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1. Introduction

Classical constraint satisfaction problems (CSPs) [25], [27] are a very expressive and natural
formalism to specify many kinds of real-life problems. In fact, problems ranging from map
coloring, vision, robotics, job-shop scheduling, VLSI design, etc., can easily be castas CSPs
and solved using one of the many techniques that have been developed for such problems
or subclasses of them [11], [12], [24], [26], [27]-

However, they also have evident limitations, mainly due to the fact that they are not very
flexible when trying to represent real-life scenarios where the knowledge is not completely
available nor crisp. In fact, in such situations, the ability of stating whether an instantiation
of values to variables is allowed or not is not enough or sometimes not even possible. For
these reasons, it is natural to try to extend the CSP formalism in this direction.

For example, in [8], [32], [33], [34] CSPs have been extended with the ability to associate
with each tuple, or with each constraint, a level of preference, and with the possibility of
combining constraints using min-max operations. This extended formalism has been called
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Fuzzy CSPs (FCSPs). Other extensions concern the ability to model incomplete knowledge
of the real problem [9], to solve over-constrained problems [13], and to represent cost
optimization problems.

In this paper we present and compare two frameworks where all such extensions, as well
as classical CSPs, can be cast. However, we do not relax the assumption of a finite domain
for the variables of the constraint problems.

The first framework, that we call SCSP (for Semiring-based CSP), is based on the obser-
vation that a semiring (that is, a domain plus two operations satisfying certain properties)
is all that is needed to describe many constraint satisfaction schemes. In fact, the domain
of the semiring provides the levels of consistency (which can be interpreted as cost, or
degrees of preference, or probabilities, or others), and the two operations define a way to
combine constraints together. Specific choices of the semiring will then give rise to different
instances of the framework.

In classical CSPs, so-called local consistency techniques [11], [12], [24], [25], [27], [28]
have been proved to be very effective when approximating the solution of a problem. In
this paper we study how to generalize this notion to this framework, and we provide some
sufficient conditions over the semiring operations which guarantee that such algorithms can
also be fruitfully applied to our scheme. Here for being “fruitfully applicable” we mean
that 1) the algorithm terminates and 2) the resulting problem is equivalent to the given one
and it does not depend on the nondeterministic choices made during the algorithm.

The second framework, that we call VCSP (for Valued CSP), relies on a simpler struc-
ture, an ordered monoid (that is, an ordered domain plus one operation satisfying some
properties). The values of the domain are interpreted as levels of violation (which can be
interpreted as cost, or degrees of preference, or probabilities, or others) and can be combined
using the monoid operator. Specific choices of the monoid will then give rise to different
instances of the framework.

In this framework, we study how to generalize the arc-consist@nagerty using the
notion of “relaxation” and we generalize some of the usual branch and bound algorithms for
finding optimal solutions. We provide sufficient conditions over the monoid operation which
guarantee that the problem of checking arc-consistency on avalued CSP is either polynomial
or NP-complete. Interestingly, the results are consistent with the results obtained in the
SCSP framework in the sense that the conditions which guarantee the polynomiality in the
VCSP framework are exactly the conditions which guaranteetbansistency algorithms
actually “work” in the SCSP framework.

The advantage of these two frameworks is that one can just see any constraint solving
paradigm as aninstance of either of these frameworks. Then, one canimmediately inheritthe
results obtained for the general frameworks. This also allows one to justify many informally
taken choices in existing constraint solving schemes. In this paper we study several known
and new constraint solving frameworks, casting them as instances of SCSP and VCSP.

The two frameworks are not however completely equivalent. In fact, only if one assumes
a total order on the semiring set, it is possible to define appropriate mappings to pass from
one of them to the other.

The paper is organized as follows. Section 2 describes the framework based on semirings
and its properties related to local consistency. Then, Sect. 3 describes the other framework
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and its applications to search algorithms, including those relying on arc-consistency. Then,
Sect. 4 compares the two approaches, and finally Sect. 5 summarizes the main results of
the paper and hints at possible future developments.

2. Constraint Solving over Semirings

The framework we will describe in this section is based on a semiring structure, where the
set of the semiring specifies the values to be associated with each tuple of values of the
variable domain, and the two semiring operatichg(dx) model constraint projection and
combination respectively. Local consistency algorithms, as usually used for classical CSPs,
can be exploited in this general framework as well, provided that some conditions on the
semiring operations are satisfied. We then show how this framework can be used to model
both old and new constraint solving schemes, thus allowing one both to formally justify many
informally taken choices in existing schemes, and to prove that local consistency techniques
can be used also in newly defined schemes. The content of this section is based on [2], [3].

2.1. C-Semirings and Their Properties

We associate a semiring with the standard definition of constraint problem, so that different
choices of the semiring represent different concrete constraint satisfaction schemes. Such
semiring will give us both the domain for the non-crisp statements and also the allowed
operations on them. More precisely, in the following we will consideemiringsthat is,
semirings with additional properties of the two operations.

Definition 1. A semiringis a tuple(A, +, x, 0, 1) such that
e Aisasetand,1¢c A;

e -+, called the additive operation, is a closed (i&.pb € A impliesa + b € A),
commutative (i.e.a + b = b + a) and associative (i.ea + (b +c¢) = (a+ b) + )
operation such that+ 0 = a = 0+ a (i.e.,0is its unit element);

e X, called the multiplicative operation, is a closed and associative operation sugh that
is its unit element and x 0 =0 =0 x a (i.e.,0is its absorbing element);

e x distributes over- (i.e.,a x (b+¢) = (a x b) + (a x ©)).

A c-semiringis a semiring such that is idempotent (i.ea € Aimpliesa+a = a), x is
commutative, and is the absorbing element of +.

The idempotency of the- operation is needed in order to define a partial ordeting
over the setA, which will enable us to compare different elements of the semiring. Such
partial order is defined as followst <s b iff a + b = b. Intuitively, a <s b means that
b is “better” thana. This will be used later to choose the “best” solution in our constraint
problems. Itis important to notice that bothand x are monotone on such ordering.
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a+b =lub(a,b)

Figure 1. Structure of a c-semiring.

The commutativity of thex operation is desirable when such operation is used to combine
several constraints. In fact, were it not commutative, it would mean that different orders of
the constraints give different results.

If 1is also the absorbing element of the additive operation, then we hawe thal for
all a. Thusl is the maximum (i.e., the best) element of the partial ordering. This implies
that thex operation isextensivethat is, that x b < a. This is important since it means
that combining more constraints leads to a worse (w.r.ttBerdering) result. The fact
thatO is the unit element of the additive operation implies & the minimum element
of the ordering. Thus, for arg € A, we haved <sa <s 1.

Figure 1 gives a graphical representation of a c-semiring and of the relationship between
any two of its elements.

In the following we will sometimes need the operation to be closed on a certain
finite subset of the c-semiring. More precisely, given any c-semi@iag (A, +, x, 0, 1),
consider a finite set C A. Then,x is I-closedif, foranya,be |, (ax b) e I.

2.2. Constraint Systems and Problems

A constraint system provides the c-semiring to be used, the set of all variables, and their
domainD. Then, a constraint over a given constraint system specifies the involved variables
and the “allowed” values for them. More precisely, for each tuple of valud3 fufr the
involved variables, a corresponding element of the semiring is given. This element can be
interpreted as the tuple weight, or cost, or level of confidence, or else. Finally, a constraint
problem is then just a set of constraints over a given constraint system, plus a selected set
of variables. These are the variables of interest in the problem, i.e., the variables of which
we want to know the possible assignments compatibly with all the constraints.
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Figure 2. Structure of a constraint.

Definition 2. A constraint systers a tupleCS= (S, D, V), whereSis a c-semiringD is

a finite set, an is an ordered set of variables. Given a constraint sy§&mws- (S, D, V),
whereS = (A, +, x, 0, 1), aconstraintoverC Sis a pair(def, con), wherecon < V and
it is called thetypeof the constraint, andef: DK — A (wherek is the size ofcon, that
is, the number of variables in it), and it is called tedue of the constraint. Moreover, a
constraint problem RoverC Sis a pairP = (C, con), whereC is a set (or a multiset ik

is not idempotent) of constraints ov@iSandconC V.

In other words, each constraints, which connects a certain set of variables, is defined
by associating an element of the semiring with each tuple of values of the domain for
the involved variables. Figure 2 shows the typical structure of a constraint connecting
two variables. In this picture and also in the following one, we will use the graph-like
representation of constraint problems, where variables are nodes and constraints are arcs,
and where domains and constraint definitions are denoted as labels of the corresponding
graph objects.

In the following we will consider a fixed constraint syst&ds = (S, D, V), where
S= (A, +, x,0,1). Note that when all variables are of interest, like in many approaches
to classical CSR;on contains all the variables involved in any of the constraints of the
problem. This set will be denoted B(P) and can be recovered by looking at the variables
involved in each constrain¥ (P) = (J, gt comycc COM-

In the SC S Pframework, the values specified for the tuples of each constraint are used
to compute corresponding values for the tuples of values of the varialdes,iaccording
to the semiring operations: the multiplicative operation is used to combine the values
of the tuples of each constraint to get the value of a tuple for all the variables, and the
additive operation is used to obtain the value of the tuples of the variables of interest.
More precisely, we can define the operationg@hbination(®) andprojection({}) over
constraints. Analogous operations have been originally defined for fuzzy relations in [43],
and have then been used for fuzzy CSPs in [8]. Our definition is however more general
since we do not consider a specific c-semiring but a general one.

Definition 3. Consider two constraints, = (def;, corny) andc, = (def,, conp) overCS
Then, theicombinationc; ® ¢y, is the constraint = (def, con) with con= con, U con,
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Figure 3. Combination and projection.

anddef(t) = defy(t | on ) x defy(t Eon), where, for any tuple of valugdor the variables
inasetl,t || denotes the projection ofover the variables in the sét Moreover, given
a constraint = (def, con) overC S and a subseab of con its projectionoverw, written
¢ |, isthe constraindef’, cor') overC Swith con’ = w anddef (t') = yqt con_rdef(t).

Figure 3 shows an example of combination and projection.
Using such operations, we can now define the notion of solution of a SCSP.

Definition 4. Given a constraint probler® = (C, con) over a constraint syste@ S the
solutionof P is a constraint defined &ol(P) = (Q C) {con, Where® C is the obvious
extension of the combination operation to a set of constréints

In words, the solution of a SCSP is the constraint induced on the variabtes by the
whole problem. Such constraint provides, for each tuple of valug3 fafr the variables
in con an associated value &. Sometimes, it is enough to know just the best value
associated to such tuples. In our framework, this is still a constraint (over an empty set of
variables), and will be called the best level of consistency of the whole problem, where the
meaning of “best” depends on the orderiag defined by the additive operation.

Definition 5. Given aSC S PproblemP = (C, con), we define théest level of consistency
of P asblevelP) = (R C) {g. If blevelP) = (blev, #), then we say thaP is consistent
if blev>g 0. Instead, we say tha& is a-consistent iblev= .

Informally, the best level of consistency gives us an idea of how much we can satisfy the
constraints of the given problem. Note thdével P) does not depend on the choice of
the distinguished variables, due to the associative property of the additive operation. Thus,
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since a constraint problem is just a set of constraints plus a set of distinguished variables, we
can also apply functiohlevelto a set of constraints only. Also, since the type of constraint
blevel P) is always an empty set of variables, in the following we will just write the value
of blevel

Another interesting notion of solution, more abstract than the one defined above, but
sufficient for many purposes, is the one that provides only the tuples that have an associated
value which coincides with (théef of) blevel P). However, this notion makes sense only
when <g is a total order. In fact, were it not so, we could have an incomparable set of
tuples, whose sum (vi&) does not coincide with any of the summed tuples. Thus it could
be that none of the tuples has an associated value eqolavel P).

By using the ordering<s over the semiring, we can also define a corresponding patrtial
ordering on constraints with the same type, as well as a preorder and a notion of equivalence
on problems.

Definition 6. Consider two constraints;, ¢c; over CS, and assume thaton; = cor.
Then we define theonstraint orderingC s as the following partial orderingc; Cs ¢,

if and only if, for all tuplest of values fromD, def;(t) <s def,(t). Notice that, if
¢1 Cs ¢y andc, Cg ¢y, thenc; = ¢,. Consider now tw&CSPproblemsP; and P, such
that P, = (C4, con) and P, = (C,, con). Then we define thproblem preorderCp as:
P Cp P, if Sol(P;) Cg Sol(P,). If PL Cp P, andP, Cp Py, then they have the same
solution. Thus we say thd&; and P, areequivalentand we writeP; = P,.

The notion of problem preorder can also be useful to show that, as in the classical CSP
case, also the SCSP framework is monotai@:con) Cp (CUC/, con). Thatis, if some
constraints are added, the solution (as well astkee) of the new problem is worse or
equal than that of the old one.

2.3. Local Consistency

Computing any one of the previously defined notions (like the best level of consistency and
the solution) is an NP-hard problem. Thusitcan be convenientin many cases to approximate
such nations. In classical CSP, this is done using the so-called local consistency techniques.
Such techniques can be extended also to constraint solving over any semiring, provided that
some properties are satisfied. Here we define Witatnsistency [11], [12], [18] means for
SCSP problems. Informally, an SCSP problerk-isonsistent when, taken any 3t of

k — 1 variables and ank-th variable, the constraint obtained by combining all constraints
among thek variables and projecting it onMY is better or equal (in the orderings) than

that obtained by combining the constraints among the variables in W only.

Definition 7. Given aSC S PproblemP = (C, con) we say thatP is k-consistent if, for
all W € V(P) such that sizeV) = k — 1, and for allx € (V(P) — W), (®{c | ¢ € C

Acon € (WU {xh}D dw) Is(®{c | ¢ € C Acon € W)}, wherec; = (def;, con) for

allg € C.
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Note that, sincex is extensive, in the above formula f&rconsistency we could also
replaceds by =s. In fact, the extensivity ok assures that the formula always holds when
Cgsis used instead ofls.

Making a problenk-consistent means explicitating some implicit constraints, thus pos-
sibly discovering inconsistency at a local level. In classical CSP, this is crucial, since local
inconsistency implies global inconsistency. This is true also in SCSPs. But here we can be
even more precise, and relate the best level of consistency of the whole problem to that of
its subproblems.

THEOREM1 (LOCAL AND GLOBAL «-CONSISTENCY) Consider a set of constraints C over
CS, and any subset' ©f C. If C' is a-consistent, then C i8-consistent, witt <s «.

Proof: If C’ is a-consistent, it means th&C’ |gy= («,¥). Now, C can be seen as
C’ @ C” for someC”. By extensivity of x, and the monotonicity of-, we have that
B=0C' ®C")IICs®EC) | V¥=a. u

If a subset of constraints d? is inconsistent (that is, itblevelis 0), then the above
theorem implies that the whole problem is inconsistent as well.

We now define a generlcconsistency algorithm, by extending the usual one for classical
CSPs [11], [18]. We assume to start frons@SPproblem where all constraints of arity
k—1 are present. If some are not present, we just add them with a non-restricting definition.
Thatis, for any added constraimt= (def, con), we setdef(t) = 1 for all contuplest. This
does not change the solution of the problem, sihisethe unit element for the operation.

The idea of the (naive) algorithm is to combine any constraioit arity k — 1 with the
projection over suck — 1 variables of the combination of all the constraints connecting the
samek — 1 variables plus another one, and to repeat such operation until no more changes
can be made to ank (— 1)-arity constraint.

In doing that, we will use the additional notion tyfped locations Informally, a typed
location is just a location (as in ordinary imperative programming) which can be assigned to
a constraint of the same type. This is needed since the constraints defined in Definition 2.2
are just pairgdef, con), wheredef is afixedfunction and thus not modifiable. In this way,
we can also assign the value of a constraint to a typed location (only if the type of the
location and that of the constraint coincide), and thus achieve the effect of modifying the
value of a constraint.

Definition 8. A typed locationis an object : conwhose type ion The assignment
operationl := ¢, wherec is a constraintdef, con), has the meaning of associating, in the
present store, the valuwkef tol. Whenever a typed location appears in a formula, it will
denote its value.

Definition 9. Consider arSC S PproblemP = (C, con) and take any subs&/ C V(P)
such that sizef/) = k — 1 and any variable € (V(P) — W). Let us now consider a
typed locationl; for each constraint; = (def;, con) € C such that; : con. Then a
k-consistency algorithmorks as follows.

1. Initialize all locations by performinfy := ¢ for eachc; € C.
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2. Consider
° |j W,
o AW, x)=a{l |con € (WU {x})} | W, and
e B(W)={li|con € W}

Then, if A(W, x) Zs B(W), performlj :=1; ® A(W, X).
3. Repeat step 2 on alV andx until A(W, x) I B(W) for all W and allx.

Upon stability, assume that each typed location con haseval(lj) = def. Then
the result of the algorithm is a new SCSP problBf= k-consP) = (C’, con) such that
C’' =, (def;, con).

Assuming the termination of such algorithm (we will discuss such issue later), itis obvious
to show that the problem obtained at the enklé®nsistent. This is a very naive algorithm,
whose efficiency can be improved easily by using the methods which have been adopted
for classicak-consistency.

In classical CSP, ank-consistency algorithm enjoys some important properties. We now
will study these same properties in our SCSP framework, and point out the corresponding
properties of the semiring operations which are necessary for them to hold. The desired
properties are as follows: that akyconsistency algorithm returns a problem which is
equivalent to the given one; that it terminates in a finite number of steps; and that the order
in which the k— 1)-arity subproblems are selected does not influence the resulting problem.

THEOREM 2 (EQUIVALENCE) Consider a SCSP problem P and a SCSP probléns R-
cons(P). Then, B= P’ (thatis, P and Pare equivalent) ifx is idempotent.

Proof: AssumeP = (C, con andP’ = (C’, con). Now, C’ is obtained byC by changing
the definition of some of the constraints (via the typed location mechanism). For each of
such constraints, the change consists of combining the old constraint with the combination
of other constraints. Since the multiplicative operation is commutative and associative
(and thus als®), ®C’ can also be written a&C) ® C”, where®C” Js ®C. If x is
idempotent, therfi(®C) ® C”) = (®C). Thus(®C) = (RC’). ThereforeP = P’. [ |

THEOREM 3 (TERMINATION) Consider any SCSP problem P where &SS, D, V) and

the set AD= | gef concc R(def), where Rdef) = {a | 3t with def(t) = a}. Then the
application of the k-consistency algorithm to P terminates in a finite number of steps if AD
is contained in a set | which is finite and such thaaind x are I-closed.

Proof: Each step of th&-consistency algorithm may change the definition of one con-
straint by assigning a different value to some of its tuples. Such value is strictly worse (in
terms of<g) since x is extensive. Moreover, it can be a value which is noAiD but in

| — AD. If the state of the computation consists of the definitions of all constraints, then at
each step we get a strictly worse state (in terms ¢ff. The sequence of such computation
states, until stability, has finite length, since by assumptids finite and thus the value
associated with each tuple of each constraint may be changed at mok} 8ime§. =
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An interesting special case of the above theorem occurs when the chosen semiring has
a finite domainA. In fact, in that case the hypotheses of the theorem hold Wwith A.
Another useful result occurs whep and x are AD-closed. In fact, in this case one
can also compute the time complexity of tkeonsistency algorithm by just looking at
the given problem. More precisely, if this same algorithn®ig¥) in the classical CSP
case [11], [12], [24], [26], then here it ©(size AD) x n¥) (in [8] they reach the same
conclusion for the fuzzy CSP case).

No matter in which order the subséf¢ of k — 1 variables, as well as the additional
variablesx, are chosen during theconsistency algorithm, the result is always the same
problem. However, this holds in general onlydfis idempotent.

THEOREM4 (ORDERINDEPENDENCE Consider a SCSP problem P and two different ap-
plications of the k-consistency algorithm to P, producing respectivélsgngd P’. Then
P’ = P” if x is idempotent.

In some cases, where the given problem has a tree-like structure (where each node of the
tree may be any subproblem), a variant of the above defiremhsistency algorithm can
be applied: just apply the main algorithm step to each node of the tree, in any bottom-up
order [28]. For such algorithm, which is linear in the size of the problem and exponential
in the size of the larger node in the tree structure, the idempotengyi®ihot needed to
satisfy the above properties (except the order independence, which does not make sense
here).

Notice that the definitions and results of this section would hold also in the more general
case of a local consistency algorithm which is not required to achieve consistency on every
subset ok variables, but may in general make only some subsets of variables consistent
(not necessarily a partition of the problem). These more general kinds of algorithms have
been considered in [28], and similar properties have been shown there for the special case
of classical CSPs.

2.4. Instances of the Framework

We will now show how several known, and also new, frameworks for constraint solving
may be seen as instances of the SCSP framework. More precisely, each of such frameworks
corresponds to the choice of a specific constraint system (and thus of a semiring). This
means that we can immediately know whether one can inherit the properties of the general
framework by just looking at the properties of the operations of the chosen semiring, and
by referring to the theorems in the previous subsection. This is interesting for known
constraint solving schemes, because it puts them into a single unifying framework and it
justifies in a formal way many informally taken choices, but it is especially significant for
new schemes, for which one does not need to prove all the properties that it enjoys (or not)
from scratch. Since we consider only finite domain constraint solving, in the following we
will only specify the semiring that has to be chosen to obtain a particular instance of the
SCSP framework.
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2.4.1. Classical CSPs

A classical CSP problem [25], [27] is just a set of variables and constraints, where each
constraint specifies the tuples that are allowed for the involved variables. Assuming the
presence of a subset of distinguished variables, the solution of a CSP consists of a set of
tuples which represent the assignments of the distinguished variables which can be extended
to total assignments which satisfy all the constraints.

Since constraints in CSPs are crisp, we can model them via a semiring with only two
values, say 1 and 0: allowed tuples will have the value 1, and not allowed ones the value 0.
Moreover, in CSPs, constraint combination is achieved via a join operation among allowed
tuple sets. This can be modeled here by taking as the multiplicative operation the logical
and (and interpreting 1 as true and 0 as false). Finally, to model the projection over the
distinguished variables, as tketuples for which there exists a consistent extension to an
n-tuple, itis enough to assume the additive operation to be the lagiciherefore a CSP is
justan SCSP where the c-semiring inthe constraint system&Sgis= ({0, 1}, v, A, 0, 1).

The ordering<s here reduces to &s 1. As predictable, all the properties relateckto
consistency hold. In facty is idempotent. Thus the results of Theorems 2 and 4 apply.
Also, since the domain of the semiring is finite, the result of Theorem 3 applies as well.

2.4.2. Fuzzy CSPs

Fuzzy CSPs (FCSPs) [8], [32], [33], [34] extend the notion of classical CSPs by allowing
non-crisp constraints, that is, constraints which associate a preference level with each tuple
of values. Such level is always between 0 and 1, where 1 represents the best value (that is,
the tuple is allowed) and 0 the worst one (that is, the tuple is not allowed). The solution of
a fuzzy CSP is then defined as the set of tuples of values which have the maximal value.
The value associated withtuple is obtained by minimizing the values of all its subtuples.
Fuzzy CSPs are already a very significant extension of CSPs. In fact, they are able to
model partial constraint satisfaction [13], so to get a solution even when the problem is
over-constrained, and also prioritized constraints, that is, constraints with different levels
of importance [5].

Fuzzy CSPs can be modeled in our framework by choosing the c-senSfirgp =
{{x | x € [0, 1]}, max min,0,1). The ordering<s here reduces to the ordering on
reals. The multiplicative operation &csp (that is,min) is idempotent. Thus Theorem 2
and 4 can be applied. Moreovenin is AD-closed for any finite subset of [0,1]. Thus,
by Theorem 3, ank-consistency algorithm terminates. Thus FCSPs, although providing
a significant extension to classical CSPs, can exploit the same kind of local consistency
algorithms. An implementation of arc-consistency, suitably adapted to be used over fuzzy
CSPs, is given in [34] (although no formal properties of its behavior are proved).

For example, Figure 4 shows a fuzzy CSP. Semiring values are written to the right of the
corresponding tuples. The solutions of this SCSP are triples (that is, a value for each of the
three variables) and their semiring value is obtained by looking at the smallest value for all
the subtuples (as many as the constraints) forming the triple. For example, fotauale
(thatis,x = y = a), we have to compute the minimum betwee®,@vhich is the value for
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a..09 a..09
b..0.1 b..05
aa..08
ab..02
ba..0
bb..0

Figure 4. A fuzzy CSP.

X = a, 0.8, which is the value fotx = a, y = a), and 09, which is the value foy = a.
So the resulting value for this tuple is30

2.4.3. Probabilistic CSPs

Probabilistic CSPs [9] have been introduced to model those situations where each constraint
c has a certain independent probabilitic) to be part of the given real problem. This allows

one to reason also about problems which are only partially known. The probability of each
constraint gives then, to each instantiation of all the variables, a probability that it is a
solution of the real problem. This is done by associating with-d&mplet the probability

that all constraints thdt violates are in the real problem. This is just the product of all

1 — p(c) for all c violated byt. Finally, the aim is to get those instantiations with the
maximum probability.

The relationship between Probabilistic CSPs and SCSPs is complicated by the fact that the
former contain crisp constraints with probability levels, while the latter contain non-crisp
constraints. That is, we associate values with tuples, and not to constraints. However, it
is still possible to model Probabilistic CSPs, by using a transformation which is similar
to that proposed in [8] to model prioritized constraints via soft constraints in the FCSP
framework. More precisely, we assign probabilities to tuples instead of constraints: consider
any constraint with probability p(c), and lett be any tuple of values for the variables
involved inc; then we setp(t) = 1 if t is allowed byc, otherwisep(t) = 1 — p(c).

The reasons for such a choice are as follows: if a tuple is allowed domydc is in the
real problem, then is allowed in the real problem; this happens with probabifitg);

if insteadc is not in the real problem, thenis still allowed in the real problem, and this
happens with probability + p(c). Thust is allowed in the real problem with probability
p(c) + 1 — p(c) = 1. Consider instead a tuptewhich is not allowed byc. Then it
will be allowed in the real problem only i is not present; this happens with probability
1— p(o).

To give the appropriate value to artuplet, given the values of all the smallkrtuples,
with k < n and which are subtuples of(one for each constraint), we just perform the
product of the value of such subtuples. By the way values have been assigned to tuples in
constraints, this coincides with the product of alt b(c) for all cviolated byt. In fact, ifa
subtuple violates, then by construction its value is-1 p(c); if instead a subtuple satisfies
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¢, then its value is 1. Since 1 is the unit elemenkgfwe have that  a = a for eacha.
Thus we gefl(1 — p(c)) for all c thatt violates.

As a result, the c-semiring corresponding to the Probabilistic CSP framewSgkis=
({x | x € [0, 1]}, max x, 0, 1), and the associated orderiag; here reduces t& over
reals. Note that the fact th&’ is a-consistent means that iR there exists am-tuple
which has probabilityr to be a solution of the real problem.

The multiplicative operation 08,.p (that is, x) is not idempotent. Thus neither Theo-
rem 2 nor Theorem 4 can be applied. Alsas not closed on any superset of any non-trivial
finite subset of [0,1]. Thus Theorem 3 cannot be applied as well. Ther&fomnsistency
algorithms do not make much sense in the Probabilistic CSP framework, since none of
the usual desired properties hold. However, the fact that we are dealing with a c-semiring
implies that, at least, we can apply Theorem 1: if a Probabilistic CSP problem has a tuple
with probability « to be a solution of the real problem, then any subproblem has a tuple
with probability at leasi to be a solution of a subproblem of the real problem. This can be
fruitfully used when searching for the best solution in a branch-and-bound search algorithm.

2.4.4. Weighted CSPs

While fuzzy CSPs associate a level of preference with each tuple in each constraint, in
weighted CSPs (WCSPs) tuples come with an associated cost. This allows one to model
optimization problems where the goal is to minimize the total cost (time, space, number of
resources .) of the proposed solution. Therefore, in WCSPs the cost function is defined
by summing up the costs of all constraints (intended as the cost of the chosen tuple for each
constraint). Thus the goal is to find thetuples (wheren is the number of all the variables)
which minimize the total sum of the costs of their subtuples (one for each constraint).

According to this informal description of WCSPs, the associated c-semiriBgdse =
(R~, max, +, —oo, 0), with ordering<g which reduces here tg over the reals. This
means that a value is preferred to another one if it is greater. Notice that we represent costs
as negative numbers. Thus we need to maximize these numbers in order to minimize the
costs.

The multiplicative operation oSycsp (that is, +) is not idempotent. Thus thke-
consistency algorithms cannot be used (in general) in the WCSP framework, since none
of the usual desired properties hold. However, again, the fact that we are dealing with a
c-semiring implies that, at least, we can apply Theorem 1: if a WCSP problem has a best
solution with costr, then the best solution of any subproblem has a cost greatear thihis
can be convenient to know in a branch-and-bound search algorithm. Note that the same
properties hold also for the semiring®—, max +, —oo, 0) and (Z~, max +, —oo, 0),
which can be proved to be c-semirings.

2.4.5. Egalitarianism and Utilitarianism: FCSP + WCSP

The FCSP and the WCSP systems can be seen as two different approaches to give a meaning
to the notion of optimization. The two models correspond in fact, respectively, to two defini-
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tions of social welfare in utility theory [29]egalitarianism which maximizes the minimal
individual utility, andutilitarianism, which maximizes the sum of the individual utilities:
FCSPs are based on the egalitarian approach, while WCSPs are based on utilitarianism.
In this section we show how our framework allows also for the combination of these
two approaches. In fact, we construct an instance of the SCSP framework where the
two approaches coexist, and allow us to discriminate among solutions which otherwise
would result indistinguishable. More precisely, we first compute the solutions according to
egalitarianism (that is, usingmax— min computation as in FCSPs), and then discriminate
more among them via utilitarianism (that is, usingiax— sumcomputation as in WCSPs).
The resulting c-semiring i§,e = ({{I, k) | |, k € [0, 1]}, max min, {0, 0), (1, 0)), where
maxandmin are defined as follows:

(1. kymax(, k) = {:1 masky, k2) if 11 =1,

(
(1, k1) ifly > 12
. _ (lnki+ k) ifly=1;
(I, kyymin{lo, ko) = {(|2, ko) ifly > 1,

That is, the domain of the semiring contains pairs of values: the first element is used
to reason via thenaxmin approach, while the second one is used to further discriminate
via themaxsumapproach. More precisely, given two pairs, if the first elements of the
pairs differ, then thenax— minoperations behave like a nornmabx— min, otherwise they
behave likemaxsum This can be interpreted as the fact that, if the first element coincide,
it means that thenaxmin criteria cannot discriminate enough, and thus riex— sum
criteria is used.

Sinceminis not idempotentk-consistency algorithms cannot in general be used mean-
ingfully in this instance of the framework.

A kind of constraint solving similar to that considered in this section is the one presented
in[10], where Fuzzy CSPs are augmented with a finer way of selecting the preferred solution.
More precisely, they employ a lexicographic ordering to improve the discriminating power
of FCSPs and avoid the so-callésbwning effect We plan to rephrase this approach in our
framework (as it is done in the VCSP framework).

2.4.6. N-dimensional SCSPs

Choosing an instance of the SCSP framework means specifying a particular c-semiring.
This, as discussed above, induces a partial order which can be interpreted as a (partial)
guideline for choosing the “best” among different solutions. In many real-life situations,
however, one guideline is not enough, since, for example, it could be necessary to reason
with more than one objective in mind, and thus choose solutions which achieve a good
compromise w.r.t. all such goals.

Consider for example a network of computers, where one would like to both minimize
the total computing time (thus the cost) and also to maximize the work of the least used
computers. Then, in the SCSP framework, we would need to consider two c-semirings,
one for cost minimization (weighted CSP), and another one for work maximization (fuzzy
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CSP). Then, one could work first with one of these c-semirings and then with the other one,
trying to combine the solutions which are the best for each of them.

However, a much simpler approach consists of combining the two c-semirings and then
work with the resulting structure. The nice property is that such a structure is a c-semiring
itself, thus all the techniques and properties of the SCSP framework can be used for such a
structure as well. More precisely, the way to combine several c-semirings and get another
c-semiring just consists of vectorizing the domains and operations of the combined c-
semirings.

Definition 10. Given then c-semiringsS = (A, +i, x;, 0;, 1;), fori = 1,...,n, we de-
fine the structur€ompS,, ..., S) = ((A1, ..., An), +, %, (01,...,0n), (11...1n)).
Given(ay,...,a,) and(by, ..., b,) suchtha,bj € A fori =1,...,n,{(ay,...,an) +
(by,...,by) = (@ +1b1,...,an +n bp), @and(ag, ..., an) x (by,...,by) = (a1 x1

bi,...,a, ann>-

According to the definition of the orderings (in Sect. 2.1), such an ordering f&=
Comas, ..., S) is as follows. Givenay, ..., a,) and(by, ..., by) such thag;, bj € A
fori =1,...,n,wehavea,...,a,) <s(bs,...,by)ifandonlyif(a; +1 by, ..., a, +n
b,) = (by, ..., by). Since the tuple elements are completely independssis in general
a partial order, even though each of the is a total order. Thus itis in this instance that the
power of a partially ordered domain (as opposed to a totally ordered one, as in the VCSP
framework discussed later in the paper) can be exploited.

The presence of a partial order means that the abstract solution of a problem over such a
semiring may in general contain an incomparable set of tuples, none of whibleliaP)
as its associated value. In this case, if one wants to reduce the number of “best” tuples (or
to get just one), one has to specify some priorities among the orderings of the component
c-semirings.

3. Valued Constraint Problems

The framework described in this section is based on an ordered monoid structure (a monoid
is essentially a semi-group with an identity). Elements of the set of the monoid, called
valuations, are associated with each constraint and the monoid operation (denased

used to assign a valuation to each assignment, by combining the valuations of all the
constraints violated by the assignment. The order on the monoid is assumed to be total
and the problem considered is always to minimize the combined valuation of all violated
constraints (the reader should note that the choice of associating one valuation to each
constraint rather than to each tuple (as in the SCSP framework) is done only for the sake of
simplicity and is not fundamentally different, as Sect. 4 will show).

We show how the VCSP framework can be used to model several existing constraint
solving schemes and also to relate all these schemes from an expressiveness and computa-
tional complexity point of view. We define an extended version of the arc-consistency
property and study the influence of the monoid operation properties on the computa-
tional complexity of the problem of checking arc-consistency. We then try to extend
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some usual look-ahead backtrack search algorithms to the VCSP framework. The re-
sults obtained formally justify the current algorithmic “state of art” for several existing
schemes.

In this section, a classical CSP is defined by a\tet {v4, ..., vy} of variables, each
variablev; having an associated finite domain A constraintc = (V,, R;) is defined by
a set of variabled/. € V and a relationR. between the variables &f. i.e., a subset of
the Cartesian produdt], ., di. A CSP is denoted byV, D, C), whereD is the set of
the domains an€ the set of the constraints. A solution of the CSP is an assignment of
values to the variables i such that all the constraints are satisfied: for each constraint
c = (V., Ro), the tuple of the values taken by the variable¥gbelongs taR.. The content
of this section is based on [35].

3.1. Valuation Structure

In order to deal with over-constrained problems, it is necessary to be able to express the fact
that a constraint may eventually be violated. To achieve this, we annotate each constraint
with a mathematical item which we calivaluation Such valuations will be taken from a

setE equipped with the following structure:

Definition 11.A valuation structuras defined as a tuplée, ®, >) such that:

o E is aset, whose elements are called valuations, which is totally orderedith a
maximum element noted and a minimum element noteld;

e ® is a commutative, associative closed binary operatiok timat satisfies:

— ldentity Vae E,a® 1 = a;
— Monotonicity Va,b,c€ E, (a>b) = ((@®c¢) = (b®0));
— Absorbing elementvac€ E, (a® T) = T.

This structure of a totally ordered commutative monoid with a monotonic operator is also
known in uncertain reasoning; being restricted to [0l], as a “triangular co-norm” [7].
One may notice that this set of axioms is not minimal.

THEOREMS5 The “absorbing element” property can be inferred from the other axioms
defining a valuation structure.

Proof: Since is the identity,(L ® T) = T; sinceL is minimum,Yae E,(@® T) =
(L®T)=T,;since, T ismaximumVYaec E,(@a® T)=T [ |

Notice also that a c-semiring, as defined in Section 2.1, can be seen as a commutative
monoid, the role of the operator being played by. The+ operation defines an order
on the monoid. In the rest of the paper, we implicitly suppose that the computatien of
and® are always polynomial in the size of their arguments.



SEMIRING-BASED CSPS AND VALUED CSPS 215

3.2. Valued CSP

A valued CSP is then simply obtained by annotating each constraint of a classical CSP with
a valuation denoting the impact of its violation or, equivalently, of its rejection from the set
of constraints.

Definition 12.A valued CSHs defined by a classical CSW, D, C), a valuation structure
S= (E, ®, »), and an applicatiop from C to E. Itis denoted byV, D, C, S, ¢). ¢(C)
is called the valuation of.

An assignmentA of values to some variabl&4/ c V can now be simply evaluated by
combining the valuations of all the violated constraints using

Definition 13. In a VCSPP = (V, D, C, S, ¢) the valuation of an assignment & the
variables ofW C V is defined by:
V(A=  ® [p(0)]
C,V.cW

ceC,V.C
A violatesc

The semantics of a VCSP is a distribution of valuations on the assignménigotential
solutions). The problem considered is to find an assignrAesith a minimumvaluation.

The valuation of such an optimal solution will be called the CSP valuation. It provides
a gradual notion of inconsistency, from_, which corresponds to consistency, T for
complete inconsistency.

Abstracting a little, one may also consider that a VCSP actually defines an ordering
on complete assignments: an assignment is better than another one iff its valuation is
smaller. This induced ordering makes it possible to compare two VCSP, independently of
the valuation structure used in each VCSP:

Definition 14.AVCSPP = (V, D, C, S, ¢) is arefinementf the VCSPP’ = (V, D, C/,
S, ¢') if for any pair of assignment#, A’ of V such thatVp/ (A) > Vp (A) in S then
Vp(A) = Vp(A)in S. P is astrong refinemendf P’ if the property holds whew\, A’ are
assignments of subsets\éf

The main point is that if> is arefinemenbf P’, then the set of optimal assignments of
P is included in the set of optimal assignments/f the problem of finding an optimal
assignment 0P’ can be reduced to the same probler®inA related notion, “aggregation-
compatible simplification function”, has been introduced in [16] along with stronger results.

Definition 15. Two VCSPP = (V, D, C, S, ¢) and?P’ = (V, D, C/, S, ¢’) will be said
equivaleniff each one is a refinement of the other. They will be saidngly equivalenif
each one is a strong refinement of the other.

Equivalent VCSP define the same ordering on assignmemsaofd have the same set of
optimal assignments: the problem of finding an optimal assignment is equivalent in both
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VCSP. Note that this definition of equivalence is weaker than the definition used in SCSP
since it does not require that two equivalent VCSP always give the same valuation to the
same assignments but only that they order assignments similarly.

3.2.1. Justification and Properties

It is now possible to informally justify the choice of the axioms that define a valuation
structure:

e The ordered seE allows different levels of violations to be expressed and compared.
The order is assumed to be total because in practice this assumption is extremely useful
to define algorithms that will be able to solve VCSP.

e Commutativity and associativity are needed to guarantee that the valuation of an as-
signment depends only on the set of the valuations of the violated constraints, and not
on the way they are aggregated.

e The elementT corresponds to unacceptable violation and is used to expiass
constraints. The element corresponds to complete satisfaction. These maximum
and minimum elements can be added to any totally ordered set, and their existence is
supposed without any loss of generality.

e Monotonicity guarantees that an assignment that satisfies B sétonstraints will
never be considered as worse than an assignment which satisfies only a siset of

This set of axioms is a compromise between generality (to be able to capture as many existing
CSP extensions as possible) and specificity (to be able to prove interesting theorems and
define generic algorithms). Two additional properties will be considered later because of
their influence on algorithms and computation:

e Strict monotonicityva, b,c € E, if (a > ¢),(b # T) then(a ® b) > (c ® b))
is interesting from the expressiveness point of view. Essentially, strict monotonicity
strengthen the monotonicity property: it guarantees that an assignment that satisfies
a setB of constraints will not only be never considered as worse than an assignment
which satisfies only a strict subset Bfbut will always be considered as better, which
seems quite natural. This type of property is usual in multi-criteria theory, namely in
social welfare theory [29].

e ldempotencyva € E, (a ® a) = a) is interesting from the algorithmic point of view.
Basically, allk-consistency enforcing algorithms work by explicitly adding constraints
that are only implicitin a CSP. Idempotency is needed for the resulting CSP to have the
same meaning as the original CSP.

These two interesting properties are actually incompatible as soon as the valuation struc-
ture used is not trivial.
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THEOREMG6 In a valuation structuré E, ®, >) such that® is idempotent antE| > 2, the
operator® is not strictly monotonic.

Proof: From identity, it follows thatvva € E, (a® L) = a, thenforanya, L <a < T,
strict monotonicity implies thata ® a) > a and idempotency impliesthéd® a) = a. ®

Oneimportant factis that the assumption of idempotency is enough to precisely instantiate
our generic framework in a precise framework:

THEOREM7 In a valuation structurd E, ®, =), if ® is idempotent the® = max

Proof: This resultis well known for t-conorms. From monotonicity and idempotency, we
havevb < a,(a® 1) =a< (@a®b) xa= (a®a) and therefora® b = a. [ ]

3.2.2. Valued CSP and Relaxations

Given a VCSP, a relaxation of it is@dassicalCSP with only a subset of the constraints
of the original VCSP. The notion of relaxation offers a link between VCSP and classical
CSP. It also shows that our notion of VCSP is equivalent to [13] view of partial consistency.
Indeed, a VCSP defines a relaxation lattice equipped with a distance measure.

Definition 16. Given a VCSPP = (V, D, C, S, ¢), a relaxation ofP is a classical CSP
(V, D, C’), whereC’ c C.

Relaxations are naturally ordered by inclusion of constraint sets. Obviously, the consistent
inclusion-maximal relaxations are the classical CSP which can not get closer to the original
problem without loosing consistency.

There is an immediate relation between assignments and consistent relaxations. Indeed,
given any assignmer& of V, we can consider the consistent relaxation (a classical CSP)
obtained by rejecting the constraints violatedAynoted [A]p).

Definition 17. Given a VCSPP = (V, D, C, S, ¢) and an assignmer of the vari-
ables ofV, we denote A]p the classical consistent CSW, D, C’) whereC’ = {c €
C, A satisfiex}. [A]p is called the consistent relaxationBfassociated withA.

Consistently, it is possible to extend the notion of valuation to relaxations:

Definition 18.Ina VCSPP = (V, D, C, S, ¢), the valuation of a relaxatiofV/, D, C’) of
P is defined as:

Vr((V,D,C') = ® [p()]
ceC-C’

Obviously,Vp(A) = Vp([Alp) and [A] » is among the optimal problems thasatisfies.
This equality shows that it is equivalent to look for@gtimal assignmertdr for an optimal
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consistent relaxationBoth will have the same valuation and any solution of the latter (a
classical CSP) will be an optimal solution of the original VCSP.

The valuation of the top of the relaxation lattice, the GSPD, C), is obviously L. The
valuations of the other relaxations can be understood as a distance to this ideal problem. The
best assignments df are the solutions of the closest consistent problems of the lattice. The
monotonicity of@® ensures that the order on problems defined by this valuation distribution
is consistent with the inclusion order on relaxations.

THEOREM8 Given a VCSPP = (V, D, C, S, ¢), and(V, D, C’), (V, D, C"), two relax-
ations ofP:

C' ¢ C"=Vp(V,D,C)) = Vp((V,D,C")

When® is strictly monotonic, the right inequality becomes strict (as far as the valuation
of PisnotT).

Proof: The theorem follows directly from the monotonicity, associativity and (strict)
commutativity of the operata®. ]

This last result shows that strict monotonicity is indeed a desirable property since it
guaranteesthatthe orderinduced by the valuation distribution will respesttigtenclusion
order onrelaxations (if the VCSP valuation is not equal}oln this case, optimal consistent
relaxations are always selected among inclusion-maximal consistent relaxations, which
seems quiteational.

Since idempotency and strict monotonicity are incompatible as soda laas more
than two elements, idempotency can be seen as an undesirable property, at least from the
rationality point of view. Using an idempotent operator, it is possible for a consistent
non inclusion-maximal relaxation to get an optimal valuation. This has been called the
“drowning-effect” in possibilistic logigCSP [10].

3.3. Instances of the Framework

We now show how several extensions of the CSP framework can be cast as VCSP. Most of
these instances have already been described as SCSP in the sect. 2.4 and we just give here
the valuation structure needed to cast each instance.

3.3.1. Classical CSP

In a classical CSP, an assignment is considered unacceptable as soon as one constraint is
violated. Therefore, classical CSP correspond to the trivial boolean I&itiee {t, f},
t=1<f=T,® = A (or max), all constraints being annotated with The operation

A is both idempotent and strictly monotonic (this is the only case where both properties
may exist simultaneously in a valuation structure).
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3.3.2. Possibilistic and Fuzzy CSP

Possibilistic CSPs [34] are closely related to Fuzzy CSPs [8], [32], [33]. Each constraint
is annotated with a priority (usually a real number between 0 and 1). The valuation of an
assignment is defined as the maximum valuation among violated constraints. The problem
defined is therefore a min-max problem [40], dual to the max-min problem of Fuzzy CSP.

Possibilistic CSPs are defined by the operatior= max. Traditionally,E = [0, 1],
0 = 1,1 = T but any totally ordered set (either symbolic or numeric) may be used.
The annotation of a constraint is interpreted as a priority degree. A preferred assignment
minimizes the priority of the most important violated constraint. The idempotency of max
leads to the so-called “drowning-effect”: if a constraint with priotitiias to be necessarily
violated then any constraint with a priority lower thers simply ignored by the combination
operator® and therefore such a constraint can be rejected from any consistent relaxation
without changing its valuation. The notion of lexicographic CSP has been proposed in [10]
to overcome this apparent weakness.

Obviously, a classical CSP is simply a specific possibilistic CSP where the valtation
alone is used to annotate the constraints. Note that finite fuzzy CSP [8] can easily be cast
as possibilistic CSP and vice-versa (see Sect. 4).

3.3.3.  Weighted CSP

Weighted CSP try to minimize the weighted sum of the elementary weights associated with
violated constraints. Weighted CSP correspond to the operatien + in N U {400},
using the usual ordering. The operation is strictly monotonic.

First considered in [39], weighted CSP have been considerPdréial CSPin [13], all
constraint valuations being equal to 1. The problem of finding a solution to such a CSP is
often called thevax -cspproblem.

3.3.4. Probabilistic CSP

Probabilistic CSP have been definedin [9] to enable the user to representill-known problems,
where the existence of constraints in the real problem is uncertain. Each constsaint
annotated with its probability of existence, all supposed to be independent. The probability
that an assignment that violates 2 constragtandc, will not be a solution of the real
problem is therefore + (1 — ¢(c1))(1 — @(Cp)). Therefore, probabilistic CSP correspond

to the operatiok @ y = 1 — (1 — x)(1 — y) in E = [0,1]. The operation is strictly
monotonic.

3.3.5. Lexicographic CSP

Lexicographic CSP offer a combination of weighted and possibilistic CSP and suppress the
“drowning effect” of the latter [10]. As in possibilistic CSP, each constraint is annotated
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with a priority. The idea is that the valuation of an assignment will not simply be defined

by the maximum valuation among the valuations of violated constraints but will depend on
the number of violated constraints at each level of priority, starting from the most prioritary
to the least prioritary.

To reduce lexicographic CSP to VCSP, a valuation will be either a designated maximum
elementTl (needed to represent hard constraints) or a multiset (elements may be repeated) of
elements of [01] (any other totally ordered set may be used instead,dffj0 Constraints
will usually be annotated with a multi-set that contains a single element: the priority of the
constraint.

The operatior® is simply defined by multi-set union, extended to tréats an absorbing
element (the empty multi-set being the identity. The orders is the lexicographic (or
alphabetic) total order induced by the ordeon multisets and extended to giveits role
of maximum element: let andv’ be two multisets and anda’ be the largest elements in
vandv’, v > v iff eithera > o’ or (@ = &’ andv — {a} > v — {&'}). The recursion ends
on @, the minimum multi-set.

This instance is closely related to the HCLP framework [5]. It can also be related to
the “FCSP+ WCSP” instance considered in sect. 2.4: since the number of constraints
violated at each level of priority are used to discriminate assignments in the lexicographic
CSP approach, it is finer than the “FC$RNCSP” which simply relies on the number of
constraints at one level.

3.4. Relationships Between Instances

Our first motivation for defining the VCSP framework was to understand why some frame-
works (eg. weighted CSP, lexicographic CSP, probabilistic CSP) define harder problems
than possibilistic or classical CSP. By harder, we mean both the hardness of the problem
of finding a provenly optimal solution and the difficulty of extension of algorithms such as
arc-consistency enforcing.

Elementary theoretical complexity is essentially useless to analyze this situation because
all the decision problems “Is there is a complete assignment whose valuation is less than
a?” are simplyNP-complete and there is not much more to say. In order to be able
to compare VCSP classes that relies on different valuation structures, we introduced the
following notion:

Definition 19.GivenSandS), two valuation structures, a polynomial time refinement from
Sto S is a function® that:

e transforms any VCSP = (V, D, C, S, ¢) ina VCSPP’' = (V, D, C, S, ¢’) where
¢ = ® o ¢ and such thaP’ is a refinement oP;

e is deterministic polynomial time computable.

This notion of polynomial-time refinement is inspired by the notion of polynomial transfor-
mation (or many-one reduction) usual in computational complexity [31]. As for polynomial
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transformation, if there exists a polynomial time refinement fi®to S then any VCSP
‘P defined ovelS can be solved by first applying this polynomial time refinemerit tand
then solving the resulting problem ov8f. This shows that problems defined o\&are
not harder than problems defined o&r
As we will see, the notion allows one to bring to light subtle differences between different
valuation structures. We have recently discovered that a similar idea has been developed
in [20] for optimization problems ovel in general. This work introduces a notion of
polynomial “metric reduction” closely related to the notion of polynomial-time refinement
introduced here as well as specific classes with an associated notion of completeness.
Considering all previous VCSP classes, presented in the table which follows, we may
partition them according to the idempotency of the operator: classical CSP and possibilistic
CSP on one side and weighted, probabilistic and lexicographic CSP on the other. Inter-
estingly, we will now show that this partition is in agreement with polynomial refinement
between valuation structures.

Instance E ® 1 T > Prop.
Classical {t, f} A = max t f f-t idemp.
Possibilistic [01] max 0 1 > idemp.
Weighted N + 0 +4oo >  strict. monot.
Probabilistic [Q1] XxX+y—-xy O 1 > strict. monot.
Lexicographic  [Q1]* U{T} U ? T lex. strict. monot.

We may first consider the VCSP instances with an idempaoteoperator: these are
classical and possibilistic (or fuzzy) CSP. Note that according to theorem 7, these are the
only existing instances.

e aclassical CSP is nothing but a specific possibilistic CSP that uses only the valuation
T. Therefore, identity is actually an obvious polynomial time refinement from classical
CSP to possibilistic CSP.

e Conversely, it is possible to reduce possibilistic CSP to Classical CSP although not
by a straightforward polynomial time refinement. The idea is again reminiscent of
elementary theoretical complexity and more precisely of Turing reductions [31].

Consider the problem of the existence of an assignment of valuation strictly lower than
a in a possibilistic CSRV, D, C, S, ¢). This problem can easily be reduced to the
existence of a solution in the relaxatiovi, D, C’) whereC’ = {c € C | ¢(C) = «}. If

a constraint fronC’ is violated, the assignment valuation is necessarily largerdhan
and conversely. By analogy with fuzzy-set theory [43], this type of relaxation is called
ana-cut of the possibilistic CSP.

If nis the number of different priorities used in the possibilistic CSP, itis possible, using
binary search, to find an optimal assignment of the possibilistic CSP ip @bagumber
of resolution of classical CSP (or calls to a “Classical CSP oracle”). In fact, almost
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all traditional polynomial classes, properties, theorems and algoritkiosnsistency
enforcing..) of classical CSP can be extended to possibilistic CSP using the same
idea.

We now consider some VCSP instances with a strictly monotonic operator: these are

probabilistic CSP, weighted CSP and lexicographic CSP.

a simple polynomial refinement exists from weighted CSP to lexicographic CSP: the
valuationk € N is transformed in a multiset containing a given elemegt 0 repeated

k times (noted(«, k)}), wherex is a fixed priority and the valuatiofoo is transformed

to T. The lexicographic VCSP obtained is in festtongly equivalento the original
weighted VCSP.

interestingly, a lexicographic CSP may also be transformed istooagly equivalent
weighted CSP. Let, ..., ax be the elements of ]A[ that appear in all the Lexico-
graphic CSP annotations, sorted in increasing ordem;Li& the number of occurrences
of ¢ in all the annotations of the VCSP. The lowest priositycorresponds to the weight
f (@1) = 1, and inductivelyy; corresponds td (o) = f («j_1) x (nj_1 + 1) (this way,
the weight f (¢;) corresponding to priority is strictly larger than the largest possible
sum of f (¢j), j < i. This is immediately satisfied fer, and inductively verified for
«;). An initial lexicographic valuation is converted in the sum of the penalties)
for eache; in the valuation. The valuation is converted tot-oco. All the operations
involved, sum and multiplication, are polynomial and the sizes of the operands remain
polynomial: if k is the number of priorities used in the VCSP ahthe maximum
number of occurrences of a priority, then the largest weilad) is in O(¢¥), with a
length inO (k. log(¢)) while the original annotations used at least spack+ log(¢)).
Therefore, the refinement is polynomial.

Finally, if we allow the valuations in weighted CSP to take valueR imstead ofN,

then probabilistic CSP and weighted CSP can be related by a simple isomorphism:
a constraint with a probability(c) of existence can be transformed into a constraint
with a weight of— log(1 — ¢(c)) (and conversely using the transformatioa & ¢(©).

The two VCSP obtained in this way are obvioustyongly equivalentHowever, and
because real numbers are not countable this isomorphism is not a true polynomial
time refinement. It is nevertheless usable to efficiently (but approximately) transform
a probabilistic CSP in a weighted CSP, real numbers being approximated by floating
point numbers.

Finally, a bridge between idempotent and strictly monotonic VCSP is provided by a

polynomial refinement from possibilistic CSP to Lexicographic CSP: the Lexicographic

CSP is simply obtained by annotating each constraint with a multi-set containing one
occurrence of the original (possibilistic) annotation if it is not equal to 1, oF loyherwise.

In this case, an optimal assignment of the Lexicographic CSP not only minimizes the
priority of the mostimportant constraint violated, but also, the number of constraint violated
successively at each level of priority, from the highest first to the lowest. The refinement is
obviously polynomial.
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Figure 5. Relations between frameworks.

All these relations are shown in figure 5. These refinements are not only useful for
proving that the previous VCSP instances with a non idempotent operator are at least as
hard as VCSP instances with an idempotent operator (the translation of the polynomial
refinements to “metric reductions” [20] would place this argument in a richer theoretical
framework), but are alssimple enough to be practically usableny algorithm dedicated
to one of the probabilistic, weighted or lexicographic CSP framework can be used to solve
problem expressed in any of these instances (or even in classical and possibilistic CSP).
These transformations and the ability of using VCSP to define generic algorithms makes
it useless to define specific algorithms for eg. probabilistic and lexicographic CSP. One
can simply focus on weighted CSP, because of their simplicity, with the assurance that the
algorithm can also be straightforwardly applied to solve these problems.

Note that the partition between idempotent and strictly monotonic VCSP classes is also
made clear atthe level of polynomial classes: the existence of an assignment with a valuation
lower tharnx in a (strictly monotonic) binary weighted C8#th domains of cardinality twis
obviouslyNP-hard by restriction teax 2SAT [14], whereas the same problem is polynomial
in all idempotent VCSP classes. One of the few polynomial classes which extends to all
classes of VCSP is the class of CSP structured in hyper-tree (see [6], [28]). This is a direct
consequence of the work of Shenoy and Shafer on dynamic programming [36], [37], [38]
(VCSP satisfying all the conditions needed for their results to apply).
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3.5. Extending Local Consistency Property

In classical binary CSP (all constraints are supposed to involve two variables only), sat-
isfiability defines arNP-complete problemk-consistency properties and algorithms [26]
offer a range of polynomial time weaker properties: enforcing sticagnsistency in a
consistent CSP will never lead to an empty CSP.

Arc-consistency (strong 2-consistency) is certainly the most prominent level of local
consistency and has been extended to possibjifstizzy CSP years ago [32], [40], [34].
Considering that the extension of the arc-consistency enforcing algorithms to strictly mono-
tonic frameworks was resisting all efforts, we tried to tackle the problem by extending the
property itself rather than the algorithms. The idea is to rely on the notion of relaxation,
which provides a link between VCSP and classical CSP.

The crucial property of all local consistency properties is that they approximate true
consistency.e., they may detect inconsistency only if CSP is inconsistent. A classical local
consistency property, when extended to the VCSP framework, will approxopétaality
by providing a lower bound on the cost of an optimal solution of the VCSP. This extension
can be done for any existing local consistency property using the notion of relaxation, which
provides a link between VCSP and classical CSP.

THEOREM9 (GENERIC LOWER BOUND FORVCSP) Given any classical local consistency
property L, a lower bound on the valuation of an optimal solution of a given VR 3
defined by the valuatiom of an optimal relaxation o among those that are not detected
as inconsistent by the local consistency property L.

In this case, we will say that the VCSRuwd_-consistent.

Proof: This is better explained using figure 6. Because the set of the relaxations which
are detected as inconsistent using a given local consistency prapeeessarily contains

the set of the consistent relaxations, the minimum of the valuation on the larger set will
necessarily be smaller and therefore provides a lower bound on the valuation of an optimal
consistent relaxation. The results follows from the fact that the valuation of an optimal
assignment is also the valuation of an optimahsistentelaxation. ]

The previous definition can be instantiated for arc-consistency:

Definition 20. A VCSP will be saidx-arc-consistent iff the optimal relaxations among all
the relaxations which have a non empty arc-consistent closure have a valuation lowser than

The generic bounds defined satisfy two interesting properties:

e they guarantee that the extended algorithm will behave as the original “classical” al-
gorithm when applied to a classical CSP seen as a VCSP (such a VCSP has only one
relaxation with a valuation lower than: itself);

e astrongerlocal consistency property will define a better lower bound. In the framework
of a branch and bound algorithm, this allows to exploit possible compromises between
the size of the tree search and the work done at each node.
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Figure 6. Relaxations and local consistency enforcing.

3.6. Extending Look-Ahead Tree Search Algorithms

Following the work in [8], [13], [34], [39], we try to extend some traditional CSP algorithms

to thebinary VCSP framework to solve the problem of finding a provably optimal assign-
ment. The class of algorithms which we are interested in are hybrid algorithms that combine
backtrack tree-search with some level of local consistency enforcing at each node. These
algorithms have been called look-ahead, prospective or prophylactic algorithms. Some pos-
sible instances have been considered in [30]: Backtrack, Forward-Checking, Really Full
Look Ahead. As in [30], we consider here that such algorithms are described by the type
of local consistency enforcing maintained at each node: check-backward, check forward,
arc-consistency or more.

In prospective algorithms, an assignment is extended until either a complete assignment
(a solution) is found, or the given local consistency property is not verified on the current
assignment: backtrack occurs. The extension of such algorithms to the VCSP framework,
where the problem is now an optimization problem, relies on a transformation Batie
track tree search schema tdepth First Branch and Boundlgorithm. DFBB is a simple
depth first tree search algorithm, which, liRacktrack extends an assignment until either
(1) a complete assignment is reached and a new “better” solution is found or (2) a given
lower bound on the valuation of the best assignment that can be found by extending the
current assignment exceeds the valuation of the current best solution found and backtrack
occurs. The lower bound used defines the algorithm. The lower bounds exploited will be
the lower bounds derived from classical local consistency properties in the previous section.

3.6.1. Extending Backtrack

Backtrackuses the local inconsistency of the current partial assignment as the condition for
backtracking. Therefore, the lower bound derived is the valuation of an optimal relaxation
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in which the current assignment is consistent. This is simply the relaxation which precisely
rejects the constraints violated by the current assignment (these constraints have to be
rejected or else local inconsistency will occur; rejecting these constraint suffices to restore
the consistency of the current assignment in the relaxation). The lower bound is therefore
simply defined by:

® ¢

ceC
A violatesc

and is obviously computable in polynomial time.

The lower bound can easily be computed incrementally when a new vaxjabéessigned:
the lower bound associated with the father of the current node is aggregated with the
valuations of all the constraints violated Ryusing®.

In the possibilistic and weighted instances, this generic VCSP algorithm defined co-
incides with the “Branch and Bound” algorithms defined for possibilistic or weighted
CSP in [13], [33], [34]. Note that for possibilistic CSP, thanks to idempotency, it is
useless to test whether constraints whose valuation is lower than the lower bound asso-
ciated with the father node have to be rejected since their rejection cannot influence the
bound.

3.6.2. Extending Forward Checking

Forward-checkinguses an extremely limited form of arc-consistency: backtracking occurs
as soon as all the possible extensions of the current assigmnemtany uninstantiated
variable are locally inconsistent: the assignment is said non forward-checkable. Therefore,
the lower bound used is the minimum valuation among the valuations of all the relaxations
that makes the current assignment forward-checkable.

A relaxation in whichA is forward-checkable (1) should necessarily reject all the con-
straints violated byA itself and (2) for each uninstantiated variabjdt should reject one
of the set<LC(v;, v) of constraints that are violatedif is instantiated with value of its
domain. Since® is monotonic, the minimum valuation is reached by taking into account,
for each variable the valuation of the sef (vi, v) of minimum valuation. The bound is
again computable in polynomial time since it is the aggregation of (1) the valuations all
the constraints violated b# itself (i.e., the bound used in the extension of the backtrack
algorithm, see 3.6.1) and (2) the valuations of the constraint in althg v). This com-
putation needs less thge.n.d) constraint checks an@ operations € is the number of
constraints); all the minimum valuation can be computed with less(thah comparisons
and aggregated with less thar® operations. Note that the lower bound derived includes
the bound used in the backtrack extension plus an extra component and will always be better
than the Backtrack bound.

The lower bound may be incrementally computed by maintaining during tree search, and
for each value of every unassigned variablethe aggregated valuatid(v, v;) of all the
constraints that will be violated if is assigned to; given the current assignment. Initially,
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all B(v, v) are equal toL.. When the assignmeritis extended to\ = AU {vj = u}, the
B may be updated as follows:

B(v,vi) < B(v,v) ® ® [¢(0)]

ceC,Ve=({y Vj }
AUy =v} Violatesc

that takes into account all the constraints betwgeandv; that are necessarily violated
if u is assigned t@;. Upon backtrack, th& have to be restored to their previous values,
as domains in classic&brward-checking Note that theB offer a default value heuristic:
choose the value with a minimui.

The lower bound is simply obtained by aggregating, usinghe valuations of all the
constraints violated by the assignment and all the mininB(m v;) for each unassigned
variable. The aggregated valuationA'), A’ = AU {v; = u}), of all the constraints
violated by the assignmem’ is easily computed by taking the valuatiotA) computed
on the father node’ed with B(i, vj).

Additional sophistications include deleting valuesof the domains of non instanti-
ated variables if the aggregated valuatiorvof’) and B(v, vj) exceeds the upper bound
(see [13]). On the possibilistic and weighted VCSP instances, this generic VCSP algo-
rithm coincides roughly with the forward-checking based algorithm for possibilistic CSP
described in [34] or th@artial Forward-checkingalgorithm defined for weighted CSP in
[13]. Ithas been improved using a directed arc consistency pre-processing stepin [42], [21].
Further crucial improvements have been introduced in [41], [22], [23]. Note that for pos-
sibilistic CSP, and thanks to idempotency, the updating e&n ignore constraints whose
valuation is less than thB updated or than the current lower-bound.

3.6.3. Trying to Extend Really Full Look Ahead

Really Full Look Aheadhaintains arc consistency during tree search and backtracks as soon
asthe current assignmentinduces a domain wipe-out: the CSP has no arc-consistent closure.
For a VCSP, the bound which can be derived from arc-consistency will be the minimum
valuation among the valuations of all the relaxations such that the current assignment does
not induces a domain wipe-out.

Let us consider any class-VCSP of the VCSP framework such thatis strictly mono-
tonic and foranya,b € E,a,b < T, (a®b) < T. Let¢ be any valuation different from
T and_L. The decision problem corresponding to the computation of the lower bound in
this class can be formulated as:

Definition 21.Given such a»-VCSP and a valuatioa, is there a se€’ c C such that the
relaxation{V, D, C’) has a non empty arc-consistent closure and a valuation lowewthan

Note that this problem corresponds also to the verification that the VCSP is at least
a-arc-consistent.

THEOREM 10 MAX-AC-CSPis stronglyNP-complete.
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Proof: The problem belongs tNP since computing the arc-consistent closure of a CSP
can be done in polynomial time and we supposed#hahd> are polynomial in the size
of their arguments.

To prove completeness, we use a polynomial transformation froldPheomplete prob-
lemMAX 2SAT [14]. An instance ofiAx 2SAT is defined by a set af propositional variables
L = {¢1,..., ¢}, asetd of m2-clauses o and a positive integee < m. The problem
is to prove the existence of a truth assignmerit tiat satisfies at leaktclauses ofb. The
problem is known to be stronglyP-complete [14].

Given an instance afiax 2SAT, we built an instance afiax -Ac-cspdefined by a binary
CSP(V, D, C). The setV of the CSP variables containst+ 2n.(m + 1) variables:

1. thefirstnvariablesu, ..., v, correspond to the propositional variables df and have
a domain of cardinality two corresponding to the boolean vatiuexl f;

2. the next 2.(e + 1) variables will have a domain of cardinality one, containing only
the valuew. This set of variables is composedmketsV;, 1 <i < n, of 2e + 2
variables: Vi = {v! 1, ... v e,1, 01, ..., ve,q). Each sew is associated with the
original variablev; previously defined.

The constraints that appear@are composed of three sets:

1. the selC, is the direct translation of thm 2-clauses of th&AX 2SAT instance as CSP
constraints. A 2-clausg € @ that involvest; and¢; will be translated to a constraint
that involvesy; andv; and whose relation contains all the truth assignmentg; of; }
that satisfyp;

2. the setC! contains, for each variable, 1 < i < n, and for each vanablet
1 < j <m+ 1, aconstraint involving, andv ; authorizing only the paift, ®);

3. the setC' contains, for each variable, 1 < i < n, and for each variableifj,
1 < j <m+ 1, aconstraint involving andvif_j authorizing only the pai¢f, ®);

There is a total of &.(m + 1) + m constraints. All the constraints are annotated with the
valuatione, different fromT and_L. For example, Fig. 7 illustrates the micro-structure of
the CSP built from theax 2SAT instance defined b = {v1 V vz, v2 V v3, v1 V v3}.

The CSP contain®(m?) constraintsQ(m?) variables and domains of cardinali®(1)
and therefore the transformation is clearly polynomial. We shall now prove thatthe existence
of a truth assignment that satisfies at ldastauses ofd is equivalent to the existence of
a relaxation of the VCSP which is non arc-inconsistent and whose valuation is lower than
(¢ ®---®a) withn.(m+ 1) + (m — k) occurrences af.

We first remark that the CS®/, D, C) is not arc-consistent: the valuesf the variables
Vi, 1 < i < n, have no support on each of the+ 1 constraints oC that connect
to v , 1< j <m+1. Similarly, the values of the varlablea)., 1<i <n,haveno
support on each of then + 1 constraints ofC! that connect; tovf ., 1 < j < m+ 1.
Therefore, a relaxatiofV, D, C’), C’ ¢ C, with a non-empty arc- con5|stent closure will
never simultaneously contain constraints fr@andC ' involving the same variable,
1 <i < n. Letus consider a truth assignmenbf the variables ot that satisfies more
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Figure 7. The micro-structure of an example CSP.

thank clauses among tha clauses ofb. Then the following relaxatioV, D, C’), with
IC'| =n.(m+ 1) + k can be defined:

1. we selectirC" all the constraints that correspond to clause® sfatisfied byw;

2. for each propositional variablg assigned td in o, we also select ilC' the M + 1
constraints involving;

3. similarly, for each propositional variablg assigned tof in », we select inC’ the
M + 1 constraints involving;

Since|C’| = n.(m + 1) + Kk, there are precisely f@m+ 1) + m] — [n.(m+ 1) + k] =
n(m+ 1) + (m — k) constraints which are rejected, each constraints being annotated with
the valuationx. The relaxation has therefore, as we wanted, the valuatiah - - - ® «)
with n.(m+ 1) + (m—K) occurrences af. The arc-consistent closure of the CSP defined is
non-empty and is obtained by removing of the donthiof v;, 1 < i < n, the valud if ¢; is
assigned tdf in w (because this value is not supported by the constrair@s iwhich have
been selected) or else the valtigwhich, in this case, is not supported by the constraint of
Ct!, which have been selected). The CSP obtained is arc-consistent since all domain have
cardinality 1 and the values that appear in the domains satisfy all the constraints selected in
CY,CtandCf.

Conversely, if we suppose that there exists a relaxationD, C’), C' c C, |C/| >
n.(m 4+ 1) 4+ k with a non empty arc-consistent closure. We first show that fop;all
1 <i < n, at least one constraint among th@2+ 1) constraints ofc! andCf involving
vi belongs toC’: let us suppose that for a variablg, 1 < j < n, no constraint from
C! or CT involving X; belongs toC’. Since, as we previously remarked, a maximum of
m+ 1 constraints involving;, 1 < i < n can be selected @' andC f without loosing the
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existence of a non-empty arc-consistent closure, a maximym-efl).(m+ 1) constraints

of C’ may be selected fror@' andC'. SinceC’ can not select more than constraints
inCyand(n —1).(M +1) + m < n.(m+ 1) + k sincek > 0, we get a contradiction.
Since no more than.(m + 1) constraints ofC! andC ' appear inC’, there is at leask
constraints fronC" which appear irC’ in order to reach the.(m + 1) + k constraints.
Each variable being involved in at least one of the constraints @bandC f, the variables
from the arc-consistent closure of the CSP have exactly one value in their domain et these
value necessarily satisfy the constraintsCdfsince we are considering the arc-consistent
closure. Therefore, the truth assignmertf the variableg; defined by the assignment of
the corresponding variables in this arc-consistent closure satisfy more thaslauses of

®. This finally shows thatAx 2SAT o« MAX -AC-CSP. ]

Therefore, extendineally Full Look Aheadeems difficult since computing the lower
bound itself iSNP-complete. Furthermore, this also proves that the extension of the arc-
consistency property to strictly monotonic VCSP such that for émyb € E,a,b <
T,(@®b) < T looses the quality of being a polynomial time checkable property (if
P#NP). However, it is still possible to enforce a form Directed Arc Consistencin a
preprocessing step, see [42], [21].

For idempotent VCSP, this bound may be computed using polynomial time algorithms
for enforcing arc-consistency in Fuzzy or possibilistic CSPs [32], [34], [40] or equivalently
the arc-consistency algorithm defined for SCSP, which works fine for idempotent operators.
We first apply the extended arc-consistent enforcing algorithm which yields an equivalent
problem and then compute a lower bound as follows: we take the maximum on all variables
v; of the minimum on all values € d; of the valuation of the assignmefnt = v} in this
problem.

4. Comparison

In this section we will compare the two approaches described above in this paper. In
particular, we will show that, if one assumes a total order, there is a way to pass from any
SCSP problem to an equivalent VCSP problem, and vice-versa. We also define normal
forms both for VSCPs and SCSPs and we discuss their relationship with the transformation
functions (from VCSPs to SCSPs and vice-versa).

4.1. From SCSPsto VCSPs

We will consider SCSP&C, con) whereconinvolves all variables. Thus we will omit it in
the following. A SCSP is thus just a set of constraldtsver a constraint systet$, D, V),
whereSis a c-semiringS = (A, +, x, 0, 1), andD is the domain of the variables M.
Moreover, we will assume that the operation induces an orders which is total. This
means that- corresponds tmax, or, in other words, that it always chooses the value which
is closer tol.
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Figure 8. From SCSPs to VCSPs.

Given a SCSP, we will now show how to obtain a corresponding VCSP, where by corre-
spondence we mean that they associate the same value with each variable assignment, and
that they have the same solution.

Definition 22. Given a SCSFP with constraintsC over a constraint systers, D, V),
whereSis a c-semiringS = (A, +, x, 0, 1), we obtain the VCSHPP’' = (V, D, C/, S, ¢),
whereS = (E, ®, >), whereE = A, ® = x, and<=>gs. (Note thatT = 0andl =1.)
For each constraint = (def, con) € C, we obtain a set of constraints, . .., ¢, where
k is the cardinality of the range aofef. Thatis,k = |{a s.t. 3t with def(t) = a}|. Letus
call ay, ..., a such values, and let us cdil the set of all tuples such thadef(t) = g.
All the constraints; involve the same variables, which are those involved ifhen, for
each =1, ..., Kk, we selp(c)) = a, and we defing/ in such a way that the tuples allowed
are those not iff;. We will write P’ = suv(P). Note that, by construction, each tuples
allowed by all constraints,, . .., ¢ except the constraim such thatp(c;) = def(t).

Example 1. Consider a SCSP which contains the constraint (con, def), where
con = {Xx, y}, anddef((a, a)) = I, def({(a, b)) = I, def({b, a)) = I3, def({(b, b)) = I;.
Then, the corresponding VCSP will contain the following three constraints, all invokving
andy:

e C1, With ¢(c;) =17 and allowed tuplega, b) and(b, a);

e Cp, With ¢o(cp) = I, and allowed tuples$a, a), (b, a) and(b, b);

e C3, With ¢(c3) = I3 and allowed tuplesa, a), (a, by and(b, b).

Figure 8 shows both and the three constraintg, c,, andcs. [ |
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First we need to make sure that the structure we obtain via the definition above is indeed
a valued CSP. Then we will prove that it is equivalent to the given SCSP.

THEOREM 11 (FROM G-SEMIRING TO VALUATION STRUCTURE If we consider a c-semiring
S= (A +, x,0, 1) and the structure 'S= (E, ®, =), where E= A, ® = x, and<=>g
(obtained using the transformation in Definition 4.1), thénsS valuation structure.

Proof: First,>~ isatotal order, since we assumed thais total and thak=>s. Moreover,
T = 0and.l = 1, from the definition of<s. Then, since® coincides withx, it is easy to
see that it is commutative, associative, monotone, and closed. Morédteat is, L) is
its unit element an@ (that is, T) is its absorbing element. ]

THEOREM 12 (EQUIVALENCE BETWEENSCSPAND VCSP) Consider a SCSP problem P
and the corresponding VCSP problerh Eonsider also an assignmentt to all the variables
of P, with associated valuea A. ThenVp (t) = a.

Proof: Note first thatP and P’ have the same set of variables. B the value oft

is obtained by multiplying the values associated with each subtupte afie for each
constraint ofP. Thus,a = [[{def.(t), for all constraints = (def., con.) in C and such
thatt, is the projection of over the variables af}. Now, Ve (t) = [[{¢(c’) forallc’ € C’

such that the projection dfover the variables of’ violatesc’}. It is easy to see that the
number of values multiplied is this formula coincides with the number of constraints in
C, since, as noted above, each tuple violates only one of the constra@®tsvimich have

been generated because of the presence of the constrai@t Thus we just have to show
that, for eactt € C, def.(t) = ¢(c), wherec is the constraint violated bi. But this

is easy to show by what we have noted above. In fact, we have defined the translation
from SCSP to VCSP in such a way that the only constraint of the VCSP violated by a tuple
is exactly the one whose valuation coincides with the value associated with the tuple in
the SCSP. ]

Note that SCSPs which do not satisfy the restrictions imposed at the beginning of the
section, that is, thaton involves all the variables and thats is total, do not have a
corresponding VCSP.

COROLLARY 1 (SAME SOLUTION) Considera SCSP problem P andthe corresponding VCSP
problem P. Then P and Phave the same solution.

Proof: It follows from Theorem 12, from the fact th& uses+ = max which goes
towardsl, that P’ usesmin which goes towardd , thatl = 1, and and that a solution is
just one of the total assignments. [ ]

4.2. From VCSPsto SCSPs

Here we will define the opposite translation, which allows one to get a SCSP from a given
VCSP.
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Figure 9. From VCSP to SCSP.

Definition 23.Giventhe VCSHP = (V, D, C, S, ¢), whereS = (E, ®, =), we will obtain
the SCSPP’ with constraintsC’ over the constraint systef8, D, V), whereS' is the
c-semiring(E, +, ®, T, L), and+ is such thae + b = aiff a < b. Itis easy to see that
>s==. Foreach constrainte C with allowed set of tuple$ , we define the corresponding
constraintt’ = (con, def’) € C’ such thaton contains all the variables involved irand,
for each tuple € T, def (t) = L, otherwisedef (t) = ¢(c). We will write P’ = vs(P).

Example 2. Consider a VCSP which contains a binary constraiobnnecting variables
x andy, for which it allows the pairda, b) and (b, a), and such thap(c) = |. Then,
the corresponding SCSP will contain the constraint (con, def), wherecon = {x, y},
def((a, b)) = def((b, a)) = L, anddef((a, a)) = def({b, b)) = 1. Figure 9 shows both
and the corresponding. [ ]

Again, we need to make sure that the structure we obtain via the definition above is indeed
a semiring-based CSP. Then we will prove that it is equivalent to the given VCSP.

THEOREM 13 (FROM VALUATION STRUCTURE TO GSEMIRING) If we consider a valuation
structure(E, ®, =) and the structure S (E, +, ®, T, L), where+issuchthatarb = a
iff a < b (obtained using the transformation in Definition 4.2), then S is a c-semiring.

Proof: Since> is total, + is closed. Moreovers is commutative by definition, and
associative because of the transitivity of the total osdeFurthermoreQ is the unit element
of +, since it is the top element of. Finally, + is idempotent because of the reflexivity
of =, and1 is the absorbing element &f sincel = L. Operationx of S coincides with
®. Thus it is closed, associative, and commutative, sthég so. Also,T is its absorbing
element andL is its identity (from corresponding properties®j. The distributivity of®
over+ can easily be proved. For example, consiady, ¢ € E, and assumb < c. Then
a® (b+ c) = a® b (by definition of+) = (a ® b) + (a ® c) (by the definition of+ and
the monotonicity of®). The same reasoning applies to the case wbege. ]

THEOREM 14 (EQUIVALENCE BETWEENVCSPAND SCSP) Consider a VCSP problem P
and the corresponding SCSP problern Bonsider also an assignmentt to all the variables
of P. The value associated with such an assignment4s)A (t) = ®{¢(c) forallc € C
such that the projection of t over the variables of c violatedstead, the value associated
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with the same assignment in B B = ®{def, (t¢), for all constraints ¢ = (def,, cony)
in C’ and such thatd is the projection of t over the variables of cThen, A= B.

Proof: The values multiplied to produc& are as many as the constraints violated by
instead, the values multiplied to produse@re as many as the constraint€in However, by
construction, each tuptginvolving the variables of a constraiot C has been associated,

in P/, with a value which is eithep(c) (if t; violatesc), or L (if t; satisfiesc). Thus the
contribution oft; to the value ofB is important only ift; violatedc in P, becausel is the

unit element for®. ThusA andB are obtained by the same number of significant values.
Now we have to show that such values are the same. But this is easy, since we have defined
the translation in such a way that each tuple for the variablasi®fassociated with the
valueg(c) exactly when it violates. ]

4.3. Normal Forms and Equivalences

Note that, while passing from an SCSP to a VCSP the number of constraints in general
increases, in the opposite direction the number of constraints remains the same. This can
also be seen in Example 1 and 2. This means that, in general, going from aFS@SP

VCSP P’ and then from the VCSIPP’ to the SCSHP”, we do not getP = P”. In fact,

for each constraint in P, P” will have in general several constrairs . . ., ¢ over the

same variables as However, it is easy to see that® - - - ® ¢« = ¢, and thusP and P”
associate the same value with each variable assignment.

Example 3. Figure 10 shows how to pass from a SCSP to the corresponding VCSP (this
part is the same as in Example 1), and then again to the corresponding SCSP. Note that the
starting SCSP and the final one are not the same. In fact, the latter has three constraints
between variables andy, while the former has only one constraint. However, one can see
that the combination of the three constraints yields the starting constraint. ]

Consider now the opposite cycle, that is, going from a V@S® a SCSPP’ and then
from P’ to a VCSPP”. In this case, for each constraimin P, P” has two constraints:
one isc itself, and the other one is a constraint with associated valu&his means that
violating such a constraint has castwhich, in other words, means that this constraint can
be eliminated without changing the behaviorRtf at all.

Example 4. Figure 11 shows how to pass from a VCSP to the corresponding SCSP (this part
isthe same asin Example 2), and then again to the corresponding VCSP. Note that the starting
VCSP and the final one are not the same. In fact, the latter one has two constraints between
variablesx andy. One is the same as the one in the starting VCSP, while the other one has
associated the valuke. This means that violating such constraint yields a cost of valme

Let us define now normal forms for both SCSPs and VCSPs, as follows. For each VCSP
P, its normal form is the VCSIP’ = nfw(P) which is obtained by deleting all constraints
c such thatp(c) = L. Itis easy to see th&® and P’ are equivalent.
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Figure 10.From SCSP to VCSP and back to SCSP again.

Definition 24. ConsiderP = (V, D, C, S, ¢), a VCSP where&s = (E, ®, =). ThenP is
said to be in normal formifthere is moe C suchthat(c) = L. If P in notin normal form,
then it is possible to obtain a uniqgue VCH#P= (V,D,C — {c € C | ¢(c) = L}, S, ¢),
denoted byP’ = nfw(P), which is in normal form.

THEOREM 15 (NORMAL FORM) For any VCSP P, P and nff?) are equivalent.

Proof: The theorem follows from the fact thef, (L ® a) = a and from the definitions
of Ve(A) andVp (A). [ |

Also, for each SCSHP, its normal form is the SCSP’ = nfs(P) which is obtained by
combining all constraints involving the same set of variables. Again, this is an equivalent
SCSP.

Definition 25.Consider any SCSP with constraint$ over a constraint systes, D, V),
whereSis a c-semiringS = (A, +, x, 0, 1). Then,P is in normal form if, for each subset
W of V, there is at most one constramt= (def, con) € C such thaton= W. If P is
not in normal form, then it is possible to obtain a unique SG%Pas follows. For each
W C V, consider the s&t\y € C which contains all the constraints involvivg. Assume
Cw = {C1, ..., Ca}. Then, replac€,y with the single constraint = () Cw. P’, denoted
by nfs(P), is in normal form.
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Figure 11.From VCSP to SCSP, and to VCSP again.

THEOREM 16 (NORMAL FORMS) For any SCSP P, P and ) are equivalent.

Proof: It follows from the associative property of. ]

Even though, as noted above, the transformation from a SE&Pthe corresponding
VCSPP’ and then again to the corresponding SG8RIoes not necessarily yie® = P”,
we will now prove that there is a strong relationship betwBesnd P”. In particular, we
will prove that the normal forms d? andP” coincide. The same holds for the other cycle,
where one passes from a VCSP to a SCSP and then to a VCSP again.

THEOREM 17 (SAME NORMAL FORM 1) Given any SCSP problem P and the corresponding
VCSP P = sv(P), consider the SCSP"Rorresponding to B, thatis, P’ = vs(P’). Thus
nfs(P) =nfgP”).

Proof: We will consider one constraint at a time. Take any const@oft P. With the
first transformation (to the VCSP’), we get as many constraints as the different values
associated with the tuples @ Each of the constraints, say, is such thaty(c;) is equal

to one of such values, s&y and allows all tuples which do not have valué c. With the
second transformation (to the SC®P), for each of the;, we get a constraint, where
tuples which are allowed by have valuel while the others have vallie Now, if we apply

the normal form td®”, we combine all the constraint§ getting one constraint which is the
same asg, since, given any tuplg it is easy to see thatis forbidden by exactly one of the
C. Thus the combination of atf will associate wittt a value which is the one associated
with the uniquec; which does not allow. [ |

THEOREM 18 (SAME NORMAL FORM 2) Given any VCSP problem P and the corresponding
SCSP P = vs(P), consider the VCSP’Rcorresponding to P, thatis, P’ = sv(P’). Then
we have that nfiP) =nfu(P”).

Proof: We will consider one constraint at a time. Take any constintP, and assume
thate(c) = | and that allows the set of tuple§. With the first transformation (to the SCSP
P’), we get a corresponding constraihtvhere tuples ifm have valuel. and tuples not in
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T have valuéd. With the second transformation (to the VC8P), we get two constraints:
1, With ¢(c1) = L, andc,, with ¢(c2) = | and which allows the tuples af with value L.

It is easy to see tha, = c. Now, if we apply the normal form to botR and P”, which
implies the deletion of all constraints with valug we get exactly the same constraint. This
reasoning applies even if the starting constraint has valuén fact, in this case the first
transformation will give us a constraint where all tuples have valuend the second one
gives us a constraint with value, which will be deleted when obtaining the normal formn.

The statements of the above two theorems can be summarized by the following two
diagrams. Note that in such diagrams each arrow represents one of the transformations
defined above, and all problems in the same diagram are equivalent (by the theorems
proved previously in this section).

VCSP —~, SCSP

o | TSU

VCSP «—— VCSP

nfv

SCSP—, VCSP

nfsl Tvs

SCSP«—— SCSP

nfs

5. Conclusions and Future Work

When we compare the SCSP framework to the VCSP framework, the most striking differ-
ence lies in the SCSP framework’s ability to represent partial orders whereas the results and
algorithms defined in the VCSP framework exploit totally ordered sets of valuations. The
ability to represent partial orders seems very interesting for multi-criteria optimization, for
example, since the product of two or more c-semirings yields a c-semiring which in general
defines a partial order (see last part of Sect. 2.4).

However, it appears that apart from this difference, the assumption of total order gives the
two frameworks the same theoretical expressive power. Since SCSPs associate values (that
is, costs, or levels of preferences, or else) with tuples, while VCSPs associate these values
with constraints, there is a difference in the actual ease of use of each framework. Althoughiit
would seem easier in general to use VCSPs, since a problem has less constraints than tuples,
in some situations this could lead to a large number of constraints (see the transformation
in Sect. 4). But this is more a matter of implementation than a theoretical limitation: it
is easy, as Sect. 4 shows, to extend the VCSP framework to the case where valuations are
associated with tuples instead of constraints and conversely, it is easy to restrict the SCSP
framework to the case where constraints are annotated instead of tuples.
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What we get are complementary results. In the SCSP framework, we observe that idem-
potency of the combination operator guarantees khednsistency algorithms work (in
totally ordered SCSP or equivalently VCSP, the only structure with an idempotent combi-
nation operator is the Fuzzy CSP instance). We get the same result in the VCSP framework
for arc-consistency, but we also show that strict monotonicity is a dreadful property that
turns arc-consistency checking in HiP-complete problem and which also defines harder
optimization problems, both from the theoretical and practical point of view.

To solve these difficult problems, we are looking for better lower bounds that could be
used in Branch and Bound algorithms to so{&V}CSP more efficiently. The bounds
presented in this paper have been recently improved along two lines. A first idea is to use
directed arc consistency as a preprocessing step in order to strengtRerwthed checking
lower bound [42], [21]. Larger improvements of the lower bound can be obtained using
either theRussian Doll Searchalgorithm [41] or the notion oReversible Directed Arc
Consistencyntroduced in [22] and later improved in [23].

Another algorithmic approach df5,V}CSP which is worth considering, and which is
also able to cope with non idempotent combination operators, is the dynamic programming
approach, which is especially suited to tree-structured problems.

Finally, we are studying the possibility of embedding one of the two frameworks (or
a merge of them) in the constraint logic programming (CLP) paradigm (see [19]). The
presence of such a general framework for constraint solving within CLP would facilitate
the use of new or additional constraint systems in the language, and also would allow for a
new concept of logic programming, where the relationship between goals is not regulated
by the usuaknd andor logical connectives, but instead by genefrabnd x operators.

An important issue will be the semantics of the languages defined. This issue has been
already addressed for WCSPs [1] and for general semirings in [4]. An implementation of
semiring-based CLP has been developed on top of the clp(fd) system and has been described
in [15].
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