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Abstract

The partial constraint satisfaction paradigm focuses on
solving relaxations of problems that either do not admit
solutions, or that are either impractical or impossible to
solve completely. The semiring-based framework for soft
constraints is a unifying model for a variety of extensions
of the constraint satisfaction formalism. For example, the
semiring-based framework can represent weighted, fuzzy,
probabilistic and set-based constraint satisfaction prob-
lems. In this paper, we discuss how the semiring-based
framework for soft constraints can be used to model partial
constraint satisfaction problems. We show how the semir-
ing framework can be used to capture a notion of distance
between a solution and a problem based on the known dis-
tance metrics used in the partial constraint satisfaction lit-
erature. These solution-problem distance metrics can be
seen as providing lower-bounds on the distance between a
problem and its relaxation.

1. Introduction

Over the past 30 years constraint satisfaction has become
an important paradigm in Artificial Intelligence [9]. Infor-
mally, a constraint satisfaction problem (CSP) is defined by
a set of variables, each of which has a corresponding set of
possible values called its domain, and the task is to find a
value for each variable from its domain so that the set of
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constraints are satisfied. Constraint satisfaction is applica-
ble to a wide variety of problems arising in scheduling, de-
sign, configuration, machine vision, temporal reasoning and
planning [13].

Many extensions to the CSP paradigm have been pro-
posed. In the context of this paper two of these exten-
sions are particularly relevant: partial constraint satisfac-
tion [6, 7] and the semiring-based framework for soft con-
straints [1, 3, 4].

Partial constraint satisfaction involves finding values for
a subset of the variables that satisfy a subset of the con-
straints [7]. It can also be viewed as involving the weak-
ening of a problem in order to accept more value combi-
nations. Essentially, in partial constraint satisfaction we fo-
cus on relaxing a problem so that a satisfactory solution can
be found. As we shall see in Section 2, three distance met-
rics were defined in the original paper on partial constraint
satisfaction [7] that define various ways in which a problem
can be relaxed1. The most popular of these distance met-
rics is known as Max-CSP: find an assignment of values to
the variables that maximizes the number of constraints that
are satisfied [8, 10, 14].

Some work already exists that relates the partial con-
straint satisfaction paradigm to soft constraints. Schiexet al.
have defined a mapping for the Max-CSP distance metric to
the valued constraint satisfaction framework for soft con-
straints [12]. We could easily combine this mapping with
the known relationship between valued constraint satisfac-
tion and the semiring-based framework, described in [2], to
obtain a possible mapping from Max-CSPs to Soft-CSPs.
However, this just gives us one form of partial constraint

1 Other distance measures are possible of course, but in this paper we
only consider those that were discussed explicitly in the original pa-
per [7].
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Figure 1. Example of an over-constrained
problem.

satisfaction. In this paper we present a complete and uni-
form treatment of the three distance metrics underpinning
partial constraint satisfaction, as presented in the literature.

2. Partial Constraint Satisfaction

To introduce partial constraint satisfaction, consider the
problem presented in Figure 1, known as the Robot Dress-
ing Problem [7]. The nodes in this graph represent the three
variables –shoes, shirt and slacks – representing the
items of clothing that must be chosen. Each node is also la-
beled with a set of values for the corresponding variable, i.e.
the domain of each variable. The arcs that connect the vari-
ables are labeled with the legal combinations of values for
each of the variables, i.e. the constraints between the vari-
ables. By analysis, we can see that this problem does not ad-
mit any solutions, i.e. it is over-constrained. Therefore, we
need to find a “pragmatic” solution to this problem, which
may involve tolerating at least one constraint being violated;
or buying some more shoes, shirts or slacks; or accepting
that certain clothing combinations are acceptable. This is
the typical problem we face in partial constraint satisfac-
tion. The various options we mentioned above for overcom-
ing this problem are forms of constraint relaxation.

Taking a more formal view, Freuder and Wallace [7]
define a partial constraint satisfaction problem as a triple:
〈(P,U), (PS,≤), (M, (N,S))〉. Informally, the problem is
defined in terms of an initial constraint satisfaction problem
P , a set of “universes”U representing the possible values
for each of the variables inP , a problem spacePS contain-
ing P and a partial-order over problems,M is a distance
metric on that space, and(N,S) are necessary and suffi-
cient solution distances betweenP and an acceptable solu-
tion.

A solutionto a partial constraint satisfaction problem can
be defined as a problemP ′ from the problem spacePS
along with a solution to that problem where the distance of
P ′ from P is less thanN . A solution is sufficient if the dis-
tance is less than or equal toS. An optimal solutionis one
where the distance ofP ′ from P is minimal over the prob-

lem space. Therefore, partial constraint satisfaction can be
viewed as search through a problem space.

The partial-order defined over the problem spacePS is
defined in terms of the set of solutions to problems. Specif-
ically, P1 ≤ P2 iff sols(P1) ⊇ sols(P2), wheresols(P )
denotes the set of solutions to problemP . We can read
P1 ≤ P2 as “P1 is obtained by weakening the constraints in
P2”. When a problem is weakened, we mean that the con-
straints in the problem allow more consistent assignments
and, as a consequence, the set of solutions may increase.

The manner in which a problem is weakened depends on
the distance metric,M , that is used. A number of metrics
have been proposed in the literature: solution subset dis-
tance, augmentation distance and Max-CSP distance. We
shall discuss each briefly in turn below.

Solution Subset Distance –This distance metric is defined
as the number of solutions not shared between problemsP
andP ′. WhenP ′ ≤ P this metric reflects the number of
solutions that have been added in order to relax problemP .

Augmentation Distance –This distance metric is slightly
different to solution subset distance. In fact, this distance
metric counts the number of constraint values that are not
shared by problemsP andP ′. This represents the number
of augmentations to the constraints in problemP that are re-
quired to reach its relaxationP ′.

Max-CSP Distance –This is the most well-studied dis-
tance metric of the three. It involves finding a solution that
violates the minimum number of constraints in the prob-
lem. The metric is normally defined as the number of con-
straints that are violated

The objective of relaxing a problem is to find more so-
lutions. However, relaxing a problem does not always give
rise to more solutions. It is quite possible that many relax-
ations of a problem do not admit solutions.

3. Soft Constraints

Several formalizations of the concept ofsoft constraints
are currently available. In the following, we refer to the one
based on c-semirings [1, 3, 4], which can be shown to gen-
eralize and express many of the others [2]. A soft constraint
may be seen as a constraint where each instantiation of its
variables has an associated value from a partially ordered set
which can be interpreted as a set of preference values. Com-
bining constraints will then have to take into account such
additional values, and thus the formalism has also to pro-
vide suitable operations for combination (×) and compari-
son (+) of tuples of values and constraints. This is why this
formalization is based on the concept of c-semiring, which
is just a set plus two operations.

Semirings.A semiring is a tuple〈A,+,×,0,1〉 such that:
1. A is a set and0,1 ∈ A; 2. + is commutative, associative



and0 is its unit element; 3.× is associative, distributes over
+, 1 is its unit element and0 is its absorbing element. A c-
semiring is a semiring〈A,+,×,0,1〉 such that:+ is idem-
potent,1 is its absorbing element and× is commutative.
Let us consider the relation≤S overA such thata ≤S b iff
a + b = b. Then it is possible to prove that (see [3]): 1.≤S

is a partial order; 2.+ and× are monotone on≤S ; 3. 0
is its minimum and1 its maximum; 4.〈A,≤S〉 is a com-
plete lattice and, for alla, b ∈ A, a + b = lub(a, b) (where
lub is theleast upper bound). Moreover, if× is idempotent,
then:+ distributes over×; 〈A,≤S〉 is a complete distribu-
tive lattice and× its glb (greatest lower bound). Informally,
the relation≤S gives us a way to compare semiring val-
ues and constraints. In fact, when we havea ≤S b, we will
say thatb is better than a. In the following, when the semir-
ing will be clear from the context,a ≤S b will be often in-
dicated bya ≤ b.

Constraint Problems.Given a semiring S =
〈A,+,×,0,1〉 and an ordered set of variablesV over
a finite domain D, a constraint is a function which,
given an assignmentη : V → D of the variables, re-
turns a value of the semiring. By using this notation
we defineC = η → A as the set of all possible con-
straints that can be built starting fromS, D andV .

Note that in thisfunctionalformulation, each constraint
is a function (as defined in [4]) and not a pair (as defined in
[3]). Such a function involves all the variables inV , but it
depends on the assignment of only a finite subset of them.
So, for instance, a binary constraintcx,y over variablesx
andy, is a functioncx,y : V → D → A, but it depends only
on the assignment of variables{x, y} ⊆ V . We call this sub-
set thesupportof the constraint. More formally, consider a
constraintc ∈ C. We define its support assupp(c) = {v ∈
V | ∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{
d if v = v′,

ηv′ otherwise.

Note thatcη[v := d1] meanscη′ whereη′ is η modified with
the assignmentv := d1 (that is the operator[ ] has prece-
dence over application). Note also thatcη is the application
of a constraint functionc : V → D → A to a function
η : D → A; what we obtain, is a semiring valuecη = a.

A soft constraint satisfaction problem(SCSP) is a pair
〈C, con〉 wherecon ⊆ V and C is a set of constraints:
con is the set of variables of interest for the constraint
set C, which however may concern also variables not in
con. Note that a classical CSP is a SCSP where the chosen
c-semiring is:SCSP = 〈{false, true},∨,∧, false, true〉.
Fuzzy CSPs [5, 11] can instead be modeled in
the SCSP framework by choosing the c-semiring
SFCSP = 〈[0, 1],max, min, 0, 1〉. Many other “soft” CSPs
(Probabilistic, weighted, . . . ) can be modeled by using a

suitable semiring structure (Sprob = 〈[0, 1],max,×, 0, 1〉,
Sweight = 〈R,min, +,+∞, 0〉, . . . ).

Figure 2 shows the graph representation of a fuzzy CSP.
Variables and constraints are represented respectively by
nodes and by undirected (unary forc1 and c3 and binary
for c2) arcs, and semiring values are written to the right of
the corresponding tuples. The variables of interest (that is
the setcon) are represented with a double circle. Here we
assume that the domainD of the variables contains only el-
ementsa andb and c.
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Figure 2. A fuzzy CSP.

Combining and projecting soft constraints.Given the set
C, the combination function⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η ×S c2η. Informally, combining two con-
straints means building a new constraint whose support in-
volves all the variables of the original ones, and which as-
sociates with each tuple of domain values for such variables
a semiring element which is obtained by multiplying the el-
ements associated by the original constraints to the appro-
priate sub-tuples. It is easy to verify thatsupp(c1 ⊗ c2) ⊆
supp(c1) ∪ supp(c2).

Given a constraintc ∈ C and a variablev ∈ V , thepro-
jection of c over V − {v}, written c ⇓(V −{v}) is the con-
straintc′ s.t.c′η =

∑
d∈D cη[v := d].

Solutions.A solutionof an SCSPP = 〈C, con〉 is the con-
straintSol(P ) = (

⊗
C) ⇓con. That is, we combine all con-

straints, and then project over the variables incon. In this
way we get the constraint with support (not greater than)
con which is “induced” by the entire SCSP. Note that when
all the variables are of interest we do not need to perform
any projection.

For example, the solution of the fuzzy CSP of Figure 2
associates a semiring element to every domain value of vari-
ablex. Such an element is obtained by first combining all
the constraints together. For instance, for the tuple〈a, a〉
(that is,x = y = a), we have to compute the minimum be-
tween0.9 (which is the value assigned tox = a in con-
straintc1), 0.8 (which is the value assigned to〈x = a, y =
a〉 in c2) and0.9 (which is the value fory = a in c3). Hence,
the resulting value for this tuple is0.8. We can do the same
work for tuple 〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0,



〈b, b〉 → 0, 〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and
〈c, c〉 → 0.2. The obtained tuples are then projected over
variablex, obtaining the solution〈a〉 → 0.8, 〈b〉 → 0.1 and
〈c〉 → 0.8.

Solutions are constraints in themselves and can be or-
dered by extending the≤S order. We say that a constraint
c1 is at least as constraining as constraintc2 if c1 vS c2,
where for any assignmentη of variables then

c1 vS c2 ≡ c1η ≤S c2η

Thus, ifc1 vS c2 holds, then constraintc1 may be thought
of as a more restrictive replacement of constraintc2, andc2

as a relaxation ofc1.

4. From PCSPs to Semiring-based CSPs

One of the main difficulties we have to deal with when
translating from the partial constraint satisfaction frame-
work to the semiring framework is handling the different
approaches to the reasoning about overconstraindness that
are used in both paradigms. Below we shall compare the
different approaches and describe how they can be recon-
ciled.

Different measures of over-constrainedness –Freuder and
Wallace define a notion of metricbetween constraint prob-
lemsand a way to relax/weaken a problem. As discussed
above, Freuder and Wallace in [7] note that each way can
be seen as adding additional tuples to constraints.

In the semiring framework Bistarelli, Montanari and
Rossi defined a+ operator in the semiring that can be used
to compare instantiations of constraints (using≤S or vS).
In [1, 3] thevS order has also been used to compare prob-
lems, by saying thatP1 vS P2 if

⊗
C1 v

⊗
C2 (whenP1

has constraintsC1 andP2 has constraintsC2), whereP2 is
a relaxation ofP1.

Representing PCSP distance in the SCSP semiring –The
partial constraint satisfaction framework deals with crisp
CSPs plus a notion of partial ordering amongst problems
in terms of their solutions. If we relax problemP1 we ob-
tain a problemP2 that is strictly better with respect to the
distance defined in the PCSP. The key idea is to use the soft-
ness levels of semiring-based SCSPs to represent how much
we relax a problem. Since the measure of “how much” we
have relaxed a problem depends on the PCSP distance met-
ric used, we have to use potentially different mappings from
PCSP to SCSP and also different semirings to represent the
different metrics of distance we wish to use.

Collecting Solutions added due to Relaxation –Recall that
the PCSP framework deals with crisp CSPs. Therefore, the
semiring level that is associated with each solution must not
be regarded as a measure of the quality of a solution. In-
stead, the level associated with each complete assignment

represents how far it is from the solutions of the initial crisp
problem. This gives us a lower-bound on the distance be-
tween the original problem and its relaxation that has this
particular complete assignment as a solution. Furthermore,
based upon the distance between solution and problem, a
distance metric between problems can be defined.

If we start from a crisp problemP that has some set of
solutions, we would expect to find the same solutions in the
corresponding SCSP problemP ′ with an associated semir-
ing value1, where1 is the best element of the semiring. The
semirings that we will use in the rest of the section will have
0 as the best level. Using this semiring, the higher the semir-
ing level, the worse the solution will be with respect to the
distance from the original problem. Solutions with semir-
ing level worse than1 (that is greater than0) represent so-
lutions that can be added to the problem only if it is relaxed.
The level of the semiring for a given solution represents the
amount of relaxation (distance) we have to perform in or-
der to obtain this solution. If we want to collect all the so-
lutions whose distance is within a given boundα, we just
need to consider all solutions better than the boundα.

Below we define semiring-based mappings for the vari-
ous metrics defined by Freuder and Wallace [7].

4.1. Max-CSP Distance

Freuder and Wallace defined the Max-CSP distance as
the process of maximising the number of constraints that
are satisfied by a solution [6, 7]. This notion can be eas-
ily cast in the semiring framework since this distance re-
lation is already defined in terms of solutions (and not
among problems). Therefore, maximizing the number of
satisfied constraints is equivalent to minimizing the number
of the violated ones. Following this idea we can map a crisp
problemP with a set of constraintsC to an SCSP prob-
lem P ′ with constraintsC ′ over the semiringSWCSP =
〈N+,min, +,+∞, 0〉2. We can map each constraintc in P
to a corresponding soft constraintc′ in P ′ over the same
variables such thatc′η = 0 when the tupleη satisfies the
constraintc, andc′η = 1 when the tupleη violates it.

Combining the constraints in the SCSPP ′ we obtain its
solution. A solutionη of the original problemP will lead
to a solution of the SCSPP ′ with semiring level0, while
non-solutions of the original problem will lead to semiring
levels higher (worse) than0. If a solutionη violatesk con-
straints, the solution of the SCSP forη (that is

⊗
C ′η) will

have semiring levelk.

Theorem 1 Consider a crisp CSPP and the cor-
responding SCSPP ′ over the semiringSWCSP =

2 This structure, with real instead of natural numbers, has already been
proven to be a semiring in [1, 3].



〈N+,min, +,+∞, 0〉, obtained using the mapping de-
scribed above. Then,

• η is a solution ofP iff η has semiring level0 in P ′;

• η is violatingk constraints inP iff η has semiring level
k in P ′.

If we want to relax the initial problemP by a quantityα,
that is we can afford to violateα constraints in solutions to
the problem, this is captured in the SCSPP ′ by looking for
all solutions with a semiring level that is better (lower) than
α.

4.2. Solution Subset Distance

Freuder and Wallace defined the solution subset distance
between two comparable problemsP1 andP2, according to
≤S , as the number of solutions ofP2 that are not solutions
of P1.

This distance metric compares two problems and de-
scribes how far the solutions of them are from each other.
Before translating this distance into the SCSP framework
we have to reformulate this distance between problems as a
distance between solution and problem. As with the previ-
ous distance metric we want to associate with solutions that
are already in the original, unrelaxed, problem the semir-
ing level0.

Since the solution subset distance is computed by look-
ing only at the cardinality of the solution sets, adding a so-
lution means an increase by just1 of the cardinality of the
set. Therefore, the distance betweenP and any solutionη
not in the original problem must be just1.

Developing this idea we can map a crisp problemP with
a set of constraintsC to an SCSPP ′ with constraintsC ′

over the semiringS{0,1} = 〈{0, 1},min, max, 1, 0〉3. We
can then map each constraintc in P to a corresponding soft
constraintc′ in P ′ over the same variables such thatc′η = 0
when the tupleη satisfies the constraintc, andc′η = 1 when
the tupleη violates the constraint.

Combining the constraints in the SCSPP ′ we obtain its
solution. A solutionη of the original problemP will lead
to a solution of the SCSPP ′ with semiring level0, while
non-solutions of the original problem will lead to semiring
levels higher (worse) than0. If an assignmentη is not a so-
lution of P , the solution of the SCSP forη (that is

⊗
Cη)

will have semiring level1.

Theorem 2 Consider a crisp CSPP and the cor-
responding SCSPP ′ over the semiring S{0,1} =
〈{0, 1},min, max, 1, 0〉, obtained using the mapping
described above. Then,

3 The structure with the interval[0, 1] instead of the set{0, 1} has also
been proven to be a semiring in [1, 3].

• η is a solution ofP iff η has semiring level0 in P ′;

• η is not a solution ofP iff η has semiring level1 in P ′.

Relaxing a problem using this distance metric means
adding tuples to constraints such that new solutions will be
added to the problem. Notice that using this distance we do
not care about the number of constraint violations we have
to tolerate in order to add a new assignment in the solution
set. Regardless of how many constraints the new assignment
η violates, we will have always

⊗
C ′η = 1. Therefore, we

can only define two thresholds with this distance:

• Threshold0: we do not want to add more solutions to
the original problem;

• Threshold1: we want to add additional solutions to the
original problem.

4.3. Augmentation Distance

The augmentation distance metric was defined as the
number of constraint augmentations required to relax the
problem. To translate it to the semiring-based framework
we need to change our point of view. Consider two prob-
lem P1 andP2 that are totally ordered with respect to each
other. The augmentation distance between them is given by
the sum of the “amount” each constraint inP2 has been re-
laxed with respect toP1. When dealing with a constraint
represented extensionally, the amount of relaxation can be
regarded as the number of tuples added. We will see at the
end of this section what happens in the case where we have
an intensional representation.

Suppose for the moment that constraints are represented
extensionally. As usual, we want to associate with solu-
tions to the original problem a distance (semiring level) of0,
while for assignments that are not solutions we wish to as-
sociate a semiring level that is worse (greater) than0. If an
assignmentη has costα, this means that we have to addα
tuples to the constraints of the problem.

Therefore, we can map a crisp problemP with a set of
constraintsC to an SCSPP ′ with constraintsC ′ over the
semiringSWCSP = 〈N+,min, +,+∞, 0〉. Notice that the
semiring we use is the same semiring used for the Max-CSP
distance.

We can map each constraintc in P to a corresponding
soft constraintc′ in P ′ over the same variables such that
c′η = 0 when the tupleη satisfies the constraintc, and
c′η = k when extending the constraintc in order to sat-
isfy cη will require adding an additionalk tuples toc.

Note that when we deal with constraints represented in
an extensional way, the value ofk will be always1, and
we will obtain the same distance of Max-CSP. This follows
from the fact that the number of constraints violated and the
minimum number of tuple we must add are in fact the same.



When dealing with an intensional representation of con-
straints the two distances are instead different. Consider the
following example.

Example 1 Consider a problem with the following inten-
sional constraints:cx : x > 5 and cy : y = 3. The
assignmentη1 = {x := 6, y := 3} is a solution and
in the corresponding soft CSP it must have value0. Con-
sider instead the assignmentsη2 = {x := 3, y := 3} and
η3 = {x := 2, y := 3}. For extensionally represented con-
straints bothη2 and η3 relax constraintcx by adding one
more domain element (x := 3 and x := 2, respectively).
However, since we are dealing with intensionally repre-
sented constraints it seems more realistic to assign a dif-
ferent relaxation cost toη2 andη3, because forη2 we need
to enlarge the constraintcx : x > 5 to c′x : x > 2 whilst
for η3 the minimum augmentation of the constraint has to
bec′x : x > 1.

Therefore, we can map the crisp constraint problemP
into the softP ′, wherec′x(a) = 0 if a > 5, andc′x(a) = 6−
a if a ≤ 5. In the above example the augmentation distance
for η2 is 3 while forη3 is 4.

Note that using the Max-CSP distance (see Section 4.1)
bothη2 andη3 have the same semiring level1, since in both
cases only 1 constraint is violated.

We can prove that the SCSP we obtain correctly rep-
resents this distance: a solutionη of the original problem
P will lead, in the SCSPP ′, to a semiring level0; a non-
solution of the original problem will lead instead to semir-
ing levels bigger (worse) than0. If a solutionη will relax
a constraint by an amountk, then the solution of the SCSP
for η (that is

⊗
C ′η) will have a semiring levelk.

Theorem 3 Consider a crisp CSPP and the cor-
responding SCSPP ′ over the semiringSWCSP =
〈N+,min, +,+∞, 0〉, obtained using the mapping de-
scribed above. Then,

• η is a solution ofP iff η has semiring level0 in P ′;

• η is violating the constraints for a global amount ofk
in P iff η has semiring levelk in P ′.

If we want to relax the initial problemP by a quantity
α (that is we can afford to reduce the tightness of the con-
straint byα) this is captured in the SCSPP ′ by looking for
all solutions better (that is smaller) thanα.

5. Conclusions

In this paper we have demonstrated how the semiring
framework for soft constraints can be used to define the
standard distance metrics used in partial constraint satisfac-
tion. In particular, we have focused on capturing the no-
tion of distance between a solution and a problem. These

solution-problem distance measures can be seen as provid-
ing lower-bounds on the distance between a problem and its
relaxation. The next step in our research agenda is to de-
velop a general approach, within the semiring framework,
to computing the distance between a problem and its relax-
ation based upon the approach we have presented here to
computing the distances between a solution and a problem.
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