Solving Finite Domain Constraint Hierarchies by Local
Consistency and Tree Search

S. Bistarelli*!:2, P. Codognét H.K.C. Hui*, and J.H.M. Leé

1 Istituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@it.cnr.it,
2 Dipartimento di Scienze,
Universit degli Studi “G. D’annunzio” di Chieti-Pescara, Italy
bi sta@ci.unich.it,
3 Department of Computer Science
University of Paris 6, France
Phi | i ppe. Codognet @i p6. fr
4 Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong SAR, China
{kchui , j | ee}@se. cuhk. edu. hk

Abstract. We provide a reformulation of the constraint hierarchies (CHs) frame-
work based on the notion @frror indicators Adapting the generalized view of
local consistency in semiring-based constraint satisfaction proble@G8RS), we
defineconstraint hierarchyk-consistencyfCH-%-C) and give a CH2-C enforce-
ment algorithm. We demonstrate how the @HE algorithm can be seamlessly
integrated into the ordinary branch-and-bound algorithm to make it a finite d
main CH solver. Experimentation confirms the efficiency and robusimfessr
proposed solver prototype. Unlike other finite domain CH solvers, ayvgsed
method works for both local and global comparators. In addition, olwes can
support arbitrary error functions.

1 Introduction

The Constraint Hierarchy (CH) framework [8] is a generahfeavork for the specifi-
cation and solutions of over-constrained problems. Oaitjiryg from research in inter-
active user-interface applications, the CH frameworlkaats much effort in the design
of efficient solvers in the real number domain [1, 17]. To ext¢he benefit of the CH
framework to also discrete domain applications, such asttibling and resource allo-
cation, the paper takes a step towards a general and effiridatdomain CH solver,
based on consistency techniques and tree search.
Central to the paper is the notion abnstraint hierarchyk-consistenc{CH-%-C),

defined using error indicators which are structures isoimono the structure of a given

* We thank the anonymous referees for their constructive commerdgsyvditk described in this
paper was substantially supported by a grant from the Research @aumsil of the Hong
Kong Special Administrative Region (Project no. CUHK4358/02E).

** Part of this research was carried out while the author was visiting theribegrat of Computer
Science and Engineering, The Chinese University of Hong Kong, Homg SAR, China

CH used for storing the error information of the CH probleimm{kr notion was de-
fined by Bistarelliet al. [4]). We give also an algorithm for enforcing CHC of a CH
problem. While classical consistency algorithms [19] ainréduce the size of con-
straint problems, our CH-C algorithm works by explicating error information that is
originally implicit in CH problems. We also suggest ways tifizing such extracted
information to help prune non-fruitful computation in a bch-and-bound searching
algorithm, which forms the basis of our finite domain CH salVée have constructed a
prototype of the solver, and performed experiments on afsahdomly generated CH
problems that confirm the efficiency and robustness of oysgsal.

This paper is a revised and extended version of another tsatime authors [3].

The rest of the paper is organized as follows. Section 2 gesvhecessary back-
ground definitions. In Section 3, we present an equivaleidfigition of the CH frame-
work using the notion of error indicators and hierarchy peoh which are central in
the definition of constraint hierarchiyconsistency and the associated enforcement al-
gorithm in Section 4. In Section 5, we give a constraint highmg 2-consistency enforce-
ment algorithm and discuss its complexity. The finite don@kh solver, which has a
branch-and-bound backbone, is introduced in Section Evied by experimental re-
sults in Section 7. Related works are discussed in Sectioef@d summarizing the
major results and shedding light on possible future dioectif research in Section 9.

2 Constraint Hierarchies

Let D be a constraint domain. ®ariable z is an unknown that has an associated-
able domainD(z) C D, which defines the set of possible values£oAn n-ary con-
straint ¢ is a relation overD™. A labeled constraint® is a constraint with a strength

s € {0,...,k}. The strengths are totally ordered. Constraints with gtftea = 0
arerequired constraintgor hard constraints) and those with strengtkd s < k are
non-required constraintgor soft constraints). The larger the strength, the wedher t
constraint is. In addition, each labeled constraint may ¢soeated with a weight
(for use with the global comparators).cénstraint hierarchyH is a multiset of labeled
constraints. The symbdl/; denotes a set of labeled constraints with strength i.
Hy, therequired level denotes the set of required constraints which must befisdtis
H,, ..., Hy, thenon-required leveldenote the sets of non-required constraints which
can be violated but should be satisfied as much as possiblas&/en example in Fig-

||V ={z,y,z} andD(z) = D(y) = D(z) = {1,2} ||
H ={Ho, H,, Ho, Hs}

Ho=0,H ={ci:x>vy,c3:x =2} and
Hy={c:y=3,3:2<y}
Hy={c:2=1,c8:x+y+2>4}

Fig. 1: An example of constraint hierarchy.

ure 1 to explain CHs in more details. There are three levelsdérconstraint hierarchy
H. There are no required constraints in the required I&gelHowever, there are two

strongconstraintse! andc} in Hy, two mediumconstraints:? andc3 in H, and two
weakconstraints:} andc3 in Hs.

A valuationd = {v; — di,... ,v, — d,} for a set of variablegv, ... ,v,}
assigns to each; the valued, € D(v;). Let ¢ be a constraint and a valuation. The
expressiored is the boolean result of applyirtgto c. We say thatf holdsif ¢f is true.
An error functione(cf) measures how well a constrairis satisfied by valuatiof.. The
error function returns non-negative real numbers and natisifg the propertye(c) =
0 < cf holds. Atrivial error function is an error function that give8 if ¢ holds
and1 otherwise. The value(cf) returned by an error function is amror value We
usevars(c) (or vars(f)) to denote the set of all variables in constrairfor valuation
). The possible valuations for the variables y, z} are{6;, 62,03, 04, 05, 06, 67,0}
Figure 2 gives the error values of all valuations in the catgbkearch tree using the
trivial error function. The error values of a valuatiéare computed for each constraint
(e(ci0),e(cih), e(c30),e(c20), e(c30), e(c30)). Since, for exampled; satisfiesc; but
violatescl, e(c30;) = 0 ande(cif;) = 1 respectively. We can obtain the error values
of other valuations similarly. In order to compare values)uanber ofcomparators
are definedlocally-better (I-b), weighted-sum-bettefw-s-b, worst-case-bettefw-c-
b), andleast-squares-bettdt-s-b). We can use these comparators to defivletionsof
CHs [8].

|:>—-I| |3,_3‘ ‘:»—‘I| |:>—-2| |:»—I| |:»—2| |:>—-I| |3,_3‘

6, o, by 0. b fs o; b
[@ [Error values fore(c}6)]] 6 [Error values fore(c’6)]|

6] (1,1,1,1,0,1) 65| (0,0,1,1,0,1)
02| (1,1,1,1,1,1) ||fs| (0,0,1,1,1,0)
s (1,1,1,0,0,1) 6| (1,0,1,0,0,0)
0. (1,1,1,1,1,0) |6s| (1,0,1,1,1,0)

Fig. 2: The possible valuations and their error values.

3 A Reformulation of Constraint Hierarchies

To facilitate subsequent illustration of the CH local catesncy concept, we formulate
the CH framework [8] (in particular in the definition of conrtptors and solution set)
using error indicators (as defined in [4]).

We denote an error value lgy possibly with subscripts. Ldt = {&;,... ,&x} be
a poset (partially ordered set), each elemgnof which is anerror indicator. Given
a constraint hierarchff = {H,, ..., H,} wheren is the number of non-required
levels, and for alli € {0,...,n}, H; = {c,... ¢, } with k; being the number of
constraints in level. An error indicatoréy of a valuationd for a set of variabled”

is a tuple of error values such thgg = (&9, ... ,&on,),--- » (Cols- .. . Eop)) and
Va € {0,...,n},Vb € {1,... ,ko}, &0y = e(cpl) if vars(cg) C V andépy = 0 if
vars(cy) ¢ V. Error indicators provide a measure of the “badness” ofatidns with
respect toH .

To explain the meaning of the error indicator of a valuatiea,use the example in
Figure 1 with the trivial error function. # = {z — 2}, then&, = ((), (0, 0), (0, 0), (1, 0)).
If 0 = {z — 1,y — 2}, then&y = ({),(1,1),(1,0),(0,0)). If 0 = {x — 2,y —
2,z +— 1}, then&y = (({), (1,0), (1,0), (0, 1)).

The comparator predicabetterin the original CH formulation is redefined using a
partial order, denoted by<. We define< to be irreflexive and transitive ovér Hence,
it preserves the meaning bétter. Intuitively, &’ < £ meanst”’ is “better” thang’ in
1. In general,< will not provide a total ordering. For convenience, we defihsuch
thatV{’,ﬁ” c I, SI =< é” N (E/ = 5//) v (él — E//)_

We can redefinéb in the original formulation as a partial ordey;_; as follows.
Given any two valuation8 ando, and the corresponding error indicatggandg,,,
<_p Is defined as:

€9 <1-p & =3l > O such thati € {0,...,1 -1},
\V/j S {1, .. ,ki},fgz = 50';‘
Ada e {1,... k}, &L <&l
AVD € {1,... ki}, &b < Eob.

The intuitive meaning ofy <;_ &, is that valuatiory is locally-betterthan valu-
ationé.

Similarly, we can defing-b <,_;, and its instances-s-b <, _ sy, W-C-b <, —c—,
andl-s-b <;_,_; respectively. Given any two valuatioAgndo, and the corresponding
error indicatorsy and§,:

€9 =g & = 31 > O suchthavi € {0,... ,1 -1},
9((&o1s -+ &ok,)) = 9({Eo1s -+ &ok,))
A€oy)) < 9((Eo1, - o)),

whereg is acombining functiorior error values:

£ <w—s—b & = &0 <g—b &0, Whereg((gi, e 7§lzvq>) = Zje{1,... i} &
€0 <w—c—b & = &g <g—1 §, Whereg((£7, . .. ,5}%>) = maxg; lied{l,... k}},
o <i—s—b &5 = €0 <g—1 Ex Whereg((&1, .- &) = ek f§2-

Notice that by definition, all local/global comparators aga constraints in hierarchy
levels greater than or equal ko
We are now ready to define the solution Setf a CH with variabled” by:

So = {0 | vars(9) =V, & =0foralli e {1,... ,ko}} and
S={0¢€Sy|Voe Syt £E}.

The following lemma gives the monotonicity of the introdda@®mparators, which are
collectively denoted byKyeirerr aNd=peqe- iN the rest of the paper.

Lemma 1. Given any two error indicatorg’ and¢”. If for all a, b we havet”’; < &'y,
then€, jbetter 6”-

Notice that the above lemma lets us compare valuation fdr katal and global
comparators (because thg..,- order implies all the orders induced from any specific
comparator) and for arbitrary error functions.

We also introduce the notion oftaerarchy problenwhich is a CH augmented with
error information.

Definition 1 (Hierarchy Problem and Error Indicator Store). A hierarchy problem
P = (H,Iy) is a constraint problem, wher# is a CH with variables/” and Iy is a

set containing error indicator stores,_; for all variablesz € V and for alld € D(x).

Each¢&,— is used for keeping an estimate (a lower bound) of the errbrsaluations
involving {z — d}.

Definition 2 (Solution of a Hierarchy Problem). A valuationf is a solutionof P =
(H,Iy)if (1) 6 is a solution ofH and (2)&g <petter Ex—d forall €,—4 € Iy.

In other words, solutions oP = (H, Iy) are solutions of which have a “worse”
error than the estimates providediig. By the definition, the solutions off always
contain those ofH, I';). Equality holds when the error estimates providednfails

to “filter” out any solutions off .

Theorem 1. Consider a CHH and the associated hierarchy probleth= (H, Iy),
and denote theolution set®f H and P by Sy and Sp respectively.

- Sp C Sy, and

— Sp = S if €9 Zpetter Ex=q forall (x — d) € andd € Sy.

In particular, a hierarchy problef¥, I;) must share the same solution Hsif all
&.—4 € Iy contain only the error value @.€. no error information). This fact is useful
in ensuring the correctness of our local consistency dlyorand the completeness of
our branch-and-bound solver later.

4 Local Consistency in CHs

The classical notion dbcal consistency19] characterizes when a constraint problem
contains non-fruitful values. The main purpose of detectatal inconsistency is thus
to remove the inconsistent values from the variable domairts constraints. Hence,
the problem is “simpler” to solve when the problem is smaltéowever, we adopt a
more general notion of local consistency used for SC&Pplying a local consistency
algorithm to a constraint problem means explicitating samelicit constraints, thus
possibly discovering inconsistency at a local lev]. We adapt this general notion
for CH, and defineonstraint hierarchyk-consistencyCH-k-C).

Before defining CHk-C, we need two operations\i. AX and MZN, on error
indicators. Given a CH{ with n non-required levels and any two error indicators,
£o,6, € I, for H MAX (&9, &,) is defined as

<<ma)(§9[1)a gag)a SRR ma)(gagoafago»v cet <ma)(§9?7 50711)7 LR ma)(fezna §azn)>>

and MZN (&4,&,) is
<<min(€9?7 fd(lz')a SR min(§02075020)>7 LR <min(§0?7 ga?)v HEI) min(g@zna gozn)>>

wherek; is the number of constraints in leviedf H.

Given two error indicatorsMZN (or M.AX) combines the two indicators by tak-
ing the best (or the worst). Obviousiyt AX and MZN are commutative and associa-
tive. Thus, it makes sense to writel AX{&1,... ,Ex} and MZN{&,, ... €k }) for
anyK > 2.

Given a CHH with variablesV. If z € V andd € D(z), we define

approzy(x — d) =
MAX{MINA{Ey |vars(0) ={z} UU,(z—d) b} |UCV,|U =k—1}

foranyl < k < |V|. We call it k-approximation which provides an estimate of
the “badness” of valuations involving the assignment> d for all m-ary constraints
involving = with m < k. Since the error indicators of all valuations involving— d
might not be comparable, we can only give an approximatiodaaproxy|(z — d)
gives an error estimate involving all constraints in thelyem. However, calculating
approx)y|(z — d) is computationally expensive, angprox.(z — d) for some small
k < |V| gives a more practical approximation.

Referring to the same example in Section 2,

approxrs (y = 2) = MAX{MIN{g{le,y»—Q}a €{zr—>2,y>—>2}}a
MIN{£{y»—>2,z>—>1} £{y»—>2 z»—>2}}}

= MAX{MINA((),(1,1),(1,0),(0,0)), ((), (1,0),(1,0),(0,0))},
MINK((), (0,0),(1,0),(0,0)), (), (0,0), (1, 1), (1,0)) } }
= MAX{((), (1,0), (1,0), (0,0)), ((), (0,0), (1,0), (0,0)) }

= <<>7 <1’ O>7 <17 0>, <O O>>
The following theorem states thapproz (z — d) is monotonically decreasing in

Theorem 2. If H is a CH with variabled/, x € V andd € D(x), thenapprozy, (z —
d) jbettcr approry, (1’ = d), V1 S kl S k? S ‘V‘

By using Lemma 1 we can show thiatapproximations provide upper bounds for
the error indicators of complete valuations for any comjmaisa

Theorem 3. If H is a CH with variablesV, z € V andd € D(x), then&y <petter
approx|y|(z — d) Zpetter approxy(z — d) forall 1 < k < |V|and all§ such that
vars(d) = V and(xz — d) € 0, where=;..;. represents any locally/globally better
comparator.

Theorem 3 suggests thatapproximations can be used as the basis of the notion of
local consistency in CH.
A hierarchy problenP = (H, I'y) is constraint hierarchyk-consistent (CHe-C) if
the error indicator stores ihy explicitly indicate the implicit inconsistency informati
in all m-ary constraints ifH wherem < k. Formally, we define CH-C as follows.

Definition 3 (CH k-Consistency (CH+%-C)). Given a hierarchy problen® = (H, I;)
with variablesV. P is CH--C if, for all £,—q € Iy, &x=q Spetter approxg(x — d)
for somel < k < |V]|.

The CH#%-C condition of P = (H, Iy) imposes that the estimated error infor-
mation of H placed in the error indicator stores Iy is at leastas accurate as that
provided byk-approximations. In addition, explicating the er®r= (H, Iy) using
k-approximations makeB CH-k-C without changing the solution space@f

Theorem 4. Given a hierarchy problen® = (H, I';) with variablesV. If each¢’,—; €
I}, is defined as follows:

&g = Sa=d if £2—q Zpetter approzy(z — d)
o approzy(z — d) if approzi(r — d) Spetter Ex=d

where&,—; € Iy, then the hierarchy problen?’ = (H, Iy) is (1) CH%-C and (2)
shares the same solution setias

A simple corollary follows directly from Theorems 1 and 4.

Corollary 1. Given a hierarchy problenP = (H, Iy) with variablesV, and P’ =
(H, Iy) defined so that eadfl ,—q € I} is:

&g = §a=d ?f €o=d Zbetter approvi(z — d)
x= approzxy(x — d) if approzy(x — d) Spetter Ex=d

where¢,_4 € Iy. Denote the solution sets &f, P, and P’ by Sy, Sp, and Sp/
respectively.

Sy=Sp& Sy =Sps

5 A CH-2-C Enforcement Algorithm

Arc-consistency algorithm is a common and practical tegtsaito detect local incon-
sistency in classical CSPs [2, 15]. We design and implemetigorithm to enforce
CH-2-C. The purpose of the CB-C algorithm is to explicate and place i the im-
plicit error information in a CH that is otherwise not vigblSuch an algorithm is given
in Figure 3. The subroutinehlc pri andch2cpri, in Figures 4 and 5 respectively, are
responsible for handling unary and binary constraintseetyely. The CH2-C algo-
rithm ensures that all error indicator stoggs.; are updated to reaetpproxs(x — d).

Consider a general CH of.. labeled constraints with,, number of variables. In
addition, the size of the largest variable domain is.@f The time complexity of the
subroutinechlc pri is simply of O(ng), since the only repeating operations, lines 4 to
6 in Figure 4, are placed inside a single loop. These op@stioe repeated until each
element in a variable domain is tested. However, the timepbexity of the subroutine
update (Figure 6) is ofO(n4?). Therefore, in the worst case, the time complexity of the
subroutinech2c pri is of O(n4?) as shown in Figure 5. Lines 3 to 5 in the pseudocode
of the CH2-C algorithm are the operations for checking constraintshasvn in Fig-
ure 3. Since these operations should repeat until all thetrints are considered, the
time complexity should be ad(n.n4?).

Algorithm 1: The CH2-C algorithm.

ch2qH,V, D, Iy)
begin
forl—1tondo
for k — 1to|H;| do
let ¢ be thek!™ constraint inH;;
Iy «— chlcpri(e i, k, D, Ig);
Iy < ch2cpri(e, i, k, D, Ig);

a » W N P

6 return Ig;
end

Fig. 3: The CH2-C algorithm.

Since an error indicator is a tuple which stores error vabfethe corresponding
constraints, the space complexity for each error indic&af O(n.). The memory

requirement of the CR2-C algorithm depends on the number of error indicator stores

in I'y. Therefore, we require,ny error indicators. The space complexity of the @H-
C algorithm is simply oD (n,n4n.) in the worst case.

Notice that some better local consistency algorithms cbeldefined when consid-
ering only a specific comparator (see for instance [4] focH#jweoperators dealing with
I-b).

6 A Branch-and-Bound Finite Domain CH Solver

The simplest way to find the solution set of a CH is to consttiietcomplete search
tree for the problem, so that we can calculate and comparertbevalues of each val-
uation. However, traversing the complete search tree amgpbadng all the valuations
are tedious and time-consuming. We propose to combine the-Ctand the branch-
and-bound algorithms so as to prune non-fruitful branclidiseosearch tree.

The input to our solver is a hierarchy problén= (H, I), in which Iy contains
no error information. In other words, the error indicator s®in Iy contain only the
error value 0. The backbone of our solver is a standard brandrbound algorithm,
since CH-solving is an optimization problem. A branch-d&mdmnd algorithm always
maintains the set of potential best solutions collectedasoTie idea is to invoke the
CH-2-C algorithm at each node in the search tree, hoping thatwbehead in the CH-
2-C algorithm can be more than compensated by the pruningématake place. The
correctness and completeness of this step is ensured bjla&@p so that maintaining
CH-2-C will not change the solution space of the hierarchy pnobénd the associ-

ated CH. At each CH-C tree node, before search proceeds down a selected branch

corresponding to a variable assignment, say> d, the solver tries to verify i€,_g4
in Iy of that tree node is not worse than the error indicator of gexthntial solution.
If that is the case, search proceeds; otherwise, there iginb tp explore the selected

chlcpri(ce, i, k, D, Iy)
begin
if lvars(c)| = 1 then
let {z} = vars(c);
for eachd € D(x) do
letd = {x — d};
let€ =&s=a € Iy,
if €& < e(ch) then &l — e(ch);

D U W N

7 return Ig;
end

Fig. 4: A subroutine to check unary constraints.

branch any further, and search is backtracked to try anditaerch. When a leaf node
is reached, we compare the error indicagaof the valuation associated with the leaf
node against the error indicators of all the collected smhst If the error indicator of
any collected solution is worse thgnthen the collected solution will be replaced by
the current valuation.

Our CH-2-C algorithm ensures that each error indicatoesor ; is approxs (z —
d). By Theorem 3, the error indicator of every complete vabrathvolving assignment
x +— d must be worse thaapprozs(z — d). If at a search node,—, is worse than
the error indicators of each potential solution collectedes, there is no point to search
on since all the possible valuations down that branch mustdsee than the potential
solutions. The details of our finite domain CH solver is shawirigure 7, which is
a simple adaptation of a basic branch-and-bound solver théhCH2-C algorithm.
The numbered lines give the backbone of the algorithm, whidkeunnumbered lines
are new additions to enable CHE enforcement. The algorithm use as parameters the
constraints inf and and the stores ify, the variabled” and the domairD. It also
needs the set of assignmeistssatisfying constraints iy, and the corresponding set
of error indicators/s,. The algorithm is also parametric w.r.t. the type of comfuara
we want to use<€petier)-

Although CH2-C encompasses also crisp notions of node and arc consisteaic
employ classical algorithms [19] for processing the regpiiconstraints i (lines 1)
for performance reasons. Lines 5 to 13 deal with the case e&fanlode. Here there
is a call to subroutineal_error _value that computes the erraf(cf) for eachd. The
CH-2-C algorithm is invoked between lines 13 and 14. Lines 14 tgéiform the
basic variable instantiation (or searching) recursivélye call to the subroutingo
determines whether the error indicator store of the vagialskignment of the selected
branch inIy of the current node is not worse than the error indicator gheat the
collected solutions so far.

ch2cpri(c, I, k, D, Iy)
begin
1 if lvars(c)| = 2 then
2 let {x,y} = vars(c);
Update eaclf,—q, € Iy
3 Iy < update(z, y, ¢, I, k, D, Iy);
Update eaclf,—q, € Iy
4 Iy — update(y, =, ¢, 1, k, D, I'y);
5 return Iy;
end

Fig. 5: A subroutine to check binary constraints.

7 Experimental Results

We compare the performance of our proposed solver with gés@nd-test, basic branch-
and-bound, and the reified constraint approach by Lua (tléslsolver hereafter) [16].
DeltaStar is only a theoretical framework [11], and clp(EP¢annot in the current
implementation deal with hierarchies. Since both Lua'seolnd ours are based on a
branch-and-bound backbone, we firstimplement a solveneis)i, which searches us-
ing ILOG’s defaultgoal definition, in ILOG Solver 4.4 in a generate-and-test fashio
In order to provide a basic Branch-and-Bound solver (witlieid-2-C enforcement) for
comparison, we define an alternative ILOG goal to obtsinOur proposed solves,

is obtained by implementing additional functions and aeraktivegoal definitionG.

in Sy. While the input to our solvers is a CH, the input to Lua’s solgg (“r” stands
for “reified constraint”) is a CSP with reified constraints fowplementing a specific
comparator and error function. Our comparison enstaisesssince all four solvers
share the same backbone.

Our experiments are conducted on Sun Ultra 5/400 workstsitigth 256 MB RAM.
We record the execution time taken By, Sy, S, andS.. to find the solution set of each
problem instance using a particular comparator, denotiese timings,, ¢y, t., andt,..
For each problem instance and comparator, we compute thties:t, /t., t,/t., and
t../t.. Each number in the following tables corresponds to theameeof the same type
of ratios for fifteen problem instances in a particular peoblsetP; and a particular
comparator. The columns on the left comp&geandS., while the ones in the middle
compareS;, and S., and the ones on the right compa$e and S. (only for global
comparators). Our 3-part experiments test the effeeadfible domain sizenumber of
variables andnumber of hierarchy levelsn the performance of our proposed solver.
In each part, four sets of CH#&;, P,, P53, and Py, each of which contains 15 problem
instances, are generagethdomly All problem instances have no hard constraints to
make them more “difficult” to solve.

update(z, y, ¢, I, k, D,)
begin
let &, be an error value;
for eachd, € D(x) do
gmin «— 00,
for eachd, € D(y) do
letd = {z — dy,y — dy};
L if e(ch) < &min then i — e(ch);
let 5 = Ea::dw S IH1
8 L if fé < fmin then fé — fmin;
9 return Ig;
end

D U W NP

~

Fig. 6: A subroutine to update error indicator stores.

In the first part, the number of variables and the number oahify levels are fixed
(V| =5, H = {Hy, Hy,H2}, |Ho| = 0, and|H,| = |Hz| = 5) across all instances,
while problems in the same set share a specific domain Bjzeas domains of siz&):
fori € {1,2,3,4}.

I 1 to/teMean) | t»/t. (Mean) || t-/t. (Mean) ||
[CHS]|w-s-Hdw-c-HI-s-b] I-b [[w-s-Hw-c-b]I-s-b[I-b[|w-s-Hw-c-HI-s-b]|
P 8 5 7 |10|| 6 4 6 |7 5 4 5
Py|| 36 | 15 |37 (13| 18 | 22 [19 |9 9 19| 9
Ps; || 267 | 67 |261|171| 121 | 47 [123|31|| 113| 42 |115
Py || 385| 72 |342|76|| 37 | 35 | 39 |23|| 17 | 27 | 18

In the second part, the variable domain size and the numbgerdrchy levels are
fixed (D(z)| = 5 for all variablesz, H = {Hy, H1,H2}, |Ho| = 0, and |H,| =
|H2| = 5) across all instances, while problems in the same set stepedific number
of variables:P; has2(i + 1 variables fori € {1,2,3,4}.

I te/teMean) | t/t. (Mean) [t./t. (Mean) ||
[CHs|lw-s-Hw-c-bfI-s-b[I-b [[w-s-Hw-c-bI-s-b[I-b [w-s-Hw-c-HI-s-b]
P 1209|1312/ 12|13|15|14/ 11|11 |14
Py 6 3 6 |5 5 3 514 5 3 5
Ps 7 3 714 5 4 513 4 4 4
Py || 24 8 | 24|26| 3 7 3|5(14] 6 |14

In the third part, the number of variables and the variablmaio size are fixed
(IV| = 5, |D(x)| = 20 for all variablesz, and|H,| = 0) across all instances, while
problems in the same set share a specific number of hieraesieys! P; hasi + 1
non-required levels each with 5 constraintsfar {1, 2, 3,4}.

w

© O N o 0o b

11

12
13

14
15
16

17

18

Algorithm 2: A Branch-and-bound CH Solver with Pruning

bb_sol(H, Iy, V, D, Sy, inout Is,, <petter)

begin

Any classical arc consistency algorithm

D «— arc_consistentHy, D);

if D contains an empty variable domatimen
| return Spy;

else if D contains all singleton variable domathen
let 6 be the valuation corresponding i
let £y be the error indicator correspondingfp
&y « cal_error _valueqH, 0, &p);
for eacho € S, do
if €a <better 59 then
| So« So—{o}i Is, «— Is, — {&}
else if€g <petter € then return Sy;
So «— So U {9}, ISO — ISO U {fg},
| return Sp;
for eachg,—q4 € Iy do
if d & D(x) then
| Iy — Iy —{€s=a}:

Iy —ch2dH,V, D, Iy);
choosevariablex € V for which |D(z)| > 2;
W «— D(x);
for eachd € W do
if go(éw:da SOa ISQ! ‘<better) then
L |_ S() — bb_SO|V({H0 ANx = d, Hl, A ,Hn}, IH, V,D, So, ISU, '<bette7‘);

return Spy;
end

Fig. 7: A Branch-and-bound CH Solver with Pruning

I to/teMean) || &/t (Mean) [t/t. (Mean) ||
[CHS|w-s-Hw-c-HI-s-b] I-b [[w-s-Hw-c-b]I-s-b[I-b[|w-s-Hw-c-HI-s-b]|
Py || 146 | 108 |151|122| 44 | 44 | 44 |32|| 37 | 39 | 39
P> || 209 | 130 |212|116| 51 | 116 | 50 |34|| 38 | 104 | 39
P3 || 232| 168 |219|50|| 42 | 121 | 44 |21|| 31 | 113 | 29
Py || 122 | 154 |124| 75|| 58 | 132 | 60 |26|| 51 | 128 | 52

The CH2-C algorithm incurs overhead in the branch-and-bound kedtar the
larger problems inP,, P;, and Py, the extra effort paid by the CB-C algorithm at
each search node is demonstrated worthwhile. This resintlise with the behavior
of embedding classical consistency techniques in basécstearch in solving classical
CSPs.

The Lua’s solver relies on classical constraint propagaticenforce the semantics
and the operations of the comparators via reified conssraivhile the approach, based
on existing technology, is clever and clean, the pruninggrasy reified constraints is
relatively weak. On the other hanfl, executes a dedicated algorithm for maintaining
CH-2-C to help pruning and solution filtering, thus attaining gter efficiency. In
particular,S, performs the worst on the-c-b comparator, since therror combining
constraintis implemented using thkcMax constraint in ILOG Solver 4.4, which is
again weak in propagation.

8 Related Work

Many efficient algorithms have been proposed to solve CHs) sais DeltaBlue [12],
SkyBlue [22], DETAIL [18], Indigo [6], Generalized Local &pagation [17], and Ultra-
violet [7], apply Local Propagation [24]. Besides, Cassgveand QOCA algorithms [9],
adapting the Simplex algorithm [21], can also solve CHs ieffity. However, they are
designed for the real number domain. We focus on finite dor@&ls solving tech-
niques; we can categorize the techniques into four diftempproaches.

First, the Incremental Hierarchical Constraint SolverGis) [20] proposes to trans-
form a given constraint hierarchy into a setogfst configurationga set of constraints).
Therefore, a given CH can be transformed into a set of clalsSi8Ps. However, it can
only findI-b solutions using the trivial error function. The second aagh is to trans-
form CHs into ordinary constraint systems basedaifiied constraint propagatiofi6].
This approach can only find solutions fgiobal comparatorgw-s-hy w-c-b, andl-s-b).
The third approach exploits the fact that CH is an instandee@SCSP framework [5].
Bistarelliet al. [4] show how a c-semiring can be constructed to model albimsts of
globally-better In addition, only thew-c-b can enjoy semiring-based arc-consistency
techniques [5] supported in clp(FD,S) [14]. The clp(FD,8lver, however, limits the
size of the semiring to only 32 elements, making it difficaltnhodel any practically
sized problems. The last is the refining approach used bwBlt [13]. It is a generic
finite domain CH solver which can find solutions for arbitragmparators in theory.
However, it recomputes the solution in each recursive steping significant overhead.
Hence, it is used only as a general and theoretical framefeorolution, from which
efficient algorithms, such as DeltaBlue (only equality ¢omigts) and Cassowary (a
very restricted finite domain subsolver), are inspired aesighed for some subset of
the general problem [11].

This paper is also related to many work in soft constraintessing aiming to
show how information gained through local consistency kimecduring preprocessing
can be used to enhance branch-and-bound search using ¢oopltations as global
bounds. In fact, when dealing with Constraint Hierarchidtb wnly 2 levelsw-s-band
w-I-b correspond to weighted CSPs amét-bto fuzzy CSPs. Some work, similar to our,
already appear (see for example Weighted CSPs [25], ane®d/&$Ps[23, 10]). The
bounds computed by these works are better then ours wherswietreur computations
to only 2-level, and to a specific comparator.

Our results are somewhat more general. We are able to corbputeds for CH
with any number of levelandwithout fixing a priori a comparatorTo reach better
bounds we can easily fix a comparator and define a spegificox . (= — d) function.
Bistarelliet al. [4]defined such operators for the specific casklof

9 Conclusion

We formally define constraint hierarctiyconsistency (CHg-C), based on error indica-
tors. Incorporating a CR-C enforcement algorithm in a branch-and-bound algorithm,
we obtain a general finite domain CH solver, which works fdoitesry comparators.
Search space is pruned by utilizing the error informatiomegated by the CK-C al-
gorithm. Experiments confirm the efficiency of our reseanaiiqiype, which brings us
one step towards practical finite domain CH solving.

There is room for future research. First, our implementatind even the CH-C
algorithm are hardly optimized. They have much scope forawgment. Second, we
test our solver only on random problems. Experiments on stouetured problems and
real-life problems are needed. Third, our consistencethasd Lua’s reified constraint
approaches do not compete. It would be interesting to stiuthe itwo methods can be
combined to produce more pruning. Fourth, the efficiencyrahbh-and-bound algo-
rithms can be sensitive to variable and value orderings. Warthwhile to investigate
good ordering heuristics specific to the @Hz and the branch-and-bound algorithms.
Fifth, the current proposal of our solver guarantees theectimess of local and global
comparators. In addition, it is easy to check that our sobaer support regional com-
parator [26],regionally-bettercomparator. The existing comparators, although rigor-
ously and mathematically defined, might be too general fpeaiic real-life situation.

It would be interesting to introduce new comparators thatghbe of particular rele-
vance to real-life problems and applicable to our solver.

References

[1] G.J. Badros, A. Borning, and P.J. Stuckey. The Cassowargpidingthmetic constraint
solving algorithm. ACM Transactions on Computer-Human Interacti@t4):267—-306,
2001.

[2] C. Bessere, E.C. Freuder, and J.Cégin. Using inference to reduce arc consistency com-
putation. InProceedings of IJCAI9Fages 592-598, 1995.

[3] S.Bistarelli, P. Codognet, H.K.C. Hui, and J.H.M. Lee. Solving fidibenain constraint hi-
erarchies by local consistency and tree searcftolappear) Proceedings of the Eighteenth
International Joint Conference on Atrtificial Intelligengeage (2 pages), 2003.

[4] S. Bistarelli, Y. Georget, and J.H.M. Lee. Capturing (fuzzy) c¢omist hi-
erarchies in semiring-based constraint satisfaction. Unpublished 3$dapty
http://www.sci.unich.it“bista/drafts/soft-fuzzyCH.pdf, 1999.

[5] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constsaintng and optimiza-
tion. Journal of the ACM44(2):201-236, 1997.

[6] A. Borning, R. Anderson, and B. Freeman-Benson. Indigo: @algropagation algorithm
for inequality constraints. IRroceedings of the 1996 ACM Symposium on User Interface
Software and Technologpages 129-136, 1996.

[7] A. Borning and B. Freeman-Benson. Ultraviolet: A constraint satibn algorithm for
interactive graphicsConstraints: An International JournaB(1):9-32, 1998.

[8] A.Borning, B. Freeman-Benson, and M. Wilson. Constraint hi@rigs.Lisp and Symbolic
Computation’5(3):223-270, 1992.

[9] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving linear aritetic constraints
for user interface applications. Proceedings of the ACM Symposium on User Interface
Software and Technologpages 87-96, 1997.

[10] Martin C. Cooper. Reduction operations in fuzzy or valued comdtsatisfaction.Fuzzy
Sets and Systens34(3):311-342, mar 2003.

[11] B. Freeman-Benson. Efficiency of DeltaStar. Private Comnaiiuin, April 2002.

[12] B. Freeman-Benson, J. Maloney, and A. Borning. An incretaderonstraint solverCom-
munications of the ACM33(1):54-63, 1990.

[13] B. Freeman-Benson, M. Wilson, and A. Borning. DeltaStar: Aggahalgorithm for incre-
mental satisfaction of constraint hierarchiesThe 11th Annual IEEE Phoenix Conference
on Computers and Communicatiopsges 561-568, 1992.

[14] Y. Georget and P. Codognet. Compiling semiring-based conttnaith clp(FD,S). IrPro-
ceedings of the Fourth International Conference on Principles andtR&of Constraint
Programming 1998.

[15] S.A. Grant and B.M. Smith. The phase transition behavior of miaimig.arc consistency.
In Proceedings of ECAI9fages 175-179, 1996.

[16] Martin Henz, Yun Fong Lim, Seet Chong Lua, Xiao Ping Shi, J. Reaiser, and Roland
H. C. Yap. Solving hierarchical constraints over finite domains.Sixth International
Symposium on Atrtificial Intelligence and Mathematiésrt Lauderdale, Florida, 2000.

[17] H. Hosobe, S. Matsuoka, and A. Yonezawa. Generalized looglggation: A framework
for solving constraint hierarchies. FProceedings of the Second International Conference
on Principles and Practice of Constraint Programmjmpgges 237—251, 1996.

[18] H. Hosobe, K. Miyashita, S. Takahashi, S. Matsuoka, and Ae¥awa. Locally simulta-
neous constraint satisfaction. Broceedings of PPCP9$¢ages 51-62, 1994.

[19] A.K. Mackworth. Consistency in networks of relationsl. Journal 8(1):99-118, 1977.

[20] F. Menezes, P. Barahona, and P. Codognet. An incrementatttiécal constraint solver.
In First Workshop on Principle and Practice of Constraint Processit@p3.

[21] J.A. Nelder and R. Mead. A simplex method for function minimizatidie Computer
Journal 7:308-313, 1965.

[22] M. Sannella. The SkyBlue constraint solver and its applications. .An Saraswat and
P.V. Hentenryck, editor®roceedings of the First Workshop on Principles and Practice of
Constraint ProgrammingMIT Press, 1994.

[23] Thomas Schiex. Arc consistency for soft constraint®roc. 6th International Conference
on Principles and Practice of Constraint Programming (CP2Q0@lume 1894, pages
411-424. Springer, 2000.

[24] G.L. Steele and G.J. Sussman. ConstraintsAPh conference proceedings partdages
208-225, 1979.

[25] Richard J. Wallace. Directed arc consistency preprocessingCohstraint Processing,
Selected Papersolume 923, pages 121-137. Springer, 1995.

[26] M. Wilson and A. Borning. Hierarchical constraint logic programg Journal of Logic
Programming 16:277-318, 1993.

