
A Formal and Practical Framework for Constraint-Based Routing∗†

Stefano Bistarelli
Dipartimento di Scienze

Università “G. d’Annunzio”, Pescara, Italy
bista@sci.unich.it

Francesco Santini
IMT Institute for Advanced Studies

Lucca, Italy
f.santini@imtlucca.it

Abstract

We propose a formal model to represent and solve the
Constraint-Based Routing problem in networks. To attain
this, we model the network adapting it to a weighted or
graph (unicast delivery) or and-or graph (multicast deliv-
ery), where the weight on a connector corresponds to the
cost of sending a packet on the network link modelled by
that connector. We use the Soft Constraint Logic Pro-
gramming (SCLP) framework as a convenient declarative
programming environment in which to solve the routing
problem. In particular, we show how the semantics of an
SCLP program computes the best route in the correspond-
ing graph. At last, we provide an implementation of the
framework over scale-free networks.

1 Introduction

Towards the second half of the nineties, Internet En-
gineering Task Force (IETF) and the research community
have proposed many models and mechanisms to meet the
demand for network Quality of Service (QoS). The classi-
cal routing problem has consequently been extended to in-
clude and to guarantee the QoS [16]: QoS routing [16, 9]
denotes a class of routing algorithms that base path selec-
tion decisions on a set of QoS requirements or constraints,
in addition to the destination. Service requirements have
to be expressed in some measurable metric, such as band-
width, number of hops, delay, jitter, cost and loss proba-
bility of packets. QoS-Routing and Policy-Routing, where
the constraints are imposed by administrative policies (e.g.
depending on traffic load, billing), are associated together
under the name of Constraint-Based Routing (CBR) [16].

In this paper we propose a formal framework based on
Soft Constraint Logic Programming (SCLP) [2, 3] in which
it is possible to represent and solve QoS-Routing [5] (and
∗Supported by the MIUR PRIN 2005-015491.
†Partially supported by Institute for Informatics and Telematics (IIT-

CNR) Pisa, Italy.

CBR in general). First, we will describe how to represent
a network configuration in a corresponding or graph (for
the unicast delivery scheme) or and-or graph (for multi-
cast), mapping network nodes to graph nodes and links to
graph connectors. In the following, we will generally use
the term and-or graph, or simply graph. QoS link costs
will be translated into multidimensional costs for the asso-
ciated connectors. Afterwards, we will propose the SCLP
framework [2, 3] as a convenient declarative programming
environment in which to specify and solve such problem.
SCLP programs are an extension of usual Constraint Logic
Programming (CLP) programs where logic programming
is used in conjunction with soft constraints, that is, con-
straints which can be satisfied at a certain level. In partic-
ular, we will show how to represent an and-or graph as an
SCLP program, and how the semantics of such a program
computes the best route the corresponding weighted and-or
graph (with route we will consider both multicast tree and
unicast paths). SCLP is based on the general structure of
c-semiring (or simply semiring), having the two operations
× and +: the × is used to combine the costs, while the par-
tial order defined by + operation (see Sec. 3), is used to
compare the costs. Notice that the cartesian product of two
semirings is a semiring [4], and this can be fruitfully used to
describe multi-criteria problems. In Sec. 6, we will suggest
an implementation of the proposed framework to really test
the performance on scale-free networks generated ad-hoc.

Related formal approaches, e.g. [11], adopt a hypergraph
model in joint with semirings too, but the minimal path be-
tween two nodes is computed via a graphical calculous in-
stead of SCLP. Moreover, as far as we know, none of the
related works suggest a practical implementation of the pre-
sented formal ideas.

2 Constraint-Based Routing and Scale-free
Networks

Constraint-Based Routing [16] refers to a class of rout-
ing algorithms that base path selection decisions on a set of
requirements or constraints, in addition to destination cri-

teria. These constraints may be imposed by QoS needs
(i.e. QoS-Routing) or administrative policies (i.e. Policy-
Routing), as already cited in Section 1. The aim of CBR
is to reduce the manual configuration and intervention re-
quired for attaining traffic engineering objectives [14]; for
this reason, CBR enhances the classical routing paradigm
with special properties, such as being resource reservation-
aware and demand-driven.

Policy-Routing selects paths that conform to administra-
tive rules and Service Level Agreements (SLAs) stipulated
among service providers and clients. For example, rout-
ing decisions can be based on the applications or protocols
used, size of packets or identity of the communicating en-
tities. Policy constraints can help improving the global se-
curity of the network and also help the resource allocation
problem that includes business decisions. QoS routing in-
stead attempts to simultaneously satisfy multiple QoS re-
quirements requested by real-time applications: e.g. video
conference, distributed simulation, stock quotes or multi-
media entertainment.

Multiple metrics can certainly represent the requests
more accurately than using a single measure. However, it
is well known that the problem of finding a route subject
to multiple constraints is inherently hard [16]. When some
metrics take real or unbounded integer values [7], satisfy-
ing two boolean constraints (saying whether or not a route
is feasible), or a boolean constraint and a quantitative con-
straint (i.e. optimizing a metric) is NP-complete [15, 16,
7]. For example the set of constraints C = (delay ≤
40msec, min(Cost)) is intractable. For this reason, most of
the implemented algorithms in this area apply heuristics to
reduce the complexity. The unicast problem can be recon-
ducted to the generic Multi-Constrained Optimal Path prob-
lem [7], while the multicast case refers to the Constrained
Steiner Tree [16]; both these problems are NP-complete in
their nature.

3 Soft Constraint Logic Programming

The SCLP framework [2, 3], is based on the notion of
c-semiring introduced in [4]. A c-semiring S is a tuple
〈A, +,×,0,1〉 where A is a set with two special elements
(0,1 ∈ A) and with two operations + and× that satisfy cer-
tain properties: + is defined over (possibly infinite) sets of
elements of A and thus is commutative, associative, idem-
potent, it is closed and 0 is its unit element and 1 is its
absorbing element; × is closed, associative, commutative,
distributes over +, 1 is its unit element, and 0 is its ab-
sorbing element (for the exhaustive definition, please refer
to [4]). The + operation defines a partial order ≤S over A
such that a ≤S b iff a + b = b; we say that a ≤S b if b
represents a value better than a. Other properties related to
the two operations are that + and× are monotone on≤S , 0

Table 1. A simple SCLP program.
s(X) :- p(X,Y). q(a) :- t(a).
p(a,b) :- q(a). t(a) :- 2.
p(a,c) :- r(a). r(a) :- 3.

is its minimum and 1 its maximum, 〈A,≤S〉 is a complete
lattice and + is its lub. Finally, if × is idempotent, then +
distributes over×, 〈A,≤S〉 is a complete distributive lattice
and × its glb.

Semiring-based constraint satisfaction problems (SC-
SPs) are constraint problems where each variable instanti-
ation is associated to an element of a c-semiring A (to be
interpreted as a cost, level of preference or, in this case, as a
trust/reputation level), and constraints are combined via the
× operation and compared via the≤S ordering. Varying the
set A and the meaning of the + and × operations, we can
represent many different kinds of problems, having features
like fuzziness, probability, and optimization.

A simple example of a SCLP program over the semiring
〈N, min,+, +∞, 0〉, where N is the set of non-negative
integers and D = {a, b, c}, is represented in Tab. 1. The
intuitive meaning of a semiring value like 3 associated to
the atom r(a) (in Tab. 1) is that r(a) costs 3 units. Thus the
set N contains all possible costs, and the choice of the two
operations min and + implies that we intend to minimize
the sum of the costs. This gives us the possibility to select
the atom instantiation which gives the minimum cost over-
all. Given a goal like s(x) to this program, the operational
semantics collects both a substitution for x (in this case,
x = a) and also a semiring value (in this case, 2) which
represents the minimum cost among the costs for all deriva-
tions for s(x). To find one of these solutions, it starts from
the goal and uses the clauses as usual in logic programming,
except that at each step two items are accumulated and com-
bined with the current state: a substitution and a semiring
value (both provided by the used clause). The combination
of these two items with what is contained in the current goal
is done via the usual combination of substitutions (for the
substitution part) and via the multiplicative operation of the
semiring (for the semiring value part), which in this exam-
ple is the arithmetic +. Thus, in the example of goal s(X),
we get two possible solutions, both with substitution X = a
but with two different semiring values: 2 and 3. Then, the
combination of such two solutions via the min operation
give us the semiring value 2.

4 Using and-or Graphs to Represent Net-
works with QoS Requirements

An and-or graph [12] is defined essentially as a hyper-
graph. Namely, instead of arcs connecting pairs of nodes

2

there are hyperarcs connecting an n-tuple of nodes (n =
1, 2, 3, . . .). The arcs are called connectors and they must
be considered as directed from their first node to all others.
Formally an and-or graph is a pair G = (N, C), where
N is a set of nodes and C is a set of connectors C ⊆
N ×⋃k

i=0 N i. Note that the definition allows 0-connectors,
i.e. connectors with one input and no output node. In the
following of the explanation we will also use the concept of
and tree [12]: given an and-or graph G, an and tree H is
a solution tree of G with start node nr, if there is a func-
tion g mapping nodes of H into nodes of G such that: i)
the root of H is mapped in nr, and ii) if (ni0 , ni1 , . . . , nik

)
is a connector of H , then (g(ni0), g(ni1), . . . , g(nik

)) is a
connector of G.

Informally, a solution tree of an and-or graph is anal-
ogous to a path of an ordinary graph: it can be obtained
by selecting exactly one outgoing connector for each node,
and we use the resulting tree to model the multicast delivery.
The unicast case is even simpler: we use an or graph (i.e. a
classical graph) to represent the network and selecting one
connector for each node clearly results in a path (not a tree).

In Fig. 1 we directly represent a very simple network as
a weighted and-or graph. Each of the nodes can be eas-
ily cast in a corresponding node of the and-or graph. In
Fig. 1, different icons feature the different role of the node
in the network: the source of packets n0, the routers n1,
n2 and n3, a subnetwork n5 or plain receiver host n4).
To model the networks links between two nodes we use 1-
connectors: (n0, n1), (n1, n2), (n1, n3), (n2, n4), (n3, n4)
and (n3, n5). We remind that the connectors are directed,
and thus, for example the connector (n0, n1) means that
n0 can send packets to n1. Moreover, since we are pos-
sibly interested in a multicast communication, we need to
represent the event of sending the same packet to multiple
destinations at the same time. To attain this, in Fig. 1 we
can see the two 2-connectors (n1, n2, n3) and (n3, n4, n5):
we draw these n-connectors (with n > 1) as curved ori-
ented arcs where the set of their output nodes corresponds
to the destination nodes of the 1-connectors traversed by the
curved arc. Considering the ordering of the nodes in the tu-
ple describing the connector, the input node is at the first
position and the output nodes (when more than one) follow
the orientation of the related arc in the graph (in Fig. 1 this
orientation is lexicographic). Notice that in the example we
decided to use connectors with dimension at most equal to 2
(i.e. 2-connectors) for sake of simplicity. However it is pos-
sible to represent whatever cardinality (e.g. n) of multicast
destination nodes (i.e. with a n-connector). 0-connectors
are represented as a line ending with a square in Fig. 1 and
are added only for receiver nodes.

In the example we propose here, we are interested in QoS
link-state information concerning only the bandwidth and a
generic money cost (e.g. to supply the service or to main-

Subnetwork

<10,1>

<6,1>

<7,2>

<8,1>

< ,0>

<4,3>

<7,1>

n

n

n
n

0

2

3

4

5
n

n1

<4,3>

<6,1>

<6,1>

8

Figure 1. A network in and-or graph represen-
tation.

tain a device). Bandwidth and cost can be seen as either
QoS or policy constraints. Therefore, each link cost of the
network can be labeled with a 2-dimensional cost for the
related connector. For example, the pair 〈8, 1〉 for the con-
nector (n0, n1) tells us that the maximum bandwidth on that
represented link is 80Mbps and a cost of 10e. In general,
we could have a cost expressed with a v-dimensional vec-
tor, where v is the number of metrics to be taken in ac-
count while computing the best distribution tree. In the
case when a connector represent a multicast delivery (i.e.
a n-connector with n > 1), its cost is decided by assem-
bling the costs of all the n links with the composition op-
eration ◦, which takes as many v-dimensional cost vectors
as operands, as the n number of links represented by the
connector. For this example, the result of ◦ is the minimum
bandwidth and the highest cost, ergo, the worst QoS metric
values among the considered links:

◦(〈b1, c1〉, 〈b2, c2〉, . . . , 〈bn, cn〉) −→

〈min(b1, b2, . . . , bn), max(c1, c2, . . . , cn)〉
For example, the cost of the connector (n1, n2, n3) in Fig. 1
is 〈4, 3〉, since the costs of connectors (n1, n2) and (n1, n3)
are respectively 〈4, 3〉 and 〈7, 2〉: ◦(〈4, 3〉, 〈7, 2〉) = 〈4, 3〉.
All the costs of the connectors are reported in Tab. 2.

Then, we need some algebraic framework to model
our preferences for the links in order to find the
best route; to attain this, we use the semiring struc-
ture as described in Sec. 3. Since we are inter-
ested in maximizing the bandwidth of the distribu-
tion tree, we can use the c-semiring SBandwidth =
〈R+, max, min, 0, +∞〉 (otherwise, we could be interested
in finding the route with the minimal feasible bandwidth
with 〈R+, min, min,+∞, 0〉, for traffic engineering rea-
sons). We can use SCost = 〈R+, min, +,+∞, 0〉 as
the semiring to represent the cost, if we need to min-
imize it (here, + is the arithmetic operator). Since
the composition of c-semirings is still a c-semiring [4],
SNetwork = 〈〈R+,R+〉, +′,×′, 〈0, +∞〉, 〈+∞, 0〉〉 is the
adopted semiring, where +′ and ×′ correspond to the

3

vectorization of the + and × operations in the two c-
semirings: 〈b1, c1〉+′ 〈b2, c2〉 = 〈max(b1, b2), min(c1, c2)〉
and 〈b1, c1〉 ×′ 〈b2, c2〉 = 〈min(b1, b2), c1 + c2〉.

Clearly, the problem of finding best route is multi-
criteria, since both bandwidth and delay must be optimized.
We consider the criteria as independent among them, other-
wise they can be rephrased to a single criteria [15]. Thus,
the multidimensional costs of the connectors are not ele-
ments of a totally ordered set, and it may be possible to
obtain several routes for the same destination (or destina-
tions, if looking for a multicast distribution), all of which
are not dominated by others, but which have different in-
comparable costs. The set of constraints for our problem
is C = (max(Bandwidth),min(Cost)), which are both
quantitative constraints: the semiring structure is suitable
for metric optimization (i.e. to represent quantitative con-
straints), but in Sec. 5 we will apply also boolean con-
straints, e.g. only paths with Cost < 22e.

For each possible receiver node, the cost of its outgoing
0-connector will be always included in every route reach-
ing it. As a remind, a 0-connector has only one input node
but no destination nodes. If we consider a receiver as a plain
node (e.g. n4 in Fig. 1), we can set this cost as the 1 element
of the adopted c-semiring (1 is the unit element for×), since
the cost to reach the node is already completely described
by the other connectors in the route: practically, we asso-
ciate the highest possible QoS values to this 0-connector, in
this case infinite bandwidth and null cost. Otherwise we can
imagine a receiver as a more complex subnetwork (as n5 in
Fig. 1), and thus we can set the cost of the 0-connector as the
cost needed to finally reach a node in that subnetwork (as
the cost 〈6, 1〉 for the 0-connector after node n5 in Fig. 1),
in case we do not want, or cannot, show the topology of the
subnetwork, e.g. for security reasons.

5 And-or graphs using SCLP

To represent the network edges (i.e. 1-connectors), in
SCLP we can write clauses like edge(n1, n2) : −〈4, 3〉,
stating that the graph has a connector from n1 to nodes
n2 and n3 with a bandwidth cost of 40Mbps and a money
cost of 30e. Other SCLP clauses can properly describe the
structure of the route we desire to search over the graph.

We chose to represent an and-or graph with a program
in CIAO Prolog [6], a system that offers a complete Pro-
log system supporting ISO-Prolog and several extensions.
CIAO Prolog has also a fuzzy extension, but since it does
not completely conform to the semantic of SCLP defined
in [3] (due to interpolation in the interval of the fuzzy set),
we decided to use the CIAO operators among constraints
(as < and≤), and to model the× operator of the c-semiring
with them. For this reason, we added the cost of the connec-
tor in the head of the clauses, differently from SCLP clauses

Table 2. The CIAO program representing all
the routes over the weighted and-or graph
problem in Fig. 1.

E
d

g
e
s

2)

3)

4)5)

L
e
a
v
e
s

:- module(network,_,_).
:- use_module(library(lists)).

min([X, Y], X) :- X < Y.
min([X, Y], Y) :- X >= Y.
max([X, Y], X) :- X > Y.
max([X, Y], Y) :- X =< Y.

times([B1, C1], [B2, C2], [B, C]) :-
 min([B1, B2], B),
 C is (C1 + C2).

leaf([n4], [1000, 0]).
leaf([n5], [6, 1]).

edge(n0, [n1], [8, 1]).
edge(n1, [n2], [4, 3]).
edge(n1, [n3], [7, 2]).
edge(n2, [n4], [10, 1]).
edge(n3, [n4], [6, 1]).
edge(n3, [n5], [7, 1]).

connector(X, [Y], L, [B,C]):-
 nocontains(L, Y),
 edge(X, Y, [B,C]).

connector(X, [Y|Ys], L, [B,C]):-
 edge(X, Y, [B1,C2]),
 nocontains(L,Y),
 insert_last(L, Y, Z),
 connector(X, Ys, Z, [B2,C2]),
 min([B1,B2], B]),
 max([C1,C2], C).

1)

routeList([X|Xs], Z, [B, C]):-
 route(X, Z1, [B1, C1]),
 append(Z1, Z2, Z),
 routeList(Xs, Z2, [B2, C2]),
 times([B1, C1], [B2, C2], [B, C]).

routeList([], [], [100, 0]).

route(X, [X], [B, C]):-
 leaf([X], [B, C]).

route(X, Z, [B, C]):-
 connector(X, W, [], [B1, C1]),
 routeList(W, Z, [B2, C2]),
 times([B1, C1], [B2, C2], [B, C]).

which have the cost in the body of the clause.
From the weighted and-or graph problem in Fig. 1 we

can build the corresponding CIAO program of Tab. 2 as fol-
lows. The set of network edges (or 1-connectors) is high-
lighted as Edges in Tab. 2. Each fact has the structure

edge(source node, [dest nodes], [bandwidth, cost])

e.g. the fact edge(n1, [n2], [4, 3]) represents the 1-
connector of the graph (n1, n2) with bandwidth equal to
40Mbps and cost 30e. The Rules 1 in Tab. 2 are used to
compose the edges (i.e. the 1-connectors) together in or-
der to find all the possible n-connectors with n ≥ 1, by
aggregating the costs of 1-connectors with the ◦ compo-
sition operator, as described in Sec. 4 (the lowest of the
bandwidths and the greatest of the costs of the composed
1-connectors). Therefore, with these clauses (in Rules 1)
we can automatically generate the set of all the connec-
tors outgoing from the considered node (in Table 2, no-
contains and insert last are CIAO predicates used to build
a well-formed connector). The Leaves in Table 2 repre-
sent the 0-connectors (a value of 1000 represents ∞ for
bandwidth). The time rule in Table 2 mimics the × oper-
ation of the semiring proposed in Section 4: SNetwork =
〈〈R+,R+〉, +′,×′, 〈0, +∞〉, 〈+∞, 0〉〉, where +′ is equal
to 〈max, min〉 and ×′ is equal to 〈min, +〉, as defined in
Section 4. At last, the rules 2-3-4-5 of Table 2 describe the
structure of the routes we want to find over the graph. Rule
2 represents a route made of only one leaf node, Rule 3 out-
lines a route made of a connector plus a list of sub-routes
with root nodes in the list of the destination nodes of the

4

Path cost = <6,4>

<7,2><8,1> < ,0>

n n n
0

3 4n1

<6,1> 8

(times = <min,+>)

Subnetwork

Tree cost = <6,5>

<7,2><8,1>

< ,0>

n n

n

0
3

4

5
n

n1

<6,1>

<6,1>

8

(times = <min,+>)

a)

b)

Figure 2. a) The best multicast tree among n0

and n4-n5, and b) the best unicast path be-
tween n0 and n4.

connector, Rule 4 is the termination for Rule 5, and Rule 4
is needed to manage the junction of the disjoint sub-routes
with roots in the list [X|Xs]; clearly, when the list [X|Xs]
of destination nodes contains more than one node, it means
we are looking for a multicast route. When we compose
connectors or trees (Rule 2 and Rule 5), we use the times
rule to compose their costs together. In Rule 5, append is a
CIAO predicate used to join together the lists of destination
nodes, when the query asks for a multicast route.

To solve the CBR problem it is enough to perform a
query in the Prolog language: for example, if we want to
compute the cost of all the multicast trees rooted at n0

and having as leaves the nodes representing the receivers
(in this case, n4 and n5), we have to perform the query
route(n0, [n4, n5], [B, C]), where B and C variables will
be instantiated with the bandwidth and cost of the found
trees. For this query, the best output (in terms of the adopted
QoS metrics) of the CIAO program corresponds to the cost
of the tree in Fig. 2a, i.e. 〈6, 5〉, since×′ computes the min-
imum bandwidth - cost sum of the connectors.

The best unicast path between n0 and n4 can instead be
found with the query route(n0, [n4], [B,C]), and it is rep-
resented in Fig. 2b; its cost is 〈6, 4〉. Notice that the best
path or tree is directly computed by the SCLP engine as
described in the example in Sec. 3: given a query, the oper-
ational semantics collects a semiring value which represents
the best cost (w.r.t. the + operator) among the costs of all
the derivations satisfying the query. In Tab. 2, the SCLP
engine is prototyped with a CIAO Prolog program.

As anticipated in Sec. 4, semiring structures are the ideal
to represent quantitative constraints since the + operation
of the semiring defines a partial order over A (see Sec. 3),
i.e. over the set of QoS metric values. This operation can

be consequently used to optimize the route. However, also
boolean constraints, e.g. a route is accepted only if its cost
is below a given threshold (e.g. Cost < 30e), can be
modeled in our framework. For example, with the query
route(n0, [n4], [B,C]), C < 3 no path is returned since the
best possible path in Fig. 2 has a money cost equal to 4. The
C < 3 requirement can be directly embedded in the times
rule of the CIAO program Tab. 2, in order to also optimize
the search by stopping it as soon as C < 3 is no longer true.

6 Implementing the Framework

To develop and test a practical implementation of our
model, we adopt the Java Universal Network/Graph Frame-
work (JUNG) [13], a software library for the modeling,
analysis, and visualization of a graph or network. With this
library it is also possible to generate scale-free networks
according to the preferential attachment proposed in [1]:
each time a new vertex vn is added to the network G, the
probability p of creating an edge between an existing ver-
tex v and vn is p = (degree(v) + 1)/(|E| + |V |), where
|E| and |V | are respectively the current number of edges
and vertices in G. Therefore, vertices with higher degree
have a higher probability of being selected for attachment.
We generated the scale-free network and then we automat-
ically produced the corresponding program in CIAO, as in
Sec. 5. The reported statistics suggest the scale-free nature
of our network: 265 nodes, 600 edges, clustering coefficient
= 0.13, Average Shortest Path = 3.74, Min/Max/Avg De-
gree = 1/20/4.52 and Diameter = 8. Therefore, a quite
high clustering coefficient, a low average shortest path and
a high variability of vertex degrees (between average and
max). These features are evidences of the presence of few
big hubs that can be used to shortly reach the destinations.

Together with the bandwidth/cost quantitative con-
straint of Sec. 5, we added the Path Hops < 2 ·
Avg Shortest Path boolean constraint: in this case,
Path Hops < 8, which is also the diameter of the network.
This constraint limits the search space and provides a good
approximation at the same time: in scale-free networks, the
average distance between two nodes can be ln ln N , where
N is the number of nodes [8]. Therefore, this hop con-
straint can be successfully used also with large networks,
and limiting the depth to twice the average shortest path
value still results in a large number of alternative routes.
Other boolean constraints can be used to further prune the
search as soon as they are violated, consequently improving
the performance. We performed 50 queries for the unicast
case (i.e. between two random nodes) and all the results
were found within 5 minutes. Concerning instead quanti-
tative constraints, an already obtained path p can be used
to immediately discard successive partial results during the
search, if the current QoS values are already worse than p

5

(i.e. we can use the QoS features of p as a “cut” level).
Unfortunately, it is not possible to produce an uniform per-
formance graph by considering different node numbers for
the generated graphs, since, using the same input parame-
ters, JUNG generates a lot of disconnected networks when
setting a lower number of desired final nodes.

If we consider the multicast case, each of the nodes in the
and-or graph has O(2d) connectors, where d is the degree
of the node. This exponential result is not a problem for
most of nodes, since in scale-free networks the average de-
gree is very low. The problem arises for the few hub nodes;
in this case we can reduce the n-connector facts basing on
the number of destinations: if only 5 destinations must be
reached, it is useless to create 6-connectors or more. More-
over, we can use a variable in the clauses to count the cur-
rent width of the partial tree solution in order to prevent the
search from widening more than the number of destinations.

We think there are several way to further improve
the computational results. The complexity of the tree
search can be reduced by using tabling (or memoing) tech-
niques [10]. The calls to tabled predicates are stored in a
searchable structure together with their proven instances,
and subsequent identical calls can use the stored answers
without repeating the computation. One more improve-
ment is the inclusions of facts describing the topology of
the network (or part of it). In this way, like in ordinary net-
work routing, we can immediately remove from the search
the not involved clusters or the clusters we do not want
to cross.These improvements are strongly needed for hub
nodes, i.e. the backbone nodes of the network , which rep-
resent however a small percentage of the total number of
nodes.

7 Conclusions

We have described a method to represent and solve the
CBR problem with the combination of and-or graph and the
declarative SCLP environment: the best multicast or unicast
route found on an and-or graph corresponds to the seman-
tics of a SCLP program. The route satisfies multiple con-
straints regarding QoS requirements, e.g. minimizing the
global bandwidth consumption, reducing the delay, or ac-
cepting only the routes that use k hops at most. The semir-
ing structure is a very parametric tool where to represent
different QoS metrics. Since it is well-known that even a
shortest path problem with two or more independent metrics
is NP-complete (see Sec. 1), we have proposed a framework
based on AI techniques (i.e. soft constraints). The conve-
nience is to use a declarative framework where constraints
on the routes can be easily represented. Moreover we have
provided a practical implementation of the framework and a
test on a scale-free network, whose results are quite promis-
ing. The framework can be used to prototype and test new

constraints in small networks (i.e. 100-1000 nodes) or parts
of wider graphs.

Concerning future works, we want to produce more tests,
also with different scale-free/small-world topology gener-
ators. We plan to improve the computational results by
adding to the program some clauses that describe the topol-
ogy of the network. Moreover, we will study ad-hoc mem-
oization techniques to reduce the complexity of big hubs.

References

[1] A. L. Barabasi and R. Albert. Emergence of scaling in ran-
dom networks. Science, 286:509, 1999.

[2] S. Bistarelli. Semirings for Soft Constraint Solving and Pro-
gramming, volume 2962 of Lecture Notes in Computer Sci-
ence. Springer, 2004.

[3] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based
constraint logic programming. In Proc. IJCAI97 (Morgan
Kaufman), pages 352–357. Morgan Kaufman, 1997.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based
constraint solving and optimization. Journal of the ACM,
44(2):201–236, 1997.

[5] S. Bistarelli, U. Montanari, F. Rossi, and F. Santini. Mod-
elling multicast qos routing by using best-tree search in and-
or graphs and soft constraint logic programming. Electr.
Notes Theor. Comput. Sci., 190(3):111–127, 2007.

[6] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-
Garcı́a, and G. Puebla. The ciao prolog system: reference
manual. Technical Report CLIP3/97.1, School of Computer
Science, Technical University of Madrid (UPM), 1997.

[7] S. Chen and K. Nahrstedt. An overview of quality of service
routing for next-generation high-speed networks: Problems
and solutions. IEEE Network, 12(6):64–79, 1998.

[8] R. Cohen and S. Havlin. Scale-free networks are ultrasmall.
Phys. Rev. Lett., 90(5):058701, Feb 2003.

[9] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. RFC
2386: A framework for QoS-based routing in the Internet,
August 1998. Informational.

[10] B. Cui and D. S. Warren. A system for tabled constraint logic
programming. In CL ’00: Conference on Computational
Logic, pages 478–492. Springer-Verlag, 2000.

[11] D. Hirsch and E. Tuosto. SHReQ: coordinating application
level QoS. In SEFM ’05: Software Engineering and Formal
Methods, pages 425–434. IEEE Computer Society, 2005.

[12] A. Martelli and U. Montanari. Optimizing decision trees
through heuristically guided search. Commun. ACM,
21(12):1025–1039, 1978.

[13] J. O’Madadhain, D. Fisher, S. White, and Y. Boey. The
JUNG (Java Universal Network/Graph) framework. Tech-
nical report, UC Irvine, 2003.

[14] E. Rosen, A. Viswanathan, and R. Callon. IETF-RFC3031:
Multiprotocol Label Switching Architecture, 2001.

[15] Z. Wang and J. Crowcroft. Quality-of-service routing for
supporting multimedia applications. IEEE Journal on Se-
lected Areas in Communications, 14(7):1228–1234, 1996.

[16] O. Younis and S. Fahmy. Constraint-based routing in the
internet: basic principles and recent research. IEEE Com-
munications Surveys and Tutorials, 5(1):2–13, 2003.

6

