
Abstract We propose a light-weight fingerprint

matching algorithm that can be executed inside the

devices with a limited computational power. The

algorithm is based on the minutiae local structures (the

‘‘neighborhoods’’), that are invariant with respect to

global transformations like translation and rotation.

The match algorithm has been implemented inside a

smartcard over the Java CardTM platform, meeting the

individual’s need for information privacy and overall

authentication procedure security. The main charac-

teristic of the algorithm is to have an asymmetric

behavior, in respect to the execution time, between

correct positive and negative matches. The perfor-

mances in terms of authentication reliability and speed

were tested on some databases from the Fingerprint

Verification Competition 2002 and 2004 editions

(FVC2002 and FVC2004). Moreover, our procedure

showed better reliability when compared with a related

algorithm on the same database. We can achieve a

false acceptance rate (FAR) of 0.1%, a false rejection

rate of about 6%, and from 0.3 to 8 s to match most of

the finger pairs during the FAR tests.

Keywords Biometrics � Fingerprint matching �
Smartcard � Match on Card � Java CardTM

1 Introduction

The term ‘‘biometrics’’ is commonly used today to

refer to the authentication of a person by analyzing his/

her physical characteristics (like fingerprints) or

behavioral characteristics (like voice or gait).

Since these characteristics are unique to an indi-

vidual, their measurement provides a more reliable

system of authentication than ID cards, keys, pass-

words, or other traditional systems while accessing

restricted areas in office buildings and factories, or

controlling the security of computer networks, elec-

tronic commerce, and banking transactions. The reason

is that all these secret keys can be easily stolen or

cloned to steal the personal identity, or they can also

be forgotten by the owner preventing the whole iden-

tification process. Biometric characteristics are, in-

stead, generally more difficult to duplicate and they

naturally always ‘‘follow’’ the owner. Moreover, an

advantage of biometrics is that they cannot be lent

(like a physical key), and thus, they grant the on-site

presence.

The most common biometric techniques are signa-

ture verification, retinal analysis, facial analysis, fin-

gerprint verification, hand geometry, and voice

verification. These technologies are comparable by the

aid of several indicators, such as permanence (mea-

surement should be invariant with time), uniqueness

(different values for different persons), universality

(everyone should have this trait), acceptability (if

people are willing to accept this technology), perfor-

S. Bistarelli
Dipartimento di Scienze, Università degli Studi ‘‘G.
d’Annunzio’’, Pescara, Italy
e-mail: bista@sci.unich.it; stefano.bistarelli@iit.cnr.it

S. Bistarelli � F. Santini (&) � A. Vaccarelli
Istituto di Informatica e Telematica, CNR, Pisa, Italy
e-mail: francesco.santini@iit.cnr.it

A. Vaccarelli
e-mail: anna.vaccarelli@iit.cnr.it

Pattern Anal Applic (2006) 9:359–376

DOI 10.1007/s10044-006-0048-4

123

SHORT PAPER

An asymmetric fingerprint matching algorithm for Java Card TM

Stefano Bistarelli Æ Francesco Santini Æ
Anna Vaccarelli

Received: 6 July 2005 / Accepted: 31 July 2006 / Published online: 3 October 2006
� Springer-Verlag London Limited 2006

mance (the recognition accuracy and system require-

ments) and circumvention (how it is easy to fool the

system).

Fingerprint matching is one of the most diffused

biometric techniques used in automatic personal

identification, because of its strong reliability and its

low implementation cost; moreover, it is also the most

mature and explored technology of all the others.

Performing a biometric verification inside a smart-

card is notoriously difficult, since the processing capa-

bilities of standard smartcard processors are limited for

such a complex task. With Match-on-Card (MoC)

technology, the fingerprint template is stored inside the

card, unavailable to the external applications and the

outside world. In addition, the matching decision is

securely authenticated by the smartcard itself, in this

way, the card has only to trust in itself for eventually

unblocking stored sensitive information, such as digital

certificates or private keys for digital signature. Our

verification MoC algorithm was developed to work in

this very strictly bounded environment.

The algorithm is based on some minutiae charac-

teristics (ridge pattern micro-characteristics) and more

precisely on their local structure information, so there

is no need to pre-align the processing fingerprint

templates, which would be a difficult task to imple-

ment inside a smartcard. Moreover, it shows an

asymmetric execution time between correct positive

matches (same fingerprint) and correct negative mat-

ches (two different fingers), and this is because the

match procedure stops immediately when few minu-

tiae pairs result in a positive match. If this check does

not succeed, for example if the two fingers are dif-

ferent, or if the two acquisitions of the same finger are

very disturbed, the procedure is fully executed (lasting

longer) and the match decision is taken only at its

end.

Experimental results show that the performances

(speed and security) of the proposed algorithm are

really good and allow the algorithm to be used in real

verification applications.

1.1 Paper structure

This paper extends with new tests and outcomes the

preliminary results presented in [1] and is organized as

follows: in Sect. 2 we present some general background

information about fingerprints, as their global appear-

ance and the most important characteristics of the

minutiae points (Sect. 2.1); from Sect. 2.2 to 2.4 we

respectively explore the background about common

fingerprint matching problems and the literature clas-

sification, the Java CardTM platform characteristics

used to develop the algorithm and, finally, some com-

ments about MoC security and privacy implications

and benefits. Moreover, in Sect. 2.5 we summarize

some related works specific to fingerprint matching on

resources-constrained devices.

Section 3 features, instead, an overview of our

smartcard verification algorithm: in 3.1 we report the

main characteristics of our scheme, in 3.2 we describe

the information chosen to represent and match two

fingerprints, in 3.3 we describe the matching procedure,

and in 3.4 we show some problems and solutions con-

cerning the Java CardTM implementation.

Section 4 presents the fingerprint image databases

used during the tests (Sect. 4.1), the typical match

performance indicators (Sect. 4.2) and the perfor-

mance evaluation of our algorithm in terms of speed

and reliability (Sect. 4.3).

Section 5 draws the final conclusions and outlines

intentions for future works.

2 Background

2.1 Fingerprint appearance and minutiae features

The most evident structural characteristic of a finger-

print is the pattern of interleaved ridges and valleys

that often run in parallel. Ridges vary in width from

100 to 300 lm and the period of a ridge/valley cycle is

typically about 500 lm. If analyzed at global level, al-

most all of the patterns exhibit one or more regions

characterized by a distinctive shape and called singular

regions. These regions can be classified into three ty-

pologies according to their shape: loop, delta, and

whorl are characterized respectively by a _; D, and O

shape. A particular presence of these singular regions

defines the whole fingerprint class: the five classes in

Henry’s scheme [2] are arch, tented arch, right loop, left

loop, and whorl.

At local level, other important features called

minutiae refer to ridge discontinuities. Minutiae are

sometimes called ‘‘Galton details’’, in honor of the first

person who categorized them and observed that they

remain unchanged over the individual’s entire life [3].

Most frequently, the minutiae types can be identified

by terminations, where a ridge line ends, and bifurca-

tions, where a ridge bifurcates forming a ‘‘Y’’ (see

Fig. 1), even if several types have been observed, de-

scribed by their shape (dot, island, hook, lake, ridge

crossing and multiple bifurcations).

Another important point in the image, which can be

used also to align the fingerprint images, is the ‘‘core

point’’, corresponding to the center of the north most

360 Pattern Anal Applic (2006) 9:359–376

123

loop type singular region. In fingers without loop or

whorl regions, the core is associated with the point of

maximum ridge line curvature.

The most important minutiae characteristics are the

location coordinates inside the image, their form type

(e.g. termination, bifurcation, island, etc.) and the ori-

entation of the ridge (in degree) on which the minutia

is found.

While singular regions can aid in classification, the

minutiae can be used for fingerprint matching, since

they represent some of the unique details of the ridge

flow and are considered as singularity evidence;

minutiae matching is certainly the most well-known

and adopted method for fingerprint automated

matching.

The two fundamental premises on which fingerprint

identification is based are that the fingerprint details

are permanent and unique. The validity of the first

premise is established based on the anatomy and

morphogenesis of friction ridge skin (except due to

accidents such as bruises and cuts). The notion of the

fingerprint individuality is widely accepted, based on

manual inspection of millions of fingerprints, and there

are several mathematical models describing the prob-

ability of a same particular fingerprint configuration

[4].

2.2 Fingerprint matching problems and solutions

The response of a fingerprint match procedure is typ-

ically a matching score s that quantifies the similarity

(or dissimilarity) between two fingerprint templates;

the template, in its generic definition, is a mathematical

representation of the fingerprint ‘‘uniqueness’’ to be

used during the matching phase. The match decision is

then regulated by applying a threshold t on this score:

for example, if s < t the fingerprints are considered as

matching. Threshold t can be also defined as the

‘‘operating point’’.

Matching two templates is extremely difficult be-

cause of the variability in the different impressions of

the same fingers (Fig. 2). The most important disturb-

ing factors introduced during the image acquisition or

the fingerprint feature extraction are:

• Displacement depending on the different position-

ing of the finger on the acquisition sensor.

• Rotation depending on the different rotation in

positioning the finger on the sensor between

different acquisitions.

Fig. 1 Minutiae details. The circle highlights a ridge termination,
while the square shows a bifurcation

Fig. 2 Two impressions of
the same fingerprint, a good
quality, b distorted

Pattern Anal Applic (2006) 9:359–376 361

123

• Partial overlap. Still because of imperfect position-

ing, a part of the fingerprint can fall outside of the

acquisition area and, therefore, different samples of

the same finger could correspond only on a small

area.

• Non-linear distortions due to the skin plasticity.

Forces non-orthogonal to the sensor surface can

cause the finger image to be distorted in some

zones.

• Pressure on the sensor surface can result in a

different thinning of the ridge pattern.

• External factors. Other external factors, not

depending on the finger positioning on the sensor

surface, could be skin conditions such as dryness,

sweat, dirt, grease, or possible skin disease and

consumption in manual workers or the elderly.

• Feature extractor errors. During the extraction

stage, the processing module can introduce some

errors by adding some ‘‘false’’ minutiae (not really

present in the fingerprint) or by not detecting true

existing features.

Regarding the algorithms used to solve the finger-

print matching problem, all the possible approaches

can be classified into three main branches [2]:

Correlation-based matching In this class, the match

is obtained by superimposing two fingerprint images

and then computing the correlation between the

corresponding pixels [5, 6]; in this case the template

is directly the finger image. Some problems could

derive from non-linear distortions that make the

impressions of the same finger significantly different

in terms of global structures. Also the skin condition

and pressure cause the image brightness and contrast

to vary across different impressions.

Minutiae-based matching The theory behind this

algorithm class is fundamentally the same as for the

manual fingerprint examiners. Matching essentially

consists in finding the maximum number of

corresponding minutiae between the two templates.

Ridge feature-based matching The approaches

belonging to this family compare the fingerprints in

terms of ridge pattern features other than the minutiae

or pixel intensity (the previous two classes): examples

are the shape features [7], spatial relationship and

geometrical attributes of the ridge lines [8] (like

frequency and shape), texture information [9] and

sweat pores [10]. In principle, the first two methods

could be seen as subsets of this one, since also the

minutiae and pixel intensity can be considered as ridge

features.

The minutiae matching problem can be addressed

also as a more general point pattern matching problem,

even if the presence of the ridge direction associated

with each minutia, or the minutia type, add some more

important information. The Hough transform-based

approach is quite popular for resolving the fingerprint

match: the transformation parameters space, which can

relate two sets of points, is firstly discretized, then the

correct parameters can be derived by accumulating

evidences in this space, and, finally the most ‘‘voted’’

transformation will be chosen [11]. The use of an

algebraic technique for point pattern matching is, in-

stead, described in [12].

Focusing only on the minutiae based algorithms, we

can subdivide them into two more classes. Global

minutiae matching requires a first fingerprint alignment

phase that subsequently allows template matching. The

alignment can be absolute if each fingerprint is pre-

aligned independently from the others, and relative if

the input fingerprint is pre-aligned with respect to the

database template with which will be compared. Rel-

ative pre-alignment is generally more effective because

the features in the stored template can properly help

the process. An interesting approach based on minu-

tiae ridge registering, which exploits ridge features for

a relative pre-alignment, is proposed in [13]: the

minutiae representations are converted into a symbolic

string and then the two strings (one for each finger-

print) are matched with a dynamic programming

technique finding their edit distance and, finally, this

distance is compared with a threshold. A variant of this

method is proposed in [14].

In local minutiae matching, two fingerprints are

compared according to their local minutiae structures,

which are characterized by attributes invariant with

respect to global transformations such as translation or

rotation; it is consequently appropriate for matching

without any a priori alignment. Local matching sup-

plies simplicity, low computational complexity and

higher distortion tolerance, while global matching

grants a higher distinctiveness. This algorithm class is

mainly based on the neighborhood concept, for which

the local structure is represented by the features of the

nearest minutiae: some examples are in [15–17]. Other

solutions are based on grouping the minutiae inside a

bounding box [18, 19], or by the triangular matching

proposed in [20]. Local structures can be used also for

fingerprint indexing [21].

Modern high security applications typically adopt

multimodal biometric systems. These systems use dis-

tinct types of features concerning the same biometric

technique (i.e. fingerprint minutiae and texture), or

even other completely different biometric characteris-

tics combining, for example, fingerprint and facial

analysis. The match result is derived from distinct sub-

362 Pattern Anal Applic (2006) 9:359–376

123

matcher modules working on the different biometric

measurements, like the algorithm in [22] which uses

minutiae plus texture information: all the results are

then merged into one single final decision (fusion of

the matchers), improving the global reliability of the

verification system.

2.3 The Java CardTM Platform

A smartcard [23] resembles a classic credit card in size

and shape, but inside it may contain an embedded 8–16

bit microprocessor (microprocessor card) under a gold

contact pad on one side of the card. This grants com-

putational power and enforces access to the on-card

data. Smartcards with memory only (memory card)

offer simply a protection for data storing. Common

smartcards may have up to 4–5 kb of RAM, about

160 kb of ROM, 32–72 kb of programmable EEPROM

and an internal clock up to 30 MHz. The card oper-

ating system and other permanent data are usually

masked in the ROM memory, while the EEPROM can

be used to store the applications or personal informa-

tion. The smartcard receives its power from external

sources like a card reader, more generally defined as

‘‘Card Acceptance Device’’ (CAD).

Java CardTM technology [24] adapts the JavaTM

platform for use on smartcards or devices like USB

tokens, whose environments are highly specialized, and

whose memory and processing constraints are typically

more severe than those of a common PC. This adap-

tation produces a global reduction of the platform

functionalities and results in a substantial decrease of

the programming expressive capacity. Java CardTM

technology is described in Fig. 3, which shows the dif-

ferent architectural layers on the smartcard.

The Java CardTM virtual machine (JCVM) specifi-

cation defines a subset of the Java programming lan-

guage and additional constraints on many program

attributes, like the maximum number of classes in a

single package [24]. The Java CardTM API specification

defines a small subset of the traditional Java pro-

gramming language API, while the Java CardTM

Framework defines its own set of core classes specifi-

cally created to support the applications.

The applet objects are created in the EEPROM

persistent memory and so their state is saved between

different CAD sessions, but it is a 1,000 times slower to

write in the EEPROM than in the RAM, due to their

different technology. Since a garbage collector is not

always available in a Java CardTM implementation (it is

not mandatory in the specification), an application may

never reclaim the storage allocated to the objects that

are no longer referenced and, consequently, it is

essential to reuse the same objects during several CAD

sessions, otherwise the memory space will sooner or

later be saturated. Inside a smartcard, creating and

deleting the objects are time-consuming tasks.

One more important drawback is also the additional

bytecode interpretation layer that could slow down the

computation, with respect to compiled applications.

A more exhaustive description of the Java CardTM

platform is given in [25].

2.4 MoC introduction

For a reliable biometric verification, it is important to

maintain the confidentiality of the fingerprint data and

it is essential to perform the match in the same envi-

ronment where the data is stored. One possible solu-

tion is to store the private biometric template on a

smartcard and to perform the verification algorithm

directly on it. This implements the description of the

MoC technology, in which security is significantly im-

proved in respect to the Template-on-Card (ToC),

where only the template is saved on the card and has to

be extracted every time during the verification process

executed outside, for example in a PC.

In the MoC architecture (see Fig. 4), the ‘‘candidate

template’’ (acquired for the verification phase) has al-

ways to be sent to the smartcard where the ‘‘reference

template’’, associated with the card-user identity, has

been already stored during the card personalization. In

this way, it is impossible to intercept the referenceFig. 3 Java CardTM architecture

Pattern Anal Applic (2006) 9:359–376 363

123

template with the aim to eventually propose a ‘‘replay’’

attack, but, for the same purpose, it is still possible to

intercept a candidate template that leads to positive

match (cryptography could help, in this case). More-

over, the embedded smartcard environment is clearly

more secure with respect to a common PC, and it is

impossible to install additional software that could

influence the match procedure. Finally, the private

biometric data is not stored in central databases, whose

security violation could be a serious menace: a suc-

cessful attack could steal a lot of critical information.

Considering the attacks described in [26], MoC tech-

nology can avoid the attacks based on substituting or

modifying the matcher, tampering with the reference

template and by controlling the channel between the

reference template and the matcher. In addition, if the

MoC verification decision is internally used by the card

to un block private data and it is not sent outside, the

final ‘‘yes/no’’ result of the matcher cannot be inter-

cepted and replaced.

Attacks against smartcard executed to analyze the

content without the authorization, like differential

power analysis attacks (DPA) [27], specifically need the

target smartcard, and, for this reason, are not large-

scale attacks and cannot be easily repeated on a large

collection of templates. With MoC, the personal bio-

metric information (the template) never leaves the

smartcard and is owned directly by the user, granting in

this way more privacy and increasing the user accept-

ability of fingerprint verification.

In the System-on-Card (SoC) the card is further

enhanced with the fingerprint scanner and the feature

extraction function, thus achieving the best security: in

this way, it is possible to prevent the attacks on the

feature extraction software and on the scanner-

extractor and extractor-matcher channels. This

technology is still far from being easily implemented

with low cost cards, for example because processors

and connections need to withstand bending tests, and

because the increased power consumption must be

compatible with power supply.

While the ToC technology is today fully imple-

mentable, since the card memory is wider than a typ-

ical template space occupation (a few kilobytes),

implementing a matching algorithm inside the card

(MoC) is yet a difficult task due to the still limited

smartcard computational power, and since this type of

computation usually demands some relatively compli-

cated arithmetic. Moreover, the verifying procedure

has to be kept as fast as possible even in this envi-

ronment, to avoid to frustrating the card-owner with a

long wait. Thus, keeping a high security while reducing

the match complexity and time, is the most important

problem concerning MoC.

2.5 Related work

Regarding scientific literature on MoC, in [28] the

minutiae spatial coordinates and the associated ridge

angle (x, y, h) are used to represent and match the

minutiae in the two templates. The authors employ an

accumulator array to compute the approximate trans-

formation, and this process is repeated to find a fine-

grain resolution, discretizing every time the array cell

corresponding to the best transformation. However,

the resources needed by this algorithm are above the

current availability of today’s smartcard, since it has

been tested on a 32 bit ARM-7 processor. The test

image set is composed of 400 images taken from 100

individuals and the reported equal-error rate (EER) is

about 6% (see Sect. 4.2 for performance indicators

definition).

Even the authors of [29] adopt the same represen-

tation (x, y and h). The preliminary registration be-

tween the two templates is accomplished outside the

smartcard using the average horizontal and vertical

coordinate values and the average direction of all the

minutiae. The match is then performed by transform-

ing the coordinates in a polar form with respect to the

previous average values; for this reason, problems

could arise in case of partial overlapping between the

two fingerprints (see Sect. 2.2). Here the database have

been generated using only 10 different fingerprints, and

about 20 minutiae in each template. The total time for

an authentication is 3–4 s, considering also the data

transfer.

One more paper using a first step concerning

external registration is [30]. Here, the match is then

accomplished by applying Gabor filters to the finger-

print image, as described in [31]. The reliability tests

Fig. 4 Typical distribution of the tasks in a Match-on-Card
(MoC) system

364 Pattern Anal Applic (2006) 9:359–376

123

were executed on the Siemens fingerprint database,

containing 100 images each of 36 distinct users. Per-

formances are reported for several different system

configurations and, in the best reliability case, the

procedure achieves a false rejection rate (FRR) of

about 4% for a FAR of 0.1%, using four different

reference templates (storage occupation is 9–10 kb)

and only one ‘‘query template’’. The match time is not

reported, and it is linearly dependent on the number of

templates (as the storage cost).

The algorithm in [32] use both the binary fingerprint

image and the minutiae position. First, the host PC

transmits the core location of the new acquired image,

which is used by the card to compute registration

parameters; these parameters are sent back and used

by the host to register its image. Then the smartcard

chooses some coordinates (typically, near to the

minutiae locations) and the host PC use them to cut

rectangular pieces (called ‘‘chips’’) from the fingerprint

image. Again, these chips are transmitted to the card

and used for the final match step. Performances are

obtained on a database with 576 fingers, with a FAR of

0.1% and FRR of 2%.

In [33] is presented a verification method imple-

mented in a personal digital assistant (PDA) with a

206 MHz StrongArm processor, so for a less resources-

constrained system in respect to smartcards. The

minutiae information recorded during the extraction is

the triplet x, y and h. The main aim of the authors is to

show that replacing floating-point with fixed-point

computation does not affect the verification reliability

performance: actually, most of the embedded proces-

sors in embedded devices do not support floating-point

arithmetic. Only a small subset of all the minutiae

points (the ones near to the core point) is used during

the match procedure, which simply applies a bounding

box technique. The test databases is collected from 383

different fingers for a total of 1,149 images and the

average computation time is 0.9 s. The achieved EER

is nearly 7%.

Even the authors in [34] introduce an algorithm

developed for embedded devices. This algorithm is

based on the minutia neighbor features, like the

neighbor distance and orientation with respect to the

central minutia. The minutiae neighborhood similarity

is computed by finding the feature distances and suc-

cessively controlling them with the aid of a delimiting

bounding box; if the checks are positive, the corre-

sponding neighbors are then matched. The compared

minutiae are considered as matched if the total number

of their matching neighbors is above a certain prede-

fined value. The final decision regarding the two entire

templates is taken from an estimation based on the

total number of the minutiae matched in this way. The

test database has 100 images and performance are

claimed to be 0.01% FAR and 1% FRR.

In [35] a description is given of a matching algorithm

expressly developed for the Java CardTM platform and

using the same feature extractor software as the one

adopted in our solution. It uses two distinct algorithms

for different feature types (a hybrid matcher), and, at

the end, the overall score is computed as a linear

combination of the two independent sub-scores. The

first algorithm is based on the minutiae features and a

graph structure is built starting from the core point

position, then visiting the neighbor minutiae. The

matching procedure is inspired from the point-pattern

matching algorithm in [36] and its purpose is to find a

spanning ordered tree touching as many nodes as pos-

sible in the two graphs. The second algorithm is ridge

feature-based (texture) and is implemented exactly as

described in [9]. The on-card computation needs about

11–12 s, and security is reported and compared with

our results in Sect. 4.3.

3 Our MoC algorithm

3.1 Solution characteristics

As introduced in Sect. 2.4, matching two fingerprints is

a difficult problem due to several elastic and rigid

transformations and other disturbing factors. Trying to

develop a solution in a Java Card environmentTM adds

some more problems depending on the platform and,

principally, on the smartcard computational constraints

(Sect. 2.3). However, bringing the verification service

on this kind of very small devices may resolve many

security and privacy problems (Sect. 2.4).

In Sect. 2.5 we present the background directly re-

lated to the MoC problem. Some works have however

been proposed for processor and devices with higher

computational capabilities [28, 33, 34], other algo-

rithms are analyzed on databases with few images [29]

and in other papers, good security performances are

achieved only repeating the match on multiple tem-

plates [30], thus decreasing the average match time.

Most of times, given solutions seem to need too much

processor resources to be developed inside present-day

smartcards.

In FVC2004 competition [37], the EER average

performance drop between the open and the light

(lightweight algorithms) categories, and considering

the top ten systems, is about 44% [38]; thus, the com-

putational limitations heavily impact the security per-

formance. Besides, smartcard requirements are more

Pattern Anal Applic (2006) 9:359–376 365

123

stringent than FVC2004 Light category: the 0.3 s

comparison time limit in the competition refers to a

3,000 MIPS CPU, while a typical smartcard CPU per-

forms at about 10 MIPS [38].

During our work, the intention was to propose a

scheme to be really implemented in a current smart-

card environment; at the same time, the algorithm had

to have satisfying characteristics of speed and security.

For this reason, in our solution we use the local

minutiae matching technique based on minutiae

neighborhood (see Sect. 2.4), with which we avoid to

register the two fingerprints outside the card, and

which generally supplies simplicity and low computa-

tional complexity. With local structures we are able to

deal with displacement, rotation and partial overlap-

ping problems, while we employ bounding (or toler-

ance) boxes on the feature differences to compensate

for the small plastic deformations [2, 16]. Moreover, we

adopt a cascade approach to accumulate similarity

evidences between the two templates, trying to stop the

match procedure as soon as it is possible to state a

positive result.

Some parameters of our solution (e.g. minutiae and

neighbors’ numbers) can be easily adapted to the

increasing performance chips of the next future (surely

for the next 2–3 years), while we reckon that more

complicated algorithms need more advanced techno-

logical improvements. In terms of hardware, our plat-

form could also correspond to one of the lowest-cost

MoC solution of the next years.

3.2 Features extraction

In our algorithm implementation, the image processing

stage used to extract the minutiae set from a fingerprint

is based on the NIST Fingerprint Image Software [39],

an open source toolkit which includes the MINDTCT

package (‘‘minutiae detection’’). This detection step

extracts information about the minutiae, such as the x

and y coordinates, local ridge direction h, type (found

between the ridge ending or the bifurcation classes)

and the reliability, as directly derived from the corre-

sponding image zone quality. Moreover, for every such

singularity point, MINDTCT finds a list of the neigh-

boring minutiae, which are the nearest minutiae to the

considered one in the euclidean space (from now,

simply called ‘‘neighbors’’). Also an estimation of the

ridge count between central and neighbor minutia is

found. Given two points a and b, the ridge count be-

tween them is the number of ridges intersected by the

segmentab : forensic experts and latent fingerprint

examiners often use the ridge count to increase the

reliability of their analysis [2].

We use this information extracted by MINDTCT to

derive the ‘‘features’’ to build the templates directly

used by our matching algorithm. These features are

calculated for each neighbor with respect to its central

minutia, and our template is made of only these

neighbor features: every minutia in our template is

described using only the features of all its neighbors

(its neighborhood).

Each neighbor is described by the four features

graphically described in Fig. 5, where D is the segment

linking the central minutia A and its neighbor B, h1 and

h2 are the two minutiae orientation angles and a is the

angle between D and the orientation of A (h1):

• The euclidean distance between the central minutia

and its neighbor (segment D in Fig. 5); referred to

as Ed in the rest of the paper (euclidean distance).

• The angle between segment D and the central

minutia ridge direction (angle a in Fig. 5); latterly

referred to as Dra (i.e. distance relative angle).

• The difference angle between central minutia and

neighbor ridge orientation angle (h1 – h2 in Fig. 5);

latterly referred to as Oda (i.e. orientation differ-

ence angle).

• The ridge count between the central minutia and its

neighbor: in Fig. 5, the ridge count value is 1;

latterly it will be referred to as Rc (ridge count).

Choosing the maximum number of neighbors is very

important for system reliability performances (but in

contrast with the matching speed), and so we have

decided to increase this number from the default

MINDTCT value (5) to the new value of 8. Thus, to

represent a minutia in the template we use a maximum

of 32 feature values, 4 for each of its neighbors.

We have also modified the MINDTCT C source

code to find, for every minutia, only the neighbors

Fig. 5 Graphical description of the features

366 Pattern Anal Applic (2006) 9:359–376

123

above a minimum reliability threshold (as previously

stated, the reliability evaluation is found by MIND-

TCT). If the number of neighbors found in this way is

too low (i.e. less than 5), then the neighbors are sear-

ched again with a lower reliability threshold.

We decided to discard the minutiae type informa-

tion (bifurcation or ridge ending) since sometimes

MINDTCT fails to correctly identify the type, princi-

pally in the disturbed ridge zones or in the loop zones.

We have introduced all these changes to build a

‘‘good’’ neighborhood, with enough trustworthy infor-

mation to face the possible lack of some minutiae in

the template. Given a minutia, the collection of all the

features of its neighbors describes its neighborhood

view, which is a sort of ‘‘panorama’’ of the surrounding

minutiae. Inside the template, these neighborhoods are

stored in the reliability decreasing order of their cor-

responding central minutia (the reason is in Sect. 3.3).

3.3 Algorithm description

Our proposed matching algorithm computes how much

the neighborhood of a minutia in the candidate tem-

plate is similar to the neighborhood of each minutia in

the reference template. At the end of this scan step, the

two most similar minutiae (those whose ‘‘similarity

value’’ is the lowest) are matched and then discarded

from subsequent scan phases concerning other differ-

ent minutiae of the candidate template. All these

similarity measures are summed together during the

process and, at the end, the algorithm can decide if the

two templates match by applying a threshold on this

global score.

As previously stated, matching on smartcard envi-

ronment is bounded by the hardware simplicity (CPU

limitations first of all), and thus waiting for a complete

minutiae match could lead to a waiting time which is

too long for the user. In our algorithm we solve this

problem by stopping the computation as soon as it is

possible to assert, with satisfactory confidence, that the

considered templates belong to the same fingerprint.

To achieve this improvement, our algorithm stops as

soon as it finds some minutiae pairs (i.e. a number

between 2 and 5) matching with a very good average

similarity value, or even immediately when only the

last examined minutiae pair has a matching value lower

than a very rigourous threshold. Otherwise, if these

two conditions are not true, the algorithm explores all

the minutiae pairings space. This relaxation showed a

very good security performance in our tests and pro-

vided an evident speed improvement in the matching

decisions regarding positive matches (Sect. 4.3). The

delay for unsuccessful matches scanning all the minu-

tiae list of different fingerprints is not of much interest,

since it is clearly more important to gain a high exe-

cution speed while verifying the true card-owner

identity, than quickly rejecting an impostor!

As input, one iteration of the match procedure re-

ceives the candidate minutia (C in Fig. 6) to be mat-

ched, and the entire reference template with all its

minutiae (each of them is called R in Fig. 6). As shown

in Sect. 3.2, the minutia information exactly corre-

sponds to its neighborhood features: the terms

‘‘minutia’’ and ‘‘neighborhood’’ can be used as syn-

onyms, since to match a minutia we need to match its

neighborhood. The procedure in Fig. 6 is repeated for

Fig. 6 Flowchart of the match algorithm

Pattern Anal Applic (2006) 9:359–376 367

123

each C minutia in the candidate template, or until one

stopping condition is true.

The algorithm scans sequentially the minutiae of the

reference template until a good match for the input

minutia is found. Both candidate and reference minu-

tiae lists are stored according to the increasing minutia

reliability value: in this way we try to stop the proce-

dure more quickly by scanning a reduced portion of the

template minutiae lists. In fact, a minutia with a high

reliability in a given template, when not cut away by

partial overlapping, will probably have a high reliabil-

ity also in other templates obtained from the same

finger. Thus, the stopping conditions can be met earlier

than in a casual disposition of the minutiae in the list.

Moreover, it is obviously better to prematurely stop

the procedure with few but ‘‘good’’ minutiae than with

low quality ones. The minutia of the reference tem-

plate matched in this way, is then marked as ‘‘already

matched’’ and is not considered in the successive iter-

ations.

To compute the dissimilarity between two minutiae

(or neighborhoods) in different templates, the algo-

rithm uses the neighbor features explained in Sect. 3.2

and executes the following four steps in sequence (la-

bels 1 and 2 in Fig. 6):

1. To find the difference in absolute value between

corresponding features: EdDiff = |Ed1 – Ed2|,

rcDiff = |Rc1 – Rc2|, draDiff = |Dra1 – Dra2| and

odDiff = |Oda1 – Oda2|.

2. To check that every feature difference value is

below the corresponding acceptance threshold; if

only one difference value exceeds the relative

threshold, the two neighbors cannot correspond in

the two respective neighborhoods (edDiff must not

be greater than the limit set by edDiffThr, rcDiff

than rcThr, edDiff than draThr and odDiff than

odThr). The set of the four feature difference

thresholds can be globally defined as the features

bounding box, which makes the algorithm tolerant

to small non-linear distortions.

3. To multiply each feature difference for the cor-

responding weight value: thus, edWghtDiff = ed-

Diff · edWght, rcWghDiff = rcDiff · rcWght,

odWghtDiff = odDiff · odWght and draWght-

Diff = draDiff · draWght. The different weight

values are necessary to attribute more importance

to the features that match better such as, in our

test experience, the euclidean distance. Before

multiplying for the weight value, we have nor-

malized the feature differences with respect to the

bounding box thresholds (to have homogenous

values).

4. To sum together all the four weighted differences

to represent the global dissimilarity between the

two neighbors: NeighDissimilarity = edWght-

Diff + rcWghtDiff + draWghtDiff + odWghtDiff.

Following these four steps, the algorithm finds for

the first neighbor of the reference minutia, the most

similar neighbor in the input minutia among those

satisfying the bounding box checks; the most similar is

the one for which the algorithm finds the lowest

NeighDissimilarity value (label 3 in Fig. 6). The chosen

most similar neighbor in the reference minutia is then

marked and not considered while matching other

neighbors. The obtained NeighDissimilarity value is

then added to the global similarity score between the

minutiae, MinDissimilarity, and the number of neigh-

bors matched NM is incremented by one (label 3 in

Fig. 6).

This procedure is repeated exactly for all the other

neighbors in the minutia of the reference template

(‘‘No’’ case in the label 5, Fig. 6) and excluding the

already marked ones, or until the required minimum

number N (i.e. 4) of neighbors has been matched

(‘‘Yes’’ case in label 4, Fig. 6): we have seen that

stopping before the whole neighborhood scan is suffi-

cient to grant good reliability and, meanwhile, the

match time is considerably speeded up.

Otherwise, at the end of the two neighborhoods

scanning and if the procedure has found less than N

matching neighbor pairs between the two minutiae

(‘‘Yes’’ case in label 5, Fig. 6), these two minutiae can

not be considered as matching because their neigh-

borhoods agree on too few points of evidence to be a

reliable pair, even if their MinDissimilarity value is

very low. Thus, the following minutia R in reference

template has to be checked (‘‘No’’ case in label 6,

Fig. 6), but if there are no more minutiae R to be

examined, the entire procedure in Fig. 6 is repeated for

the next minutia C in the decreasing reliability order of

the candidate template.

Instead, if the neighborhoods of the two R and C

minutiae have been matched (‘‘Yes’’ case in label 4,

Fig. 6), the MinDissimilarity score between M and N is

finally divided by the number of matched neighbor

pairs and then added to the global dissimilarity value

between the candidate and reference templates: the

MatchCost. The number of matched minutiae Minuti-

aeMatched is then incremented (label 7 in Fig. 6).

Just after we state that two minutiae/neighborhoods

can be matched, we can check also if the two stopping

conditions explained before can be applied (label 8 in

Fig. 6): first, the algorithm checks if the temporary

average MatchCost is ‘‘very good’’, that is below a

368 Pattern Anal Applic (2006) 9:359–376

123

tightening threshold OptValue; second, the algorithm

checks if the last matched minutiae pair has an

‘‘exceptionally good’’ MinDissimilarity value, below a

threshold which is intended to be much stricter than

the previous one.

If even one of these two conditions is true, the match

can be immediately stopped with a positive result (the

two templates belong to the same finger), otherwise

one more minutia C from the candidate template must

be checked (label 9 in Fig. 6).

In case these conditions are never met during the

templates scanning, and when all of the input minutiae

have been processed, the final MatchCost value is di-

vided by the number of matched minutiae Minutiae-

Matched, finding in this way the average cost to match

one single minutia. A final comparison between a

match threshold and this mean value can consequently

be used to decide if the two templates belong to the

same fingerprint.

The described algorithm complexity is O(n2), where

n is the number of the minutiae in a single template,

even if, in practice, the approach of stopping the

computation with few minutiae shows a significant

speed improvement.

3.4 Algorithm implementation

The fingerprint matching algorithm described in

Sect. 3.3 was fully developed, debugged and tested on a

PC with a Pentium4 CPU (2.66 GHz), a RAM of

512 Mb and using the JDK 1.4.3. Then the same

algorithm was ported on the Java CardTM platform

using the Java CardTM 2.1.2 API, and was finally de-

ployed on a JCOP41v2.2 Java CardTM with the IBM

JCOP Tools 3.1.1. The chosen smartcard has 72 kb of

EEPROM, more than 4 kb of RAM memory, an

internal clock up to 30 MHz (external clock 1–

10 MHz) and supports cryptographic operations.

The algorithm was developed by implementing the

methods of the Java CardTM Biometric API [40], de-

signed by Java Card forum (JCF) [41]. This application

programming interface (approved by the Java Card

Forum Biometric Task and the NIST Biometric Con-

sortium Working Group) ensures the interoperability

of many biometric technologies with Java CardTM and

allows multiple independent applications on a card to

access the identity verification service. Clearly, our

application manages even the enrollment and match

requests coming from the external PC applications

through several CAD sessions. The feature extraction

stage is executed on the PC.

We chose to adopt the Java CardTM technology

since this platform offers good security and a high-level

programming language, close to classic JavaTM. Bene-

fits and drawbacks of this platform are those explained

in Sect. 2.3. The difficulty consists in adapting the code

to this restricted environment. Furthermore, the card

processor supports only fixed point arithmetic and the

JavaTM math API are totally absent, so the operations

have to be very simple.

Despite this global simplification, the verification

reliability performance has to be kept as high as pos-

sible. Due to these environment constraints, we limited

the maximum number of the minutiae (forming the

card-owner reference template) to be stored in the

EEPROM: only the 20 most reliable minutiae are

stored inside the card. Similarly, the match decision is

taken anyway after the 20th minutia in candidate

template is received (a number between 20 and 25

minutiae has shown the best performances). In the

interests of speed improvement and memory occupa-

tion contraction, the maximum number of neighbors

per minutia was limited to 8. Moreover, the N thresh-

old in Sect. 3.3 was set to 4 to speed-up the procedure

(we decide if two neighborhoods can be matched just

after N neighbor pairs have been matched).

The neighbor feature values in Sect. 3.2 must be

sampled to be stored in the low capacity Java CardTM

primitive data types like the byte, preferring its use in

respect to other types such as the short (which has a size

of 16 bits instead of 8). Features euclideanDistance,

distanceRelativeAngle and orientationDifferenceAngle

were normalized in order to fit in the byte interval [0,

127], while the ridgeCount with a neighbor difficultly

exceeds the byte maximum value and so, was not sam-

pled. This sampling also prevents the sum of the feature

differences (instead stored inside a short) from

exceeding the capacity of the Java CardTM data types.

To test our algorithm (Sect. 4.3) we did not impose a

minimum number for the minutiae in the templates to

be matched, since we decided to have no rejected fin-

gerprints during the enrollment or the match phases,

but in real world applications, it is surely fundamental

to require mandatory minimum information.

The EEPROM allocation space to be reserved on

the card for our MoC applet (after its instantiation) is

about 10 Kb using 20 minutiae, about one-seventh of

the whole EEPROM memory in our test smartcard.

Every minutia is stored as a Java CardTM object, so this

storage occupation can be reduced by using a simpler

data structure: with 20 minutiae and 8 neighbors for

each minutia, a 640 bytes array is enough, since each of

the four features of a neighbor can be represented with

a byte. The use of a plain data structure will also speed-

up the memorization process of the template inside the

smartcard.

Pattern Anal Applic (2006) 9:359–376 369

123

4 Performances

4.1 Fingerprint databases

Usually, the performances of a fingerprint matching

algorithm are tested with a proprietary fingerprint

database and so, it is often impossible to compare their

results with uniform operating conditions. An algo-

rithm could achieve good performances for its chosen

image acquisition system, so certifying the overall

(acquisition plus matching) system performances, but it

can also be useful to test the functioning over a com-

mon reference. For this reason, we decided to use the

fingerprint databases from the Finger Verification

Competition 2002 [42] (FVC2002) and 2004 [37]

(FVC2004) editions, since, as we know, this is the only

public benchmark (together with FVC2000 [43] edi-

tion) allowing industrial, academic and independent

developers to unambiguously compare their algo-

rithms. In this way, we can have also a comparison and

show the performance drop in respect to the algorithms

in the competitions, which are indeed not suitable for

the smartcard constraints.

Each of the FVC databases is 110 fingers wide and 8

impressions per finger deep (880 fingerprints in all); the

real benchmark is constituted by fingers numbered

from 1 to 100 (set A), since the fingers from 101 to 110

(set B) have been made available to the competition

participants to allow a parameter tuning before the

submission of their algorithms.

In our tests, we used the two databases from

FVC2002 collected respectively with the optical sensor

‘‘TouchView II’’ by Identix, and the optical sensor

‘‘FX2000’’ by Biometrika; moreover, we show the

preliminary results achieved with one of the FVC2004

databases, synthetically generated with the SFINGE

software [2].

Other large public domain databases are the Na-

tional Institute of Standards and Technology (NIST)

collections, even if they are not completely suitable for

systems working on live-scan images: for example, the

NIST DB 4 [44] contains images scanned from enrolled

inked impressions. One more public fingerprint data-

base is described in [45] together with a signature

database, since the purpose of this project promoted by

the Biometric Research Laboratory—ATVS (Univers-

idad Politecnica de Madrid) was to collect a bimodal

database. It is made of 79,200 fingerprint samples ac-

quired with two different sensors.

Moreover, we personally collected a small database

using the FX2000 optical scanner model by Biometrika

[46], directly acquiring some images from people

poorly trained in biometric devices and systems; our

collection has 8 repetition for each of the 40 different

fingers, for a total of 320 images. Subsequently, we will

refer to this as the ‘‘Internal Database’’.

In addition to the image databases already dis-

cussed, we analyzed our algorithm in respect to that

proposed in [35], using also the same proprietary

database provided to us by the authors. This very good

quality image collection is made up of 10 different

repetitions of 55 fingers, for a total of 550 samples;

even these images have been collected using the same

FX2000 scanner. From now on, we will refer to this as

the ‘‘Hybrid Database’’.

We present all these results to show also how much

different databases can affect the performances of a

match algorithm.

4.2 Performance indicators

Commonly, a typical biometric verification system

commits two types of errors: mistaking the biometric

measurements from two different fingers to be from

the same one (false acceptance), and mistaking two

biometric measurements from the same finger to be

from two different fingers (false rejection). The prob-

ability of these events are respectively defined as the

FAR and FRR.

A further performance description can be given by

the EER, which denotes the error rate for which FAR

and FRR are identical at some operating point t (the

match threshold). The trade-off curve associated with a

fingerprint authentication system is known as the re-

ceiver operating characteristic (ROC) curve. The ROC

curve plots the FAR against the FRR for the same

match threshold value, and can be generated by

obtaining FAR and FRR values under many different

operating points.

Another important factor to be considered for MoC

algorithms is the average matching time, clearly be-

cause of the hardware limitations. The average

enrollment time is, instead, less important for our

purposes because the enrollment is executed only once

at the smartcard personalization phase.

Also, the maximum template size is of significant

importance, because the smartcard EEPROM memory

is usually limited to 32–72 kb and is also used to store

the match procedure code and other applications.

Usually, the algorithms not using correlation based

methods have an average template size of few kilo-

bytes [38], since they do not directly need the finger-

print images. The template size for our algorithm is

discussed in Sect. 3.4.

Other interesting performance indicators can be

derived by increasing or decreasing the matching

370 Pattern Anal Applic (2006) 9:359–376

123

threshold and then observing the algorithm behaviour:

for example the FAR100 (the lowest achievable FRR

for a FAR £1%), FAR1000 (the lowest FRR for FAR

£0.1%), ZeroFAR (the lowest FRR for FAR = 0%)

and finally ZeroFRR (the lowest FAR for

FRR = 0%).

All these performance indicators can be substan-

tially altered in our algorithm by modifying some

parameters.

4.3 Performance results

The distribution between FAR and FRR tests can

greatly influence the declared performances. For this

reason we decided to run the same tests as executed

during the FVC competition (see [37] for more infor-

mation): 2,800 iterations to find the FRR and 4,950 to

find the FAR, for a total number of 7,750 match tests

executed between exactly the same fingerprint images

as in the international competition. For our main

parameter configuration and our purposes, we were

essentially interested in giving the best FAR1000 per-

formance.

Here we summarise some of the results obtained

from the FVC2002 database collected with the FX2000

optical scanner, which show some of the best global

performances among the other FVC databases:

• EER 4.6%

• FAR100 5.5%

• FAR1000 6.3%

Figures 7 and 8 show respectively the ROC and the

FAR–FRR curves for the tests on the FX2000 data-

base.

One very important aspect to be highlighted is that

using the two stopping conditions of Sect. 3.3 does not

weaken the overall security: only about 1.6% of the

total false matches accepted were introduced by

Fig. 7 The receiver operating characteristic (ROC) curve for the
fingerprint verification competition 2002 (FVC2002) FX2000
database (using the set A images)

Fig. 8 The false acceptance rate (FAR) and false rejection rate
(FRR) curves for the FVC2002 FX2000 database. Reported
equal-error rate (EER) (4.6%) is at their intersection point
(using the set A images)

Fig. 9 Distribution of the
minutiae number needed to
positively stop the match,
with respect to correct FRR
tests. From this graphic we
can derive the average match
time: the min–max times to
match a single minutia are
0.3–1 s

Pattern Anal Applic (2006) 9:359–376 371

123

relaxing the problem and stopping the execution be-

fore the complete minutiae lists scan. This value was

measured at EER conditions on the FX2000 database

of FVC2002.

All the security performance results were obtained

running the tests on a PC to reduce the experiment

time, thanks to the fact that the algorithm code was the

same as the one implemented directly on the smartcard

(where, therefore, the same exactly results are

achievable): the basics of Java CardTM are a subset of

JavaTM language. Our performance results can com-

pete only with those of the last classified algorithms in

FVC2002 (see [42]), but they are developed without

the smartcard environment restrictions. In FVC2002

the performance has been calculated on a PentiumIII

at 933 MHz, which is indeed much faster than our

smartcard CPU, without considering other architecture

gaps. Comparing our architecture with the test envi-

ronment of FVC2002, we can see that our algorithm is

faster than all the FVC2002 algorithms.

We noticed that a minimum time of about 0.3 s is

needed for the entire match procedure and this result

can be achieved frequently using a good enrollment

fingerprint image, since in this case the two stopping

conditions of Sect. 3.3 can be met earlier in the com-

putation. Maximum time is instead more than 20 s, but

this result, unfeasible for real time smartcard verifica-

tion, is performed only in circumstances where the two

acquisitions belong to different fingerprints (not

interesting for our purposes), or when the image ac-

quired at the verification phase is very disturbed: these

premises often prevent the algorithm from stopping

quickly without exploring all the minutiae pairings

(thus, the image quality affects the average match

time).

In Fig. 9 we report, for two databases, the distribu-

tion of the minutiae number needed to stop the match,

with respect to the correct FRR tests. This distribution

was computed at FAR1000 conditions, so the correct

FRR tests are 93.7% of the total FRR tests (failed

FRR tests are 6.3%). From on-card experiments, we

verified that the maximum time needed to match one

minutia is about 1 s, while the minimum time is 0.3 s.

Thus, for the hybrid database, we can observe from

Fig. 9 that an on-card matching time of about 0.3–8

(min–max) s is obtained for nearly all of the matches

(more than 95%). Regarding instead the FX2000

database, 85% of the matches are executed within 8 s,

and 60% within a maximum of 3 s (Fig. 9). The results

obtained over the hybrid database (see Sect. 4.3.1) are

better than those of the FVC2002 FX2000 database,

since the average image quality of the first one is

evidently higher.

The enrollment time using a template with

20 minutiae is about 3.5 s; this time can be further re-

duced by using a simple data structure like an array.

Both the match and enrollment average times can be

slightly influenced by the particular CAD model.

In Fig. 10 we show some ROC curves obtained by

changing the N threshold explained in Sect. 3.3.

After that, we tested our algorithm using all the

images from sets A and B (110 instead of 100) of the

FVC2002 FX2000 database, for a total of 9,075 mat-

ches, distributed in 5,995 to test FAR and 3,080 to test

FRR; this distribution is derived with the same FVC

criteria. The performances on 100 images at the

beginning of this section were slightly improved,

showing a good stability of the algorithm:

• EER 4.6%

• FAR100 5.5%

• FAR1000 6.4%

After that, we additionally tested the algorithm

using the FVC2002 database acquired with the

TouchView II optical sensor. Using the 100 images of

the database set A (7,750 tests), we achieved an EER

of 6.7%.

• EER 4.6%

• FAR100 5.7%

• FAR1000 6.7%

In this way we proved that these good results can be

carried out from at least two different fingerprint

scanners, further proving the stability of our procedure.

With our internal database, we performed all the

possible tests between different fingers (for a total

51,040 matches to test FAR) and between the same

Fig. 10 The receiver operating characteristic (ROC) curves
changing the N threshold in Sect. 3; we decide if two minutiae
can be matched as soon as N neighbor pairs in their neighbor-
hoods have been matched

372 Pattern Anal Applic (2006) 9:359–376

123

fingers (a total of 1,120 matches to test FRR). The

results obtained are slightly better than those achieved

on the FVC databases:

• EER 3.0%

• FAR100 3.3%

• FAR1000 5.0%

During the tests, we observed that using a good

quality enrollment image considerably improves the

performances. This hypothesis of functioning is not

pervasive at all and is easily applicable, since the

enrollment phase is accomplished only once at the re-

lease/initialization of the smartcard, and can also be

controlled by a quality checker software module or

possibly even by a human operator.

At the end, we analyzed the performances with the

first 100 images (7,750 tests) of the FVC2004 database

generated with the SFINGE software. Preliminary re-

sults show that the degradation performance is signif-

icant, achieving a FAR100 of 25% and a FAR1000 of

29%. These results are not surprising, since the data-

bases from FVC2004 were intentionally made more

difficult than FVC2002 by exaggerating perturbations

such as skin distortion and condition [38]: the top five

algorithms score an average FAR1000 value of 0.4% in

FVC2002, and about 4% in the FVC2004 Light cate-

gory (considering the best database of each competi-

tion), thus, ten times more. Hardware limitations of the

FVC2004 Light category are still not comparable to

smartcard resources (Sect. 3.1).

4.3.1 A comparison with related work

We also compared our work with the algorithm in [35],

developed to be executed in a similar Java CardTM

environment. To obtain a significant comparison, we

tested our algorithm with the hybrid database granted

to us by the authors. We achieved the following results:

• EER 0.24%

• FAR100 0.40%

• FAR1000 0.61%

The tests were executed using the same FVC2002

guidelines for the match distribution between FAR

and FRR tests. We nearly reduced to one-fourth the

EER percentage of 0.8% achieved for the algorithm

shown in [35] (Table 1), even if this algorithm uses two

different matching modules and at the end merges

their results. Even executing all the possible FAR and

FRR tests with the database images, the EER found

with our algorithm was still significantly lower, at about

0.4%.

This last experiment also confirms that the quality of

the database images (good, in this case) can greatly

improve the global reliability performances.

In Table 2 we show all the reliability results previ-

ously presented.

5 Conclusion

In this paper we have proposed a new fingerprint

minutiae matching algorithm, thought and developed

to overcome the Java CardTM platform restrictions.

Our algorithm, tolerant to typical match problems

such as rotation, translation and non-linear deforma-

tions, achieves a very good speed performance for the

smartcard environment (0.3–8 s for the most of posi-

tive match tests). A FAR less than 0.1% and a FRR

of about 5–6% (the FAR1000 score) make the algo-

rithm implementation feasible in smartcard applica-

tions for identity verification. The reliability can be

greatly improved even further using a good enroll-

ment image. Moreover, the requirements of the

algorithm perfectly fit the exiguous resources of this

environment.

Our algorithm shows an asymmetric behavior with

respect to the execution time: the procedure is stopped

as soon as, with the aid of two particular conditions, the

templates are considered to belong to the same finger,

Table 1 EER comparison between our algorithm and the
algorithm in [35]

Algorithm EER on hybrid database

Hybrid matching algorithm [35] 0.8%
Our algorithm 0.24%

Table 2 Overall performance results

Fingerprint database EER (%) FAR100 (%) FAR1000 (%)

FVC2002 FX2000 database (100 images) 4.6 5.5 6.3
FVC2002 FX2000 database (110 images) 4.6 5.5 6.4
FVC2002 TouchViewII database (100 images) 4.6 5.7 6.7
Internal database 3.0 3.3 5.0
Hybrid database 0.24 0.40 0.61

Pattern Anal Applic (2006) 9:359–376 373

123

and so the algorithm usually stops earlier in correct

FRR tests (between different images of the same fin-

ger) and later in correct FAR tests (between different

fingers).

The MoC architecture provides, moreover, better

security, since the match decision is taken inside the

card and the user template is not stored in a centralized

database.

A MoC architecture with our matching algorithm

has already been successfully introduced in a digital

signing tool developed at the Institute for Informatics

and Telematics (National Research Council of Pisa

[47]). The biometric verification unblocks the certifi-

cate stored in the card and associated with the smart-

card owner. Consequently, it can be retrieved from the

PC to digitally sign a document.

Our future works will include discovering new

minutiae features, correlated with the core point or

with texture information near the minutia point, that

could improve the reliability and the speed by trying to

match a lower number of neighborhoods. We are also

considering to test the inclusion of a different matching

algorithm, like the one described in [9], to perform a

multimodal verification.

Acknowledgments We would like to thank the organizers of
Fingerprint Verification Competition (FVC) [42, 43, 37] who
have kindly granted to us the use of all of the fingerprint image
databases of the different editions; in particular, we would like to
acknowledge Raffaele Cappelli, Dario Maio and Davide Maltoni
from the Biometric Systems Lab (University of Bologna).
Moreover, we would like to thank Tommaso Cucinotta and
Riccardo Brigo from ReTiS Lab of Sant’Anna School of Ad-
vanced Studies (Pisa), who have kindly granted to us the use of
the fingerprint image database employed to test their algorithm
in [35]. Thanks are due also to the anonymous referees that, with
their interesting comments, helped to improve the readability
and the technical contribution of the paper.

References

1. Bistarelli S, Santini F, Vaccarelli A (2005) An asymmetric
fingerprint matching algorithm for java cardTM. In: Pro-
ceedings of AVBPA 2005. Springer, Berlin Heidelberg New
York, pp 279–289

2. Jain AK, Maltoni D (2003) Handbook of fingerprint recog-
nition. Springer, Berlin Heidelberg New York, Secaucus, NJ

3. Lee HC, Gaensslen RE (1991) Advances in fingerprint
technology. Elsevier, New York

4. Pankanti S, Prabhakar S, Jain AK (2002) On the individu-
ality of fingerprints. IEEE Trans Pattern Anal Mach Intell
24(8):1010–1025

5. Hatano T, Adachi T, Shigematsu S, Morimura H, Onishi S,
Okazaki Y, Kyuragi H (2002) A fingerprint verification
algorithm using the differential matching rate. In: ICPR ’02:
proceedings of the 16th international conference on pattern

recognition (ICPR’02), vol 3. IEEE Computer Society,
Washington, pp 799–802

6. Bazen AM, Verwaaijen GTB, Gerez SH, Veelenturf LPJ,
van der Zwaag BJ (2000) A correlation-based fingerprint
verification system. In: Proceedings of the ProRISC work-
shop on circuits, systems and signal processing, Veldhoven,
The Netherlands. STW Technology Foundation, pp 205–213

7. Takeda M, Uchida S, Hiramatsu K, Matsunami T (1990)
Finger image identification method for personal verification.
In: 10th international conference on pattern recognition, vol
1. IEEE Computer Society,Washington, DC, pp 761–766

8. Kaymaz E, Mitra S (1993) Analysis and matching of de-
graded and noisy fingerprints. In: Tescher AG (ed) pro-
ceedings of SPIE, vol 1771, Applications of digital image
processing XV, pp 498–509

9. Jain AK, Prabhakar S, Hong L, Pankanti S (2000) Filter-
bank-based fingerprint matching. IEEE Trans Image Process
9(5):846–859

10. Stosz JD, Alyea LA (1994) Automated system for fingerprint
authentication using pores and ridge structure. In: David
Murley J, Richard J. Mammone (eds) proceedings of auto-
matic systems for the identification and inspection of humans
(SPIE), vol 2277. IEEE Computer Society, Washington, DC,
pp 210–223

11. Ratha NK, Karu K, Chen S, Jain AK (1996) A real-time
matching system for large fingerprint databases. IEEE Trans
Pattern Anal Mach Intell 18(8):799–813

12. Bistarelli S, Boffi G, Rossi F (2003) Computer algebra for
fingerprint matching. In: International conference on com-
putational science ICCS03, vol 2657/2003, pp 811–820

13. Jain AK, Hong L, Bolle RM (1997) On-line fingerprint
verification. IEEE Trans Pattern Anal Mach Intell
19(4):302–314

14. Luo X, Tian J, Wu Y (2000) A minutiae matching algorithm
in fingerprint verification. In: 15th international conference
on pattern recognition, vol 4. IEEE Computer Society,
Washington, DC, pp 210–223

15. Jiang X, Yau W-Y (2000) Fingerprint minutiae matching
based on the local and global structures. icpr 02:1042–1045

16. Ratha NK, Bolle RM, Pandit VD, Vaish V (2000) Robust
fingerprint authentication using local structural similarity. In:
5th IEEE workshop on applications of computer vision.
IEEE Computer Society, Washington, DC, pp 29–34

17. Hrechak AK, McHugh JA (1990) Automated fingerprint
recognition using structural matching. Pattern Recognit
23(8):893–904

18. Fan K-C, Liu CW, Wang Y-K (2000) A randomized ap-
proach with geometric constraints to fingerprint verification.
Pattern Recognit 33(11):1793–1803

19. Willis AJ, Myers L (2001) A cost-effective fingerprint rec-
ognition systems for use with low-quality prints and damaged
fingerprints. Proc Pattern Recognit 34(2):255–270

20. Kovacs-Vajna ZM (2000) A fingerprint verification system
based on triangular matching and dynamic time warping.
IEEE Trans Pattern Anal Mach Intell 22(11):1266–1276

21. Bhanu B, Tan X (2003) Fingerprint indexing based on novel
features of minutiae triplets. IEEE Trans Pattern Anal Mach
Intell 25(5):616–622

22. Jain AK, Ross A, Prabhakar S (2001) Fingerprint matching
using minutiae and textures features. In: Proceedings of
international conference on image processing (ICIP), Thes-
saloniki, Greece, pp 282–285

23. ISO 7816: integrated circuit(s) cards with contacts—part 1,
1998. International Standardization Organization, JTC 1/SC 17

374 Pattern Anal Applic (2006) 9:359–376

123

22. Enrique Ortiz C (2003) An introduction to Java CardTM

technology, Parts 1-2-3, Java Developer Web Site
25. Chen Z (2000) Java Card technology for smart cards:

architecture and programmer’s guide. Addison-Wesley,
Longman Publishing Co., Inc., Boston

26. Ratha NK, Connell JH, Bolle RM (2001) An analysis of
minutiae matching strength. In: AVBPA ’01: proceedings of
the 3rd international conference on audio- and video-based
biometric person authentication. Springer, London, pp 223–
228

27. Kocher PC, Jaffe J, Jun B (1999) Differential power analysis.
In: CRYPTO ’99: proceedings of the 19th annual interna-
tional cryptology conference on advances in cryptology.
Springer, London, pp 388–397

28. Pan SB, Moon D, Gil Y, Ahn D, Chung Y (2003) An ultra-
low memory fingerprint matching algorithm and its imple-
mentation on a 32-bit smart card. In: IEEE transactions on
consumer electronics, vol 49. IEEE Computer Society,
Washington, pp 453–459

29. Moon YS, Ho HC, Ng KL, Wan SF, Wong ST (2000) Col-
laborative fingerprint authentication by smart card and
atrusted host. In: Canadian conference on electrical and
computer engineering, vol 1. IEEE Computer Society,
Washington, pp 108–112

30. Reisman J, Uludag U, Ross A (2005) Secure fingerprint
matching with external registration. AVBPA 720–729

31. Ross A, Jain AK, Reisman J (2003) A hybrid fingerprint
matcher. Pattern Recognit J 36(7):1661–1673

32. Ishida S, Mimura M, Seto Y (2001) Development of personal
authentication techniques using fingerprint matching
embedded in smart cards. In: EICE transactions on infor-
mation and systems, vol E84-D, pp 812–818

33. Tang TY, Moon YS, Chan KC (2004) Efficient implemen-
tation of fingerprint verification for mobile embedded sys-
tems using fixed-point arithmetic. In: SAC ’04: proceedings
of the 2004 ACM symposium on applied computing. ACM
Press, New York, pp 821–825

34. Yang S, Verbauwhede I (2003) A secure fingerprint match-
ing technique. In: WBMA ’03: proceedings of the 2003 ACM
SIGMM workshop on biometrics methods and applications.
ACM Press, New York, pp 89–94

35. Cucinotta T, Brigo R, Di Natale M (2004) Hybrid fingerprint
matching on programmable smart cards. TrustBus 232–241

36. van Wamelen P, Li Z, Iyengar S (2000) A fast algorithm for
the point pattern matching problem. Technical report 1999-
28, Louisiana State University, Dept. of Mathematics

37. Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK
(2004) Fvc2004: third fingerprint verification competition.
ICBA 1–7

38. Cappelli R, Maio D, Maltoni D, Wayman JL, Jain AK (2006)
Performance evaluation of fingerprint verification systems.
In: IEEE transactions on pattern analysis machine intelli-
gence, vol 28. IEEE Computer Society, Washington, pp 3–18

39. National Institute of Standards and Technology. User’s guide
to NIST fingerprint image software (NFIS). NISTIR 6813

40. NIST/Biometric Consortium Interoperability, Assurance,
and Performance Working Group 7. Java CardTM Biometric
API White Paper (Working Document), August 2002. Ver-
sion 1.1

41. Java Card ForumTM official, web site: http://www.jav-
acardforum.org/

42. Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK (2002)
Fvc2002: second fingerprint verification competition. ICPR
(3):811–814

43. Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK (2002)
Fvc2000: fngerprint verification competition. IEEE Trans
Pattern Anal Mach Intell 24(3):402–412

44. Watson CI, Wilson CL (1992) Nist secial dtabase 4. Finger-
print database

45. Ortega-Garcia J, Fierrez-Aguilar J, Simon D, Gonzalez J,
Faundez-ZanuyM, Espinosa V, Satue A, Hernaez I, Igarza
JJ, Vivaracho C, Escudero D, Moro QI (2003) Mcyt baseline
corpus: a bimodal biometric database. IEE Proc Vis Image
Signal Process 150(6):395–401

46. Biometrika s.r.l., web site: http://www.biometrika.it
47. Institute of informatics and telematics (c.n.r.), biometric

group web site: http://www.iit.cnr.it/organizzazione/sicu-
rezza_informazione/ biometria/index.htm

Author Biographies

Stefano Bistarelli is Associ-
ate Professor of Computer
Science at the Department of
Science of the University ‘‘G.
d’Annunzio’’ in Pescara and
External Researcher of the
IIT of C.N.R., Pisa. He ob-
tained his Ph.D. in Computer
Science in 2001 at the Com-
puter Science Department of
the University of Pisa. His
thesis was awarded by the
Italian Association of Artifi-
cial Intelligence and by the
Italian Chapter of the EAT-
CS. His research interests

range from Artificial Intelligence to Programming Languages,
with particular attention to Soft Constraints and Security issues.
Recently, some of his work has been published in the LNCS 2962
book by Springer.

Francesco Santini is currently
(since 2006) a Ph.D. student in
Computer Science and Engi-
neering at the IMT (Institu-
tions, Markets and
Technologies) Institute of
Advanced Studies in Lucca. In
2003, he graduated from the
University of Pisa in Com-
puter Science, and afterwards
he had been a Research Fel-
low for 2 years at the Institute
of Informatics and Telematics
of C.N.R., Pisa. His interests
cover Biometric Identity Ver-

ification and, more generally, Security related issues. He is inter-
ested also in Network Management issues, with a special attention
on ‘‘Quality of Service’’ and related formal models/frameworks
based on Constraint Programming and Soft Constraints.

Pattern Anal Applic (2006) 9:359–376 375

123

Anna Vaccarelli is Senior
Technologist at the Institute of
Informatics and Telematics
(IIT) C.N.R., Pisa (since 2001),
where is also the head of the
Information Security Research
Group. She received her doc-
toral degree in Electronic Engi-
neering from Pisa University in
1984, and has been a researcher
at C.N.R. since 1987. She has
been coordinating several re-
search projects and scientific
agreements in information

security. She was Contract Professor at Pisa University for the
course ‘‘Aperture antennas’’. Currently, she is professor at the
‘‘Internet technologies’’ Master organized by IIT and Pisa Uni-
versity. She is co-author of several scientific publications con-
cerning information security.

376 Pattern Anal Applic (2006) 9:359–376

123

	An asymmetric fingerprint matching algorithm for Java Card TM
	Abstract
	Introduction
	Paper structure

	Background
	Fingerprint appearance and minutiae features
	Fingerprint matching problems and solutions
	The Java CardTM Platform
	MoC introduction
	Related work

	Our MoC algorithm
	Solution characteristics
	Features extraction
	Algorithm description
	Algorithm implementation

	Performances
	Fingerprint databases
	Performance indicators
	Performance results
	A comparison with related work

	Conclusion
	Acknowledgments
	Sec20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

