
Constraints, 8, 79–97, 2003
© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

General Properties and Termination Conditions
for Soft Constraint Propagation

S. BISTARELLI bista@di.unipi.it
CNR Pisa, Istituto per le Applicazioni Telematiche, Area della Ricerca di Pisa,
Via G. Moruzzi 1, 56124 Pisa, Italy

R. GENNARI rosella.gennari@cwi.nl
Applied and Computational Logic Group, CWI∗ & ILLC, Universiteit van Amsterdam,
∗Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands

F. ROSSI frossi@math.unipd.it
Università di Padova, Dipartimento di Matematica Pura ed Applicata,
Via G. B. Belzoni 7, 35131 Padova, Italy

Abstract. Soft constraints based on semirings are a generalization of classical constraints, where tuples of
variables’ values in each soft constraint are associated to elements from an algebraic structure called semir-
ing. This framework is able to express, for example, fuzzy, classical, weighted, valued and over-constrained
constraint problems.

Classical constraint propagation has been extended and adapted to soft constraints by defining a schema for
soft constraint propagation [8]. On the other hand, in [1–3] it has been proven that most of the well known
constraint propagation algorithms for classical constraints can be cast within a single schema.

In this paper we combine these two schemas and we provide a more general framework where the schema
of [3] can be used for soft constraints. In doing so, we generalize the concept of soft constraint propagation,
and we provide new sufficient and independent conditions for its termination.

Keywords: soft constraints, soft constraint propagation, termination, semiring, generic algorithm schema

1. Introduction

Soft constraints allow to model faithfully many real-life problems, especially those which
possess features like preferences, uncertainties, costs, levels of importance or absence of
solutions. In fact, a soft constraint problem (SCSP) is just like a classical constraint
problem (CSP), except that each instantiation for the variables of a soft constraint is
associated with an element taken from a set (usually ordered). These elements directly
represent the desired features, since they can be interpreted as levels of preference, costs,
levels of uncertainty, etc.

There are many formalizations of soft constraint problems [8–11, 14]. In this paper
we consider the one based on semirings [4, 8], where the semiring specifies the set of
elements to be used to represent the desired features, the order over such a set, and the
operation for combining constraints. This formalism has many interesting instances, like
classical, fuzzy [9], weighted, valued [14], probabilistic [10] and partial [11] constraints.

The constraint propagation techniques usually used for classical CSPs have been
extended and adapted to deal with soft constraints, provided that certain conditions are



80 S. BISTARELLI, R. GENNARI AND F. ROSSI

met. This leads to an algorithm schema for soft constraint propagation, in which, at each
step, a small subproblem is solved, as in classical constraint propagation [8]. By study-
ing the properties of this schema, it turns out that such steps can be seen as applications
of functions which are monotonic, inflationary and idempotent with respect to a certain
partial ordering.

On an orthogonal line of research, the concept of constraint propagation over classical
constraints has been studied in depth in [1–3] and a general algorithmic schema (called
GI) for achieving constraint propagation has been devised. The GI algorithm can be
instantiated to most of the existing constraint propagation algorithms, given a partial
ordering with bottom and a finite set of functions [3].

By studying and comparing the semiring-based framework for soft constraints and
the GI schema, one can notice that indeed the latter can be instantiated to most of the
constraint propagation algorithms for soft constraints as well: we just need to define an
appropriate partial order between soft constraint satisfaction problems and to find suitable
functions.

Moreover, by analyzing the properties of the GI algorithm, one can see that soft
constraint propagation can be enforced by means of functions which are not necessar-
ily idempotent (as instead required in [8]). This is a double generalization: we do not
need, like in [8], that each constraint propagation function solves a subproblem, nor
that it is idempotent. This allows us to model several forms of “approximate” con-
straint propagation, which were instead not captured by the schema in [8]. Example are
bounds-consistency for classical constraints [13] and partial soft arc-consistency for soft
constraints [5].

Therefore, one can use the GI algorithm schema to provide a generalized form of
soft constraint propagation. Our main quest, at this point, is to understand under what
conditions the resulting schema terminates. In fact, if we work with classical constraints
over finite domains, the GI algorithm always terminates if it is given monotonic and
inflationary functions. However, when moving to soft constraints over a semiring, even
if the variable domain is finite, the GI algorithm is not guaranteed to terminate, because
the semiring universe can be infinite. For example, fuzzy constraints have a semiring
universe that contains all real numbers between 0 and 1, and the semiring of weighted
constraints contains either all the reals or all the natural numbers.

With that in mind, however, we can identify some new interesting sufficient conditions
for the termination of the GI algorithm over soft constraints. The first, predictable, con-
dition concerns the partial order over soft constraint satisfaction problems: if this partial
order is well-founded (that is, it forbids ascending chains of infinite length), then the
whole algorithm terminates if it uses monotonic and inflationary functions.

The second condition, instead, depends on the two semiring operations: when the
constraint propagation functions are defined via these two operations, then we can just
consider the subset of the semiring universe that is obtained by taking the elements
determined by the given problem and combining them under the two semiring operations.
If the restriction of the semiring order to such a set has all descending chains (that is,
all sequences of elements such that each element is smaller than the previous one) with
finite length, then the GI algorithm terminates.



GENERAL PROPERTIES 81

Both these conditions are sufficient for termination. However, they could be difficult to
check, unless the partial orders have a well-known structure. Nevertheless, in a special
case we can formally prove that there always exists a well-founded set; thus we can
automatically ensure termination. This special case is related to the idempotence of
the semiring multiplicative operation, the one that is used to combine constraints: if
this operation is idempotent, then GI terminates. For example, in classical constraints
the multiplicative operation is Boolean conjunction and in fuzzy constraints it is the
minimum operation, thus we can formally prove that the GI algorithm over any classical
or fuzzy constraint satisfaction problem always terminates, provided that the functions
are defined via the two semiring operations.

We believe that the generalizations and termination conditions that we have developed
will make soft constraints more widely applicable, as well as soft constraint propagation
more practically usable.

The paper is organized as follows. First, Section 2 introduces the semiring-based
formalisms for soft constraints and soft constraint propagation via rules, as in [8]. Then,
Section 3 defines some orders among semirings, constraints, and problems, to be used
later for generalizing soft constraint propagation. Section 4 summarizes the main features
of the GI algorithmic schema for classical constraint propagation. Then, Section 5 shows
how to apply the GI algorithm to soft constraint problems, thereby generalizing soft
constraint propagation via rules and obtaining a new algorithm schema for soft constraint
propagation. Finally, in Section 6, we prove three conditions for the termination of such
schema, and Section 7 concludes the paper.

This paper is an extended and revised version of [7]. In this version, all the statements
are formally proved, and the termination conditions are studied in greater details. Exam-
ples in the SCSP section are also added to help the reader understand better the two
frameworks considered.

2. Soft Constraints

In the semiring-based formalism for soft constraints [8], a soft constraint is just a con-
straint where each instantiation of its variables comes equipped with an associated value.
Combining constraints has to take into account such additional values; thus the formal-
ism has also to provide suitable operations for combination (×) and comparison (+)
of tuples of values for constraint variables. Here the notion of c-semiring proved to be
useful [8].

Semirings and SCSPs

A semiring is a tuple �A�+�×�0�1� such that: A is a set and 0�1∈A; + is commutative,
associative and 0 is its unit element; × is associative, distributes over +, 1 is its unit
element and 0 is its absorbing element. Furthermore, some additional properties are
added, leading to the notion of c-semiring: a c-semiring is a semiring �A�+�×�0�1�
such that + is idempotent with 1 as its absorbing element and × is commutative.



82 S. BISTARELLI, R. GENNARI AND F. ROSSI

The partial order ≤S over the set A, defined as a≤S b iff a+b = b, is used to compare
elements in the semiring: a ≤S b means that b is “better” than a.

A constraint system is a tuple CS = �S�D�V � where S is a c-semiring, D is a finite
set (the domain of the variables) and V is a finite ordered set of variables.

Given a semiring S = �A�+�×�0�1� and a constraint system CS = �S�D�V �, a con-
straint is a pair �def � con� where con ⊆ V and def 	 D
con
 → A. Therefore a constraint
specifies an ordered set of variables, con, and assigns a semiring element to each instan-
tiation for those variables. Intuitively, the assigned value to the instantiation specifies
how much it is “preferred”.

A Soft Constraint Satisfaction Problem (SCSP) on a constraint system CS is a pair
P = �C� con�, where con ⊆ V and C is a set of constraints: con represents the set of
variables of interest for the constraint set C, which however may contain constraints
defined on variables not in con.

Combining and Projecting Soft Constraints

Given two constraints, c1 = �def 1� con1� and c2 = �def 2� con2�, their combination c1 ⊗ c2

is the constraint �def � con�, defined by con= con1 ∪ con2 and def �t� = def 1�t ↓con
con1

� ×
def �t ↓con

con2
�, where t ↓X

Y denotes the projection of tuple t from X onto Y . In other words,
combining two constraints means building a new constraint involving all the variables of
the original one; the new constraint associates to each tuple of domain values a semiring
element that is obtained by multiplying the elements associated by the original constraints
to the appropriate subtuples.

Given a constraint c = �def � con� and a subset I of V , the projection of c onto
I , written as c ⇓I , is the constraint �def ′� con′� where con′ = con∩ I and def ′�t′� =∑

t
t↓con
I∩con=t′ def �t�. Thus, projecting means eliminating some variables. This is done by

associating a semiring element with each tuple t over the remaining variables; that ele-
ment is the sum of the elements associated by the original constraint with all the exten-
sions of the tuple t over the eliminated variables.

In brief: combination is performed via the multiplicative operation of the semiring,
whilst projection is achieved via the additive one.

Examples

Classical CSPs are SCSPs for which the chosen c-semiring is

Bool = ��false� true��∨�∧� false� true��
By means of Bool we can associate a Boolean value, either false or true, with each

tuple of elements in D, then project and combine constraints via the Boolean connectives.
Fuzzy CSPs [9] can instead be modeled by choosing the c-semiring

Fuzzy = ��0�1��max�min�0�1��
In fact, each tuple has a value between 0 and 1; constraints are combined via the min

operation and compared via the max operation. Figure 1 shows a fuzzy CSP. Variables



GENERAL PROPERTIES 83

a ... 0.9

b ... 0.5

a ... 0.9

b ... 0.1

aa ... 0.8

ab ... 0.2

ba ... 0

bb ... 0

X Y

Figure 1. A fuzzy CSP.

are inside circles, constraints are represented by undirected arcs, domains are represented
as unary constraints (with no arc), and semiring values are written to the right of the
corresponding tuples. Here we assume that the domain of the variables contains only a
and b, and that con contains all the variables.

Solutions

The solution of a SCSP P = �C� con� is the constraint Sol�P� = �
⊗

C� ⇓con: it is
obtained by combining all constraints of P and then projecting over the variables in con.
In this way, we get the constraint over con that is “induced” by the entire problem P.

For example, each solution of the fuzzy CSP of Figure 1 consists of a pair of domain
values (that is, a domain value for each of the two variables) and an associated semiring
element. Such an element is obtained by looking at the smallest value for all the subtuples
(as many as the constraints) forming the pair. For example, for tuple �a�a� (that is,
x = y = a), we have to compute the minimum between 0.9 (which is the value for
x = a), 0�8 (which is the value for �x = a� y = a�) and 0�9 (which is the value for
y = a). Hence, the resulting value for this tuple is 0.8.

Two problems P1 = �C1� con� and P2 = �C2� con� (notice that they have the same con)
are defined equivalent, written as P1 ≡P P2, if Sol�P1� = Sol�P2�.

Soft Constraint Propagation

Most of the traditional constraint propagation (also called local consistency) algorithms
can be extended to SCSPs [8]. For this purpose, the notion of constraint propagation
rule was introduced in [8]. The application of one of such rules consists of solving a
subproblem of the given problem.

To model that, we use the notion of typed location. Informally, a typed location is
just a location l (as in ordinary store-based programming languages) which has a set of
variables con as type, thus can only be assigned a constraint c=�def � con� with the same
type. In the following we assume to have a location for every set of variables; hence



84 S. BISTARELLI, R. GENNARI AND F. ROSSI

we identify a location with its type. Given an SCSP P = �C� con�, the value �l�P of the
location l in P is defined as the constraint �def � l� ∈ C if it exists, as �1� l� otherwise.
Given n locations l1� � � � � ln, the value ��l1� � � � � ln��P of this set of locations in P is
defined as the set of constraints ��l1�P� � � � � �ln�P�.

An assignment is a pair l 	= c where c = �def � l�. Given an SCSP P = �C� con�,
the result of the assignment l 	= c is the problem �l 	= c��P� defined as follows: �l 	=
c��P� 	= ���def ′� con′� ∈ C 
 con′ �= l�∪ c� con�.

Thus an assignment l 	= c is seen as a function from SCSPs to SCSPs that modifies a
given problem by changing just one constraint, namely the one with type l. The change
consists in substituting such a constraint with c. If there is no constraint of type l, then
the constraint c is added to the given problem. In other words, the assignment l 	= c in
P produces a new problem P ′ which is the same as P, except that it has an additional
constraint c over the variables in l, and that the old constraints over l are removed. Note
also that, by setting 
l
 = 1, we are able to modify domains, since a domain can be
characterized as a unary constraint.

Consider a constraint system CS = �S�D�V �, a location l and a set of locations L,
where l ∈ L; a constraint propagation rule rL

l is a function rL
l which, taken any problem

P over CS, returns rL
l �P� = �l 	= Sol���L�P� l����P�.

Intuitively, the application of rL
l to P adds the constraint Sol���L�P� l�� over the vari-

ables in l to P. That constraint, by definition of Sol, is obtained by combining all the
constraints of P that are identified by L and then projecting the resulting constraint over l.

Since a constraint propagation rule is a function from problems to problems, the appli-
cation of a sequence S of rules to a problem is easily provided by function composition:
we write �r! S��P�= �S���r1��P�� and mean that the problem �r! S��P� is obtained apply-
ing first the rule r and then the rules of the sequence S, in the specified order.

An infinite sequence T of rules of a set R is called a strategy. A strategy is fair if
each rule of R occurs in it infinitely often.

We are now ready to define constraint propagation algorithms by means of rules, as
in [8]. Given a problem P, a set of rules R and a fair strategy T for R, a constraint
propagation algorithm via rules applies to P the rules in R in the order prescribed by T .
The algorithm terminates when the current problem is a fixed point of all the functions
from R. In that case, we write cp�P�R�T � to denote the resulting problem.

3. Some Useful Orders for Semiring-Based Constraints

We now introduce some orders: among semiring elements, as in [8], and new ones among
constraints, constraint sets and problems.

In general, consider any partial ordering �D��� and the component-wise ordering
�Dn��n�, with n ≥ 1, where �d1� � � � � dn� �n �d′

1� � � � � d
′
n� iff di � d′

i for each i =
1� � � � � n. Let f be a function from Dn to D. Then:

— f is monotonic iff �d1� � � � � dn� �n �d′
1� � � � � d

′
n� implies f ��d1� � � � � dn�� �

f ��d′
1� � � � � d

′
n��;

— f is inflationary, w.r.t. �, iff di � f ��d1� � � � � dn�� for every i = 1� � � � � n.



GENERAL PROPERTIES 85

3.1. Semiring Order

All the orderings that we consider in this section are derived from the partial order ≤S

between semiring elements, which, we recall, is defined as follows: a≤S b iff a+b = b.
The latter condition intuitively means that b is “preferred” to a.

It is easy to see that the following results hold, see also [8]:

— ≤S is a partial order;

— 0 is the bottom and 1 is the top of the order;

— if × is idempotent, then �A�≤S� is a distributive lattice where + is the lub and ×
is the glb;

— + and × are monotonic with respect to ≤S ;

— + is inflationary with respect to ≤S ;

— × is inflationary with respect to ≥S .

3.2. Constraint Order

Given the ordering ≤S over A, we can define a new order between constraints, as follows.

Definition 1. Consider c1 	=< def 1� con> and c2 	=< def 2� con>, two constraints over
the same constraint system CS. We write c1 �S c2 iff the following conditions are both
satisfied:

1. for all tuples s ∈ D
con
, def 2�s� ≤S def 1�s�;

2. there exists (at least) a tuple t ∈ D
con
 for which def 2�t� <S def 1�t�.

We write c1 �S c2 iff only the first condition is requested.

Therefore, the constraint c1 is smaller than or equal to c2 in the order �S iff the
former assigns, to each variable instantiation, a greater value w.r.t. ≤S than c2, or equal
to it. Loosely speaking, c2 is preferred to c1 iff the former constraint is possibly “more
restrictive” than the latter.

Theorem 1 (�S is a po). Given a semiring S = �A�+�×�0�1� and a constraint system
CS = �S�D�V �, the relation �S is a partial order between constraints over CS.

Proof: We need to demonstrate that �S is a reflexive, antisymmetric and transitive
relation. Reflexivity holds trivially. To prove antisymmetry, suppose that c1 �S c2 and
c2 �S c1; this yields that con1 = con2. Now, for all t ∈ D
con1
, we have both def 1�t� ≤S

def 2�t� and def 2�t� ≤S def 1�t�; hence def 1�t� = def 2�t� and so c1 = c2. The transitivity
of �S follows from the transitivity of ≤S . �



86 S. BISTARELLI, R. GENNARI AND F. ROSSI

3.3. Constraint Set Order

We can now easily extend the order �S over constraints to a new order over constraint
sets as follows; this is a typical construction in set theory and the resulting relation is
called Schmyd order.1

Definition 2. Consider two sets of constraints, C1 and C2, over a constraint system CS.
Suppose, furthermore, that C1 = �c1

i 	 i ∈ I�, C2 = �c2
j 	 j ∈ J�, I ⊆ J and that, for each

i ∈ I , the relation c1
i �S c2

i holds. Then we write C1 �C C2.

The intuitive reading of C1 �C C2 is that C2 is a problem generally “more constraining”
than C1 is, because C2 has (possibly) a larger number of “more restrictive” constraints
than C1 has.

Theorem 2 (�C is a partial order). Given a semiring S = �A�+�×�0�1�, and a con-
straint system CS = �S�D�V �, we have the following results:

• the relation �C is a partial order between constraint sets over CS;

• the bottom of the relation is the empty set itself.

Proof: We only prove the first claim, the other one being straightforward. Reflexivity
trivially holds. As far as antisymmetry is concerned, suppose that C1 = �c1

i �i∈I , C2 =
�c2

j �j∈J and both C1 �C C2 and C2 �C C1 hold; this means that I = J . Moreover, the
following relations hold for every i ∈ I : c1

i �S c2
i and c2

i �S c1
i . Hence c1

i = c2
i for every

i ∈ I , because �S is a partial order relation, see Theorem 1. Transitivity follows similarly,
by exploiting the transitivity of �S . �

3.4. Problem Order

So far, we have introduced two partial orders: one between constraints (�S) and another
one between constraint sets (�C). However, constraint propagation algorithms take con-
straint problems as input; therefore, we need an order relation between problems if we
want to enforce soft constraint propagation by means of the GI algorithm (see later in
Section 5).

Definition 3. Given a constraint system CS, consider two problems over it, say P1 =
�C1� con� and P2 = �C2� con�. We write P1 �P P2 iff C1 �C C2.

Now, we are able to define a partially ordered structure that contains all of the SCSPs
that could be “generated” by constraint propagation, starting from a given input problem.

Definition 4. Consider a constraint system CS and an SCSP P over it. The upward
closure of P, briefly P ↑, is the class of all problems P ′ on CS such that P �P P ′.

The role of the upward closure of an SCSP during constraint propagation will be more
clear after formalizing constraint propagation in our setting; see Definition 5 later in this
paper.



GENERAL PROPERTIES 87

Theorem 3 (�P is a po). Given a constraint system CS = �S�D�V � and a problem P
on it, we have:

• the relation �P is a partial order between SCSPs on CS;

• in particular, �P ↑��P� is a partial ordering;

• the bottom of �P ↑��P� is P itself.

Proof: We prove the first claim; the other ones following immediately from it and the
definition of P ↑. As usual, we only prove that the relation is antisymmetric, because
transitivity can be proved similarly and reflexivity trivially holds. Hence, suppose that
both P1 �P P2 and P2 �P P1 hold. This means that we have the following relations:
con1 = con2, C1 �C C2, C2 �C C1. From the two last relations and Theorem 2, it follows
that C1 = C2; hence P1 = P2. �

3.5. Order-Related Properties of Soft Constraint Propagation Rules

We recall, from Section 2, that two problems P1 and P2 on the same set of variables are
equivalent if they have the same solution set; if that is the case, we write P1 ≡P P2.

Now we can list some useful properties of soft constraint propagation rules (see [8]
for the details), which are related to equivalence and to our new problem order. Here we
assume that a constraint system CS and a rule r on CS are given.

— (Equivalence) P ≡P r�P� if × is idempotent.

— (Inflationarity) P �P r�P�. This means that the new semiring values computed by
means of a rule are either smaller than or equal to the input ones with respect
to ≤S .

— (Monotonicity) Consider two SCSPs, P1 = �C1� con� and P2 = �C2� con�, over CS.
If P1 �P P2, then r�P1� �P r�P2�.

It is easy to prove that all the results about constraint propagation rules hold also
for a whole constraint propagation algorithm, which applies several rules in a sequence.
Moreover, the strategy (that is, the order in which such rules are applied), if fair, does
not influence the result, see [8].

4. The Generic Iteration Algorithm

The Generic Iteration (GI) algorithm of [3] is applied to compute the least fixed point
of finitely many functions that are defined on a partial ordering with bottom. The GI
algorithm is used as a schema for classical constraint propagation: in fact, most of the
existing constraint propagation algorithms are instances of that schema.2

Given a partial ordering with bottom, say �D���⊥�, consider now a set of functions
F 	= �f1� � � � � fk� on D. The following algorithm can compute the least common fixed
point of the functions in F .



88 S. BISTARELLI, R. GENNARI AND F. ROSSI

Generic Iteration Algorithm (GI)

d 	=⊥;
G 	= F ;
while G �= � do

choose g ∈ G;
G 	= G− �g�;
G 	= G∪update�G�g�d�;
d 	= g�d�

od

For all G�g�d, the set of functions update�G�g�d� from F needs satisfy the following
conditions:

A. �f ∈ F −G 
 f �d� = d∧f �g�d�� �= g�d�� ⊆ update�G�g�d�;

B. g�d� = d implies update�G�g�d� =�;

C. g�g�d�� �= g�d� implies g ∈ update�G�g�d�.

Assumption A states that update�G�g�d� at least contains all the functions from F–G
for which d is a fixed point but g�d� is not. So, at each loop iteration, such functions
are added to the set G. In turn, assumption B states that no functions are added to
G in case the value of d did not change. Note that, even though after the assignment
G 	= G− �g� we have g ∈ F −G, still g �∈ �f ∈ F −G 
 f �d� = d∧ f �g�d�� �= g�d��
holds. So assumption A does not provide any information when g is to be added back
to G. This information is provided in assumption C. On the whole, the idea is to keep
in G at least all functions f for which the current value of d is not a fixed point.

Hereafter, we recall parts of Theorem 2.4 in [3] that show the role of monotonicity
and inflationarity:

1. Suppose that all functions in F are monotonic. Then every terminating execution
of the GI algorithm computes in d the least common fixpoint of all the functions
from F .

2. Suppose that all functions in F are inflationary and that D is finite. Then every
execution of the GI algorithm terminates.

5. Soft Constraint Propagation via the GI Algorithm

Our goal in this section is to extend soft constraint propagation via rules (as defined in
Section 2), by means of the GI schema. In this way, we aim at obtaining a new schema
which is more general, in the sense that it can be applied both to classical and to soft
constraint satisfaction problems, and it can perform constraint propagation steps which
are more general than the rules of Section 2.

More precisely, first we combine the two formalisms described so far, namely the
semiring framework for soft constraints and the GI algorithm schema for classical con-
straints. Then, we show that any constraint propagation algorithm via rules is an instance
of GI algorithm, when applied to SCPSs.



GENERAL PROPERTIES 89

5.1. GI for Generalized Soft Constraint Propagation

While constraint propagation rules are idempotent (since they solve a subproblem), the
GI algorithm does not require this property of its functions. This means that we can
generalize constraint propagation via rules for soft constraints, by dropping idempotence,
as follows.

Definition 5. Consider a constraint system CS and the set Pr�CS� of all CS problems.
A constraint propagation function is a function f 	 Pr�CS� → Pr�CS� that satisfies the
following conditions:

1. if P is a problem over a variable set con, so is f �P�;

2. f is monotonic and inflationary over �P .

Observe that, if f is a constraint propagation function and P is a problem on CS, then
P ↑ is closed under constraint propagation functions, i.e. f 	 P ↑→ P ↑. This is the
content of the following proposition. Incidentally, its proof brings light on the role of
inflationarity in “generating” problems that are always “higher” in the order than the
input one P, w.r.t �P ; hence it also provides motivations to our Definition 4 of upward
closure of P.

Proposition 1. Let P 	= �C� con� be a problem on a constraint system CS. If f is a
constraint propagation function, then f 	 P ↑→ P ↑.

Proof: We need to prove that, if P ′ ∈ P ↑, then f �P ′� belongs to P ↑ too; namely that
P �P f �P ′�. By the first item in Definition 5, we know that P ′ and f �P ′� are over the
same variable set. Furthermore, P ′ ∈ P ↑ means that P �P P ′; this and f inflationary
yield that P �P f �P ′�. �

With this definition of constraint propagation function we relax two conditions of a
constraint propagation rule (w.r.t. the definition of a rule in Section 2):

— that it yields the solution of a subproblem;

— that it is idempotent.

The second generalization was suggested by the results in [2] concerning the GI algo-
rithm; in fact, as we state in the following for SCSPs, idempotence is not needed for
GI to compute the least fixed point and hence to enforce constraint propagation, given
in input constraint propagation functions. Moreover, many practical constraint propa-
gation algorithms do not exactly solve subproblems, but generate an approximation of
the solution. Consider, for example, the definition of bounds consistency in [13] or the
notion of partial soft arc-consistency in [5]. Thus, the extension of GI to SCSPs allows
to include as instances more practical algorithms. The following result is a trivial con-
sequence of Theorem 2.4 in [3], extended to well-founded orderings, see also the first
item of Section 4.

Proposition 2 (GI for SCSPs). Given a constraint system CS and an SCSP problem P
on it, let us apply the GI algorithm to the partial order �P ↑��P�, with a finite set R of



90 S. BISTARELLI, R. GENNARI AND F. ROSSI

constraint propagation functions. Then every terminating execution of the GI algorithm
computes in the output problem P ′ the least common fixed point of all the functions
from R.

5.2. GI for Constraint Propagation via Rules Over Soft Constraints

The functions that GI needs in input are defined on a partial ordering with bottom. In
the case of constraint propagation rules for SCSPs, the partial ordering is �P ↑��P�, and
the bottom is the problem P itself; see Theorem 3.

Constraint propagation rules are monotonic and inflationary functions. Thus the GI
algorithm can be used to perform constraint propagation over soft constraint problems via
rules. Even more, a soft constraint propagation algorithm via rules and the GI algorithm,
with the same constraint propagation rules as input functions, compute the same result,
namely the least common fixed point of the rules. Hence, the following result is a
corollary of Theorem 2 and the properties of constraint propagation algorithms via rules
quoted in Section 2.

Corollary 1 (GI with soft constraint propagation rules). Given an SCSP P over a
constraint system CS, consider a constraint propagation algorithm via rules in R to P
according to a fair strategy T ; call it AlgR. Consider also the partial order �P ↑��P�,
and the set of functions R, and apply the GI algorithm to such input. Then GI terminates
iff AlgR does; in such case, the output is the least fixed point of all the functions from R.

The previous corollary states that the GI algorithm schema over SCSPs is “at least”
as expressive as the constraint propagation algorithm schema via rules. In the previous
section, we have shown that GI is actually more expressive (i.e., it can be instantiated
to more constraint propagation algorithms over soft constraints) than the other algorithm
schema.

What is now important to investigate is the issue of termination for GI with SCSPs
and constraint propagation functions. This is not an easy task in case of SCSPs; in fact,
even if the variable domain is finite, the semiring may be infinite, which is obviously a
source of possible non-termination.

6. Termination of the GI Algorithm for SCSPs

As already noted, the presence of a possibly infinite semiring universe may lead to a
constraint propagation algorithm which does not always terminate. In this section we
focus on this problem and investigate under which conditions the GI schema terminates.

The first condition is a predictable extension of the one in the second item of Section 4:
instead of requiring the finiteness of the domain of computation, we just require that its
ascending chains have finite length. This guarantees the termination of the GI schema,
because the application of each local consistency function to a problem P results in a
problem that is greater than or equal to P; thus each computation follows an ascending
chain, and therefore by assumption it cannot be infinite.



GENERAL PROPERTIES 91

Theorem 4 (termination 1). Given a constraint system CS and an SCSP problem P on
it, let us instantiate the GI algorithm with �P ↑��P� and a finite set R of constraint prop-
agation functions. Suppose that the order �CS , restricted to P ↑, satisfies the Ascending
Chain Condition (ACC): namely, each ascending chain of problems in P ↑

P0 �P · · ·�P Pn �P Pn+1 �P · · ·

is finite. Then every execution of the GI algorithm terminates.

Proof: It follows from Theorem 2.4 in [3]. There, the author says to need a finite (and
not only satisfying the ACC condition) order, but the proof does not actually use this
restriction. �

The previous theorem can be used to prove termination in many cases. For
example:

— Classical constraints over finite domains always generate a finite problem order,
which thus trivially satisfies the ACC property. Therefore the above theorem guar-
antees termination.

— Another example occurs when dealing with weighted soft constraints: here the
semiring is �N�min�+�0�+��; thus we have an infinite problem ordering which
however satisfies the ACC property. Thus algorithm GI over such soft constraints
always terminates.

However, there are also many interesting cases in which �P ↑��P� does not necessarily
satisfy the ACC property. For example, in the case of fuzzy CSPs, the semiring is
��0�1��max�min�0�1�. Consider the fuzzy constraint problem with variable domain D=
�0�1�, variables x and y, and which has just the trivial constraint c = �1� �x� y��, where
1 is the function that assigns value 1 to each possible instantiation of x and y in D. Then
P ↑ is the class of all problems on x and y, and it is easy to see that the problem order
does not satisfy the ACC. In fact, it is enough to consider, for instance, the infinite chain
of problems Pn on x� y for which each problem Pn has the two variables x and y and
just one constraint, say cn, which assigns to each possible instantiation of x and y the
value 1/n, with n a natural number greater than 0. Therefore, the above theorem cannot
be applied to assure termination in this case. A similar argument applies to probabilistic
CSPs, that is, SCSPs where each constraint has a certain probability to be in the real
problem, which are modelled via the semiring ��0�1��max�×�0�1�.

Thus Theorem 4 does not help us if we deal with either fuzzy or probabilistic CSPs.
However, even in those cases where the order has chains of infinite length, we can
observe the following: if we restrict our attention to constraint propagation functions
defined via + and ×, we can provide another condition on the input problem that guar-
antees the termination of the GI algorithm. This condition depends on the two semiring
operations, + and ×, and on their properties. To state such a condition, we first need to
introduce the notion of semiring closure of a soft constraint problem.



92 S. BISTARELLI, R. GENNARI AND F. ROSSI

Definition 6 (semiring closure). Consider a constraint system CS, an SCSP P over it
and the set of semiring values that appear in P: namely,

Values�P� = ⋃

�def ′� con′�∈C

�def ′�d� 
 d ∈ D
con′ 
��

Then the semiring closure of P is the smallest set B that satisfies the following
conditions:

1. Values�P� ⊆ B ⊆ A;

2. B is closed with respect to + and ×.

Then we write �PS for the semiring closure of P.

Notice that the previous definition is meaningful, since there is always a set that
satisfies the above conditions 1 and 2, namely A itself. In particular, the semiring closure
of a problem P contains all those values of A which are in the problem P, and all their
possible combinations via the two semiring operations.

What we need now is to single out those constraint propagation functions that, applied
to a problem P, compute values that are in the semiring closure of P. Such functions,
intuitively, are defined via the two semiring operations, + and ×; in fact, given in input
a SCSP P, such functions will return values that either are in Values�P� or obtained from
elements of Values�P� via applications of + or ×. Hence, the following definition cap-
tures the intuitive meaning of what we informally call functions defined via the semiring
operations.

Definition 7 (closure-small functions). Consider a constraint system CS with semiring
S = �A�+�×�0�1�, an SCSP P on CS and a constraint propagation function g 	 P ↑→
P ↑. Function g is closure-small iff, for every P ′ ∈ P ↑, g�P ′�

S ⊆ �P ′S .

We can now prove that, if constraint propagation functions are defined via + and ×
(i.e., are closure-small), and if <S is “well behaved” when it is restricted to �PS , then
constraint propagation terminates. The result is more precisely stated in the Theorem 5.
But first we need the following technical lemma.

Lemma 1. Consider a constraint system CS with semiring S = �A�+�×�0�1�, an
SCSP P on CS and a finite set of constraint propagation functions R which are all
closure-small. Assume also that the semiring order <S satisfies the Descending Chain
Condition (DCC), when it gets restricted to �PS: namely, there are no infinite descend-
ing <S-chains of elements of �PS . Let PS ↑ be the smallest (w.r.t. set inclusion) of all
subclasses � of P ↑ that satisfy the following conditions:

1. P ∈�;

2. P ′ ∈� and g ∈ R implies that g�P ′� ∈�.

Then the restriction of �P to PS ↑ satisfies the DCC.



GENERAL PROPERTIES 93

Proof: Suppose that there is an infinite chain of PS ↑ sets,

P0 �P · · ·�P Pn �P Pn+1 �P · · · (1)

where, for each n ≥ 1, Pn+1 	= gn�Pn�, for some gn ∈ R. We prove that an infinite �PS

descending <S-chain can be extracted from (1), contradicting our assumption on <S . In
fact, the fact that Pn+1 = gn�Pn� implies that, for each n ∈4, there is a constraint cn ∈ Pn,
on some set of variable con, that is replaced by cn+1 ∈ Pn+1, such that cn �S cn+1. As
the chain in (1) is infinite while P0 has only finitely many constraints, there must exist a
constraint c ∈ P0 that is modified infinitely many times in the chain (1); hence, we can
extract an infinite chain of constraints on con from (1):

c0 �S · · ·�S cm �S cm+1 �S · · · (2)

Now, cm �S cm+1 means that there exists a tuple t ∈ D
con
 such that

defm�t� >S defm+1�t�! (3)

while, for all other tuples s of D
con
, we have, at least, that def m�s� ≥S def m+1�s�. As
the variable domain D is finite while the chain in equation (2) is infinite, there must be
a tuple t ∈ D
con
 for which the strict inequality in (3) holds for infinitely many m ∈ 40.
Therefore, we can extract an infinite chain of semiring elements from (2):

def0�t� >S · · · >S defk�t� >S defk+1�t� >S · · · (4)

All semiring elements that occur in (4) belong to �PS , because all the functions of R are
closure-small. Therefore, the restriction of the order <S to the set �PS does not satisfy
the DCC, which is absurd because of our hypothesis. �

Theorem 5 (termination 2). Consider a constraint system CS with semiring S = �A�+,
×�0�1�, an SCSP P on CS and a finite set of constraint propagation functions R defined
via + and × (i.e., closure-small). Assume, also, that the semiring order <S satisfies
the Descending Chain Condition (DCC) when restricted to �PS: namely, there are no
infinite descending <S-chains of �PS elements. Then every execution of the GI algorithm
terminates.

Proof: Let us consider the Cartesian product PS ↑ ×N, where PS ↑ is as defined in
Lemma 1, and the lexicographical order <lex on it that is defined as follows:

�D′� n′� <lex �D�n� iff D′
�P D or D = D′ and n′ <4 n�

where <4 is the natural order. Consider a while-loop of the GI algorithm: let g be the
chosen function and Gi the set of functions under consideration, before removing g, and
Go the set of functions at the end of the while-loop; furthermore, let Pi be the input
problem and Po the problem g�Pi�. At the end of the while-loop, two cases are possible:
either Pi is not a fixed point of g and, hence, Po �P Pi by definition of local consistency



94 S. BISTARELLI, R. GENNARI AND F. ROSSI

functions (that are inflationary w.r.t. �P); or Pi is a fixed point of g and so Po = Pi and
Go = Gi − �g�. In both cases, we have that

�Po� 
Go
� <lex �Pi� 
Gi
��
As both orders <4 and �P satisfy the DCC (see Lemma 1), so does the lexicographical
order <lex; hence the GI algorithm terminates. �

If we have a fuzzy constraint problem, then �PS is precisely the set of all semiring
values appearing in the initial problem; i.e., it coincides with the set Values�P�. In fact,
the latter is closed with respect to min and max, which are the two semiring operations
in the case of fuzzy CSPs. Moreover, the semiring order restricted to Values�P� satisfies
the DCC, since it is finite. Thus Theorem 5 can be used to prove that constraint propa-
gation (where each step uses only the two semiring operations) over fuzzy CSPs always
terminates.

Another example is constraint optimization over the reals: if the initial problem only
contains natural numbers, then �PS is a set of natural numbers whose order satisfies the
DCC and which is closed w.r.t. + (min) and × (sum). Thus again Theorem 5 can be
used to prove that constraint propagation over such problems terminates.3

Notice that the previous theorem is similar to the one in [8] that concerns termination;
however, in [8], the set �PS is forced to be finite in order to guarantee the termination
of a local consistency algorithm (see Theorem 4.14 of [8]); a hypothesis that is much
stronger than ours in Theorem 5.

It is now interesting to investigate the relationship between the hypotheses of Theorem
4 and 5, which, as we will now show, are independent.

Let us consider the following two cases:

1. (Bounds consistency): as shown in [2], the GI schema can be instantiated to the
algorithm for enforcing bounds consistency on classical CSPs. In order to do so, it
is necessary to adopt functions that exploit the variable domain structure; in fact, the
semiring operations alone are not sufficient to define the needed constraint propaga-
tion functions. Hence Theorem 5 cannot be applied in this case; however, Theorem 4
can be applied and it is sufficient to guarantee termination.

2. (Fuzzy CSPs): as already shown in the example above, there are problem orderings
which do not satisfy the ACC in case of fuzzy CSPs; hence, Theorem 4 is not
always applicable in that framework. However, as observed above, Theorem 5 can
be applied to prove termination.

Yet, even Theorem 5 may be difficult to apply. In fact, it might not always be trivial to
compute the semiring closure of a given SCSP P; furthermore, we should also check that
the restriction of the semiring order to the closure satisfies the DCC. There is however a
special case in which we do not have to search for such a set. This fortunate case occurs
when the multiplicative operation of the semiring is idempotent. In fact, in that case, we
can easily construct the semiring closure of any given problem and that closure turns
out to be always finite (hence satisfying the DCC). Indeed, this is an highly desirable
property, because it provides an easy way to guarantee the termination of the GI algorithm
schema.



GENERAL PROPERTIES 95

Theorem 6 (termination 3). Consider a constraint system CS, an SCSP P on CS and
a finite set of constraint propagation functions R defined via + and × (i.e., closure-
small). Assume, also, that × is idempotent. Then, every execution of the GI algorithm
terminates.

Proof: Consider the finite set Values�P�, which, we recall, is the set of all semiring
elements appearing in P. Since a c-semiring with × idempotent is also a distributive
lattice (cf. [8]), the set generated from a finite set like Values�P� via + and × is itself
finite. In fact, due to the distributivity, each element of such a set can be denoted by a
sum of products of subsets of Values�P�. Since Values�P� is finite, also the number of
its subsets is so. Thus Theorem 5 yields termination. �

Consider again fuzzy constraint problems. Here × is min; thus it is idempotent. There-
fore, by Theorem 6, GI always terminates when it is instantiated with fuzzy CSPs. This
is an alternative and easier way than Theorem 5 to guarantee that soft constraint prop-
agation for fuzzy CSPs always terminates. In fact, we do not have to find a semiring
closure of the problem, but just check that the multiplicative operation is idempotent.

Given all the above theorems concerning termination, we can devise different strategies
towards proving the termination of the GI algorithm, when it is given a soft constraint
problem P and some constraint propagation functions.

In particular, the termination condition of the previous theorems can assure the efficient
application of some specific local propagation schemas. Moreover, the possibility to
check the termination of the schema by looking at the semiring or at the constraint
system can lead to several scenarios:

• If the constraint propagation functions are defined via the two operations of semir-
ing S, and the multiplicative operation of S is idempotent, then GI terminates (by
Theorem 6).

• If, instead, × is not idempotent, but the constraint propagation functions are defined
via the two semiring operations, we can check if the restriction of the semiring
order to the semiring closure of P satisfies the DCC. In that case, GI terminates
(by Theorem 5).

• If the restriction of the semiring order to the semiring closure of P does not satisfy
the DCC or the constraint propagation functions are not defined via + and ×, then
we can try to prove that the problem order on P ↑ satisfies the ACC. In that case, GI
terminates (by Theorem 4).

7. Conclusions and Future Work

The results of this paper show that it is possible to treat in a uniform way hard and
soft constraint propagation. This was already shown in [8], but restricted to constraint
propagation algorithms in which each step computes the solution of a subproblem. In
this paper, instead, we have extended the notion of constraint propagation algorithms via



96 S. BISTARELLI, R. GENNARI AND F. ROSSI

the GI schema of [3], so that also constraint propagation steps that approximate solutions
(as is the case for bounds-consistency) can be modelled.

Moreover, we have also studied the conditions under which this more general notion of
soft constraint propagation terminates. Some results were already present in [8] and [3],
but here we have generalized and extended them, providing more general, even easily
checkable, sufficient conditions.

In particular, we have defined and proved three sufficient conditions which guar-
antee termination, and which are based on different aspects of the constraint solving
framework: the structure of the partial order of constraint problems, the structure of a
sub-ordering of the semiring elements, and the properties of the semiring operations.
Depending on what is easier to check, one may use one or another of these conditions
to prove termination of the available constraint propagation framework.

We are confident that the results of this paper could be useful to extend many of
the existent local propagation algorithms for crisp constraint problems to the soft con-
straint framework. By using the proposed schema and the results of this paper, we can
both model them, and also in many cases prove their termination, thus making them
practical to use. We therefore plan to consider many of such algorithms and study their
generalization to soft constraints.

According to the results in [6], there is a strict relationship between constraint prop-
agation and abstraction of soft constraints. In fact, it has been shown that performing
soft constraint propagation can be seen as a special form of constraint abstraction, where
one passes from one semiring to a simpler one. We therefore plan to investigate the use
of soft constraint propagation algorithms, and of the results of this paper, as an aid in
making soft constraint abstraction more practical.

Acknowledgments

The second author is indebted to K. R. Apt for his advice to investigate the topic of this
paper, and to M. de Rijke for his suggestions. This research has been partially supported
by Italian MURST project TOSCA.

Notes

1. Thanks to M. de Rijke for pointing it out to us.

2. Cf. [12] for a generalization of GI to a more expressive schema for classical constraint propagation
algorithms like AC-4 and AC-5.

3. Notice that here the problem is that it could return a problem which is not equivalent, due to the non-
idempotence of the multiplicative operation.

References

1. Apt, K. (1999a). The essence of constraint propagation. Theoretical Computer Science, 221(1–2): 179–210.

2. Apt, K. (1999b). The rough guide to constraint propagation (corrected version). In Proc. of the 5th Inter-
national Conference on Principles and Practice of Constraint Programming (CP’99), pp. 1–23.



GENERAL PROPERTIES 97

3. Apt, K. (2000). The role of commutativity in constraint propagation algorithms. ACM TOPLAS, 22(6):
1002–1036.

4. Bistarelli, S. (2001). Soft constraint solving and programming: A general framework. Ph.D. thesis, Dipar-
timento di Informatica, Università di Pisa, Italy.

5. Bistarelli, S., Codognet, P., Georget, Y., & Rossi, F. (2000a). Labeling and partial local consistency for soft
constraint programming. In Proc. of the 2nd International Workshop on Practical Aspects of Declarative
Languages (PADL’00).

6. Bistarelli, S., Codognet, P., & Rossi, F. (2000b). An abstraction framework for soft constraint and its
relationship with constraint propagation. In Proc. SARA2000 Symposium on Abstraction, Reformulation
and Approximation.

7. Bistarelli, S., Gennari, R., & Rossi, F. (2000c). Constraint propagation for soft constraint satisfaction
problems: Generalization and termination conditions. In Proc. Sixth Int. Conf. on Principles and Practice
of Constraint Programming (CP2000).

8. Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint solving and optimization.
Journal of the ACM, 44(2): 201–236.

9. Dubois, D., Fargier, H., & Prade, H. (1993). The calculus of fuzzy restrictions as a basis for flexible
constraint satisfaction. In Proc. IEEE International Conference on Fuzzy Systems, pp. 1131–1136.

10. Fargier, H., & Lang, J. (1993). Uncertainty in constraint satisfaction problems: A probabilistic approach.
In Proc. European Conference on Symbolic and Qualitative Approaches to Reasoning and Uncertainty
(ECSQARU), pp. 97–104.

11. Freuder, E., & Wallace, R. (1992). Partial constraint satisfaction. AI Journal, 58.

12. Gennari, R. (2000). Arc consistency algorithms via iterations of subsumed functions. In Proc. of the 1st
International Conference on Computational Logic (CL’00), pp. 358–372.

13. Marriott, K, & Stuckey, P. (1998). Programming with Constraints. MIT Press.

14. Schiex, T., Fargier, H., & Verfaille, G. (1995). Valued constraint satisfaction problems: Hard and easy
problems. In Proc. IJCAI95. San Francisco, CA, pp. 631–637.


