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Abstract. We model qualitative and quantitative aspects of metabolic
pathways by using a stochastic version of Multiset Rewriting (SMSR).
They offer a natural way of describing both the static and the dynamic
aspects of metabolic pathways. We argue that, due to its simple con-
ceptual model, SMSR may be conveniently used as an intermediate lan-
guage where many higher level specification languages may be compiled
(e.g., as in the security protocol example). As a first step, we show also
how SMSR may be used to simulate Stochastic Petri Nets for describing
metabolic pathways.

Keywords: Metabolic pathways, Bio-molecular Processes, Stochastic processes,
Multiset Rewriting.

1 Introduction
In the post-genomic era, the most prominent biological problems are detecting,
describing and analyzing the informational flows that make a set of molecules a
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living organism [1]. Genomic and proteomic techniques, in fact, are producing
the largest set of biological data available ever, but the problem of detecting and
describing how these entities (genes and proteins) interact with each other in the
complex molecular machinery of the cell has just begun being addressed. It is
necessary to find easy, comprehensive, and biological-friendly models to describe
molecules and their interactions.

Metabolism can be defined as the sum of all the enzyme-catalyzed reac-
tions occurring in a cell. There are relatively few metabolic pathways, but each
of these can be broken down into many individual, enzyme-specific, catalyzed
steps. Metabolism is a highly integrated process. Individual metabolic path-
ways are linked into complex networks through common, shared substrates. A
series of nested and cascaded feedback loops are employed to allow flexibility
and adaptation to changing environmental conditions and demands. Negative
feedback (usually by end-product inhibition) prevents the over-accumulation of
intermediate metabolites and it contributes to maintaining homeostasis.

Understanding the mechanisms involved in metabolic regulation has impor-
tant implications in both biotechnology and in medicine. For example, it is esti-
mated that at least a third of all serious health problems such as coronary heart
disease, diabetes and strokes are caused by metabolic disorders. Due to the in-
tegrated nature of metabolism, it is often difficult to predict how changing the
activity of a single enzyme will affect the entire reaction pathway. Mathematical
kinetic models have been applied to help elucidate the behavior of biochemical
networks.

It is common opinion [1] that an ideal model for biological enquiring has to
satisfy three requirements:

— It must be suitable for describing metabolic networks, in order to create
metabolic databases allowing the user to search for and compare biochemical
pathways in living organisms (like the genomic and proteomic database are
already doing).

— It must be implementable into a simulation machine, in order to realize
dynamic models of metabolic pathway that allow studying possible critical
situation and steady states, and generally predicting that certain conditions
will happen.

— It must be possible to run dynamic simulations in which to evaluate how
external agents interfere with molecules and processes, in order to infer the
consequences on the metabolic network stability. This kind of applications
is a useful in silico test of possible side effects of a drug.

For these reasons, proper theories and instruments of the Formal Methods
research community may help in defining formal models and tools (e.g., see [2]),
since they have been used so far to represent different kinds of relationships and
dynamic interactions among objects and processes in distributed systems. In this
paper, we use Multiset Rewriting (MSR) [3, 4], a logic-based formalisms based
on rewriting systems. MSR offers both a formal language for a precise descrip-
tion of molecular interaction maps, and an execution model allowing simulation



of the dynamics of molecular networks with the theoretical possibility of predict-
ing optimal values for certain parameters used in the system description. Basic
mechanisms in MSR include: (a) a multiset of items, used to describe a system
state, which can represent objects or resources or generic entities; (b) a set of
rewriting rules which act on a state by consuming and producing items. It is
our opinion that those simple and abstract mechanisms are expressive enough
in describing a large class interactions happening in molecular systems.

The rest of the paper is organized as follows. Section 2 and 3 recall respec-
tively the multiset rewriting framework and its stochastic extension. The main
result of the paper is described in Section 4 where biochemical systems are mod-
eled as multiset rewriting rules. Section 5 gives a complete real example showing
the applicability of the framework. Finally, Section 6 show a theoretical results
that gives the possibility to transform biological systems represented as petri
nets in our MSR model. Section 7 summarize the results and highlight some
future related research topics.

2 DMultiset Rewriting

The formal language of MultiSet Rewriting, MSR [4, 3], is given by the following
grammar, defining multisets, multiset rewriting rules and rule sets:

Multisets a,b,e,

17 | a,a
Multiset rewrite rules r = a—b
Rule sets o= | rrF

The elements of a multiset, denoted a above, are facts p(t) where p is a pred-
icate symbol and the terms ¢ = (¢1,...,%,) are built from a set of symbols X'
and variables z,y, z,.... Numerous examples will be given in the sequel. The
elements in a multiset @ shall be considered unordered, but may contain repli-
cated elements. For convenience, “” will be kept implicit when @ has at least
one element. Similar conventions apply to rule sets.

In a rule r = @ — b, the multisets @ and b are called the antecedent and
the consequent, respectively. We will sometimes emphasize that the above rule
mentions variables @ = (z1,...,2,) by writing it r(z) = a(z) — b(z). Then,
we denote the rule obtained by substituting the variables x with terms ¢ =
(t1,...,tn) as r(t) = a(t) — b(t).

An MSR specification describes the situation a system is in at a certain
instant as a multiset @ without any variable. This is called a state and written
s possibly subscripted. The transformations that describe the legal evolution of
the system are given as a set of rules . We represent the fact that the system
evolves from state s to state s’ by using one rule r in 7 as the judgment

Single rule application F:s— s



Operationally, this step is described by the following inference rule:

In order for r to be applicable in s, this state must contain an instance a(t) of r’s
antecedent a(x), and possibly some other facts ¢. If r is applicable, s’ is obtained
from s by removing a(t) and replacing it with the corresponding instance of the
consequent, 5(t) Basic execution steps can be chained. The iterated judgment
is written 7 : s —* §'.

3 Stochastic MSR

Stochastic MSR, (SMSR) is an extension of MSR aimed at studying reductions
quantitatively. The duration of each reduction is exponentially distributed. The
rate of that reduction is given as a result of applying a weight function w to the

current state s. A stochastic MSR rule with weight w is denoted a(x) —,, b(x).
The notion of rule application is modified as follows:

(F,a(x) =y b(x)) : €, a(t) —ryp(s) E b(E)
—_— —— ——
T s s’
Note that the rewriting rule naturally determines a labeled transition systems
LTS whose states are the multisets and whose transitions are the reduction rule
instances together with their rates. A so-called race condition determines the
dynamic behavior of the system, i.e. when more of different rules are enabled,
only the fastest succeed in being fired. It is worth to note that the continuous
character of the exponential distribution assures that the probability of two rules
firing at the same time is zero. The race condition has the effect of replacing the
possibilistic structure of the underlying LT'S into a probabilistic where the proba-
bility of each transition is proportional to its rate. This means that each rule will
fire not only when the head of a rule unify with (part of) a the current states,
but also depending on other conditions implemented with the function w(s).
Specific characteristics of the system can be analyzed instantiating a specific w
function (representing the race condition).
The analogy between biochemical reactions and SMSR is given in Table 1.

4 Modeling Biochemical Systems with SMSR

Biochemical Reactions. Biochemical reactions are usually represented by the
following notation:
aAd+bB =}_ ¢C+dD (1)

where A, B, C' and D are molecules, a,b,c,d, ... are their stoichiometric coeffi-
cients (which are constants), and k, k_; are the kinetic constants. The previous



Predicate name|molecular species

Predicate molecule

Rewriting reaction

To be enabled |for a reaction to be possible
To fire for a reaction to occur
Weight reaction rate

Table 1. Analogy between Biochemical Notions and SMSR.

formula may be considered as a declaration of the different proportions of reac-
tants and products, namely the objects at the left, and respectively at the right
of a rule —*. This proportion is given by the following formula:

c[p d
o ko _lory
k—y  [A]*[B]
which expresses the equilibrium constant, and [A], [B], ... are the concentrations

(i.e., , moli over volume unit) of the respective molecules. The reaction rate (i.e.,
the number of moli produces per time unit) depends usually on the kinetic con-
stant and on the concentration of the reactants. In some situations the reaction
rate may be influenced by other entities that slow its rate.

We can note that aA may be simply considered as:

a

——
A+...+A

and so the whole equation 1 may be considered a shortcut of for

a b c d

A A A A

A+.. . +A+B+...+B= C+...+C+D+...+D

This intuition give a first idea about how a reaction can be modeled in SMSR.
We encode each reactions in the two directions as two separate SMSR rules. For
example equation 1 may be encoded in the two following SMSR rules:

a b c d

—— ——
4,...,AB,....B>,C,....C.D,....D

and . ,
—— ——
C,....C.D,....D=y, A... AB,...B

where wy and wy,_, are the functions (which here depend on the kinetic values k
and k_1, on the stoichiometric coefficients a, b, ¢ and d, and on the overall number
of predicates A, B, C' and D currently in the state defining the application rate
of the rule. With abuse of notation, if we consider that

a

——
aA =A A

ey



then the equation (1) may be very naturally expressed by the following two
rewriting rules:
aA,bB —, ¢C,dD

and
cC,dD —ry,_ aA,bB

where wy,wy,_, are the functions that will define the actual reaction rate of
the reduction depending on several factors, as the kinetic constants, and the
concentrations/quantities of reactants. (Indeed, as stated in [5, 2], under certain
assumptions concentration and quantities may be exchanged.) If we use the
notation

Wh 1
to abridge ~
G, b
and ~
b —wy_, @

then the equation 1 may be represented in the SMSR framework as:
aA,bB ﬁg:il cC,dD (2)
that nicely resembles the traditional notation.

Enzymatic reactions are described similarly. The enzyme is considered as a per-
sistent, predicate that is not consumed by the reaction:
For example in the urea cycle (see Figure 5), the stoichiometric reaction (3)

Ewp+S—p Ep+A+F (3)

where the production of a certain amount of Arginine A and Fumarate F', from

Arginsuccinate S and catalyzed by the enzyme Arginosuccinase Eyo, is controlled

by the concentration of the Arginine in the environment. Precisely if the Arginine

concentration strongly increases the probability of this reaction decreases.
Reaction 3 may be expressed in SMSR with the following rule:

T4 : Ea2:S —wg EaZaAaF

where the reaction rate wy, = f(k,[A]) is an inverse function depending on the
kinetic constant k¥ and on the number of predicates A (thus the quantity of
arginine) in the actual state.

4.1 A Small Example

Consider the example in [6] about the dimerization reaction of a molecule R.
Assume that the biochemical rule is:

2R =} R,



also written as
R+R=f R,

With our formalism, it has been split in the two rules:

R,R —="* Ry
and
Ry —»"*1 R R
or equivalently
R,R=% Ry
-1

During the construction of the rule we need to build the rate function of the
reduction. This rate is usually function of concentrations or quantities. In a
monomolecular reaction, the weight function is given wg_1 = c¢;_, - |Ra|, i.e.
the product among the quantity of molecules and a constant depending on the
kinetic one k. In higher order molecular reaction, the weight function is wy =
ek - |R| - (JR| — 1), where ¢, depends on the kinetic constant k.

5 The Urea Cycle: A Complete Modeling Example

This section shows how to express in SMSR the reactions in the urea cycle. In
particular we refer to the pathway in Figure 5, representing the main interaction
occurring the human urea cycle.

In the urea cycle a sequence of chemical reactions, occurring primarily in the
liver, the ammonia is converted to urea in mammalian tissue. The urea, far less
toxic than ammonia, is subsequently excreted in the urine of most mammals.
Also known as the ornithine-citrulline-arginine-urea cycle, this cycle also serves
as a major source of the amino-acid arginine.

Assume the following abbreviations:

Enzymes Molecules
Arginase Eq1 Arginine (A Arginosuccinate S
Arginosuccinase Eg.o Aspartate |P Carbamoylphosaphate|C),
Arginosuccinase Synthase E.3 Clitrulline |Cy Fumarate F
Ornitine Transcarbamoylase|E, Ornithine|O Urea U
Water H,O

Table 2. Abbreviations

the reactions in the urea cycle are described by the stoichiometric equations in
Table 3, where both a continuous production of H>O and C,, and a destruction
of U are assumed in the environment. Here we assume these environmental
condition to be guaranteed by external reaction (that we express as [5-7] in
Table 4). The kinetic constants k; (here left unspecified) define the rate of the
relative reactions. Usually these rates are calculated experimentally by biologist



[1] E,+0+Cy,=}' Ci+E,

[2] Eus+Ci+ P+ ATP+=* S+ AMP + Eq3
[8] Eux+S+=4*, A+ F+ Ea

[4] Eui+ A+ HO+ =, U+ O+ Ean

Table 3. Stoichiometric equations for the urea cycle.

and their exact values are available in the literature or retrieved from one of the
public database on the web (e.g., from KEGG pathways database).

In the urea cycle two fundamentals feed-back regulations contribute to the
right production of Arginine and Ornithine. Informally they can be described as
in the following;:

1. if Arginine concentration strongly increases, the probability of reaction [3]
decreases;

2. if Ornithine concentration strongly increases, the probability of reaction [4]
decreases;

These mean that the Arginine and Ornithine production directly controls their
own rate of production. For example an excessive production of Arginine causes
negative feedback on the reaction producing the Arginine itself, decreasing the
probability of that reaction to happen.

Using SMSR, the stoichiometric reactions in Table 3 may be quite literally
expressed as rewriting rules and the predicate symbols used to represent molec-
ular entities are exactly the one used in the stoichiometric equations. In Table 4
we report the SMSR rewriting rules which model the urea cycle.

In the rewriting rules in Table 4 it worth stressing that the catalyzing enzymes
are expressed as persistent predicates, i.e. they are not consumed in practice
(clearly we can model also other situations). The stochastic parameters wy, are
indeed function of the kinetic constant k;, or the stoichiometric coefficients ¢
(here all equal to 1), of the relative stoichiometric equation.

Generally speaking we can assume that, for a stoichiometric equation [i],
wg;, = fi(ki,ci,s), where f; is a monotonic increasing function coming from
biological enquiring. For example the regulation feedback of the urea cycle forces
the following definitions:

wr, = fs(ks,|AI™)
wy_y, = f-3(k_3,]A]|)
wiy = fa(ka,|O]7)
wi_y = f-a(k-4,]0])
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Fig. 1. The Urea Cycle

where we want to express that the value of wy, (resp. wy,) inversely depend on
the number of predicates A (resp. O) in the global state”. Similarly wy, , (resp.
wy,_,) directly depends on the number of predicate A (resp. O) in the global
state.

6 Simulating Stochastic Petri Nets for Metabolic
Pathways Modeling with SMSR

In this section we show how SMSR can simulate the analysis performed on
metabolic pathways done using Stochastic Petri Nets (SPN’s) [6]. We argue
that this is not an isolate case and many other modeling approaches based on
formalisms for distributed and concurrent systems may be encoded in our frame-
work.

Petri Nets (PNs) are a family of distributed calculi, based on the notions of
places, tokens, markings and transitions. The idea is that places stores resources,
i.e. tokens. A marking is an instantaneous picture of the tokens present in the
places. A transition is a relation among set of places to set of places and describes
how markings change during the computation. A link from a place to a transition

" Here |A| returns the number of occurrences of the predicates A4 in s



[1] E.,0,Cp 2w CiE,

[2] Eas, Ci, P, ATP, 2,2 S, Eqs
8] Euz, S 2uy®, A, F,Ea>

[4] E.1 A, H,O — ks U, 0, Eqx

6] .—Cp
[6] e HzO
[7] U—.

Table 4. SMSR rules for the urea cycle.

is equipped with a number which expresses how many token are necessary from
that place to enable the transition. A link from a transition to a place is equipped
with a number that expresses how many token are produced when the transition
is fired. Transitions in stochastic Petri Nets are not instantaneous (as in many
other PNs), have a duration determined by a given probability distribution,
usually exponential. This duration is inserted in the transition.

As an example [6], consider the dimerization reaction of the molecule R
as represented in Section 4.1, and whose corresponding SPN is represented in
figure 2.

t. (monomerization)

t, (dimerization)

Fig. 2. SPN representation of the dimerization of molecule R

In [6], it has been advocated that Stochastic Petri Nets may be very useful
when considering dozen (hundreds) of different species but a small absolute
number of molecule. The analogy among metabolic pathways used in [6] is given
in Table 5.

The computation of an SPN’s is a graph that shows how markings evolve
in time. There is a weighted link from a marking to another whenever there
is a transition enabled in the previous marking that, due to its. Note that, as
usual, two transitions are not assumed to fire at the same time. The weight of
the transition, which clearly, denotes the rate of a reaction may depend on the
global marking.



Place molecular species

Token molecule
Marking quantities for each molecular species
Transition reaction

Transition enabled|for a reaction to be possible
Transition fired for a reaction to occur

Table 5. Analogy between biochemical notions and SPN’s.

We can propose an analogy among SPN’s and SMSR, as follows: Places cor-
respond to Predicate names; a token in a place is a predicate of a certain kind
in the multiset and thus a marking is essentially a multiset of atomic predicates.
Transitions are encoded as rewriting rules: A transition that consumes n token
from a certain place is is encoded through a rule which requires n instances of
the predicate corresponding to the place in the left hand side; a transition that
produces m token in a place corresponds to a rule which requires m predicates
on the right end side. The weight function of the rewriting rule is the same of
the transition, provided the analogy among the marking and the multiset.

Thus, the LTS produced by the SMSR from an initial multiset precisely
corresponds to the computation graph of the initial marking.

7 Conclusions, Future and Related Work

The MSR formalism has been used to study several forms of concurrent dis-
tributed computation [4, 7]. We advocate a simple stochastic variant of MSR,
named SMSR, as a natural framework to model biochemical reactions. It has
a clear and rigorous formal semantics. Moreover, its rules are readily under-
standable and seem quite close to textual descriptions of chemical reactions, at
a functional level. From the specification and analysis point of view, we started
to explore a line of research already successfully followed for security protocols
analysis. Indeed, many analysis tools compile high level specifications into sim-
pler MSR specifications [8]. Due to the simplicity and uniformity of the MSR
rewrite mechanism, many researchers feel it is easier to develop analysis algo-
rithms for MSR. In this paper, we show that a well known model of analysis
may be encoded into the SMSR, i.e. SPN’s. We argue that it will be possible
to faithfully encode also other specification languages as the stochastic process
algebra [2] into stochastic MSR (similarly to the encoding we proposed in [7]
for security analysis). An advantage is that the intermediate language is itself a
significant one for biologists.

Future work. We have two main goals:

— We plan to produce an optimized simulation environment based on the input
syntax of SMSR (possibly refined with built-in predicates or constraints)
and map into other specification formalisms;



— We plan also to adapt the rich theory already developed for M SR for a

suitable definition within biological systems of very useful formal notions
like composition, abstraction, equivalence, congruences and so on.

Related work. Other notable approaches using forms of (multiset)-rewriting are
presented in [9, 10]. The first approach exploits the modeling system Maude
based on algebraic notions and rewrite theory. The structure and hierarchy of
biological elements are represented through terms from a rich algebra. The em-
phasis is more on the qualitative aspects of the interactions. The latter is closer
to ours since it is mainly based on simulation of biochemical reactions. The lan-
guage, however, does not allow generic terms as ours. Moreover, our work instead
is more focused on showing the ability of SMSR of acting as natural low level
language for more complex description languages.
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