NUMber of constraint augmentations required to relax the
we have to reformulate this distance between problems as £roblem. To translate it to the semiring-based framework
distance between solution and problem. As with the previ- W& N€ed to change our point of view. Consider two prob-
ous distance metric we want to associate with solutions that!em £1 and P that are totally ordered with respect to each
are already in the original, unrelaxed, problem the semir- Other. The augmentation distance between them is given by
ing level0. the sum of the “amount” each constraint/th has been re-

Since the solution subset distance is computed by look-/2xed with respect td. When dealing with a constraint
ing only at the cardinality of the solution sets, adding a so- represented extensionally, the amount of relaxe_ltlon can be
lution means an increase by jusbf the cardinality of the regarded_ as thg number of tuples_ added. We will see at the
set. Therefore, the distance betweRrand any solution; end of this section what happens in the case where we have

not in the original problem must be just an intensional representation. _
Developing this idea we can map a crisp problEmwith Suppose for the moment that constraints are represented

a set of constraint€' to an SCSPP’ with constraintsC’ extensionally. As usual, we want to associate with solu-
over the semiringSgo1y = ({0,1}, min, maz, 1,0)3. We tions to the orlgmal problem a distance (s_emmng Ieye[),of
can then map each constrairin P to a corresponding soft wh|l_e for assignments that are not solutions we wish to as-
constraint’ in P’ over the same variables such that = 0 sociate a semiring level that is worse (greater) thalf an
when the tuple) satisfies the constraintandc’y = 1when ~ @ssignment; has cost, this means that we have to add
the tuplen violates the constraint. tuples to the constraints of the problem. _

Combining the constraints in the SC$Pwe obtain its Therefore, we can map a crisp problgfwith a set of
solution. A solutiory; of the original problemP will lead ~ COnstraintsC' to an SCSPP’ with constraintsC” over the
to a solution of the SCSP’ with semiring levelo, while ~ S€MiringSwesp = (N*, min, +, +00,0). Notice that the
non-solutions of the original problem will lead to semiring S€Miring we use is the same semiring used for the Max-CSP

levels higher (worse) thah If an assignmeny is notaso-  distance.

lution of P, the solution of the SCSP for (that is@®) Cn) We can map each constrainin P to a corresponding
will have semiring level. soft constraint’ in P’ over the same variables such that

_ _ ¢'n = 0 when the tupley satisfies the constraint and
Theorem 2 Consider a crisp CSPP and the cor- (5 = k when extending the constraintin order to sat-

responding SCSPP’ over the semiring Syo13 = isfy cn will require adding an additional tuples toc.
({0,1}, min, max,1,0), obtained using the mapping  Note that when we deal with constraints represented in
described above. Then, an extensional way, the value éfwill be always1, and

we will obtain the same distance of Max-CSP. This follows
3 The structure with the interv40, 1] instead of the sef0, 1} has also from the fact that the number of constraints violated and the
been proven to be a semiring in [1, 3]. minimum number of tuple we must add are in fact the same.




When dealing with an intensional representation of con- solution-problem distance measures can be seen as provid-
straints the two distances are instead different. Consider theng lower-bounds on the distance between a problem and its
following example. relaxation. The next step in our research agenda is to de-
velop a general approach, within the semiring framework,
to computing the distance between a problem and its relax-
ation based upon the approach we have presented here to
computing the distances between a solution and a problem.

Example 1 Consider a problem with the following inten-
sional constraintsic, : « > 5andc, : y = 3. The
assignment; = {z := 6,y := 3} is a solution and
in the corresponding soft CSP it must have valu€on-
sider instead the assignments = {z := 3,y := 3} and
n3 = {x := 2,y := 3}. For extensionally represented con-
straints bothn, andns relax constraintc, by adding one
more domain element:(:= 3 andx := 2, respectively).
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