
Detecting and Eliminating the Cascade Vulnerability Problem
from Multi-level Security Networks using Soft Constraints∗

Stefano Bistarelli
Dipartimento di Scienze

Universit̀a di Chieti-Pescara, Italy
bista@sci.unich.it

Istituto di Informatica e Telematica, C.N.R.
Pisa, Italy

stefano.bistarelli@iit.cnr.it

Simon N. Foley and Barry O’Sullivan
Department of Computer Science

University College Cork
Ireland

{s.foley,b.osullivan}@cs.ucc.ie

Abstract

The security of a network configuration is based, not just on
the security of its individual components and their direct in-
terconnections, but it is also based on the potential for sys-
tems to inter-operate indirectly across network routes. Such
inter-operation has been shown to provide the potential for
cascading paths that violate security, in a circuitous manner,
across a network. In this paper we show how constraint pro-
gramming provides a natural approach to expressing the nec-
essary constraints to ensure multilevel security across a net-
work configuration. In particular, soft constraints are used
to detect and eliminate the cascading network paths that vi-
olate security. Taking this approach results in practical ad-
vancements over existing solutions to this problem. In partic-
ular, constraint satisfaction highlights the set of all cascading
paths, upon which we can compute in polynomial time an
optimal reconfiguration of the network and ensure security.

Introduction
The composition of secure systems is not necessarily se-
cure. A user may be able to gain unauthorized access to
an object by taking a circuitous access route across indi-
vidually secure but inter-operating systems (Foley 2000;
Gong & Qian 1994). Determining security is based not just
on the individual system authorization mechanisms but also
on how the systems are configured to inter-operate. For ex-
ample, if Alice is permitted to have access to Bob’s files
on the Administration system, and Clare is permitted access
Alice’s files on the Sales system, then is it safe to support
file sharing between these systems? The extent of system
inter-operation must be limited if the administration secu-
rity policy states that Clare is not permitted access to Bob’s
(administration) files.

The cascade vulnerability problem(TNI 1987) is con-
cerned with secure inter-operation, and considers theassur-
ance riskof composing multilevel secure systems that are

∗This work has received partial support from the Italian
MIUR project “Constraint Based Verification of Reactive Sys-
tems” (COVER), from Enterprise Ireland under their Basic Re-
search Grant Scheme (Grant Number SC/02/289) and their Interna-
tional Collaboration Programme (Grant Number IC/2003/88) and
the Boole Centre for Research in Informatics, UCC, under the
HEA-PRTLI scheme.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

evaluated to different levels of assurance according to the
criteria specified in (TNI 1987). The transitivity of the mul-
tilevel security policy upheld across all secure systems en-
sures that their multilevel composition is secure; however,
inter-operability and data sharing between systems may in-
crease the risk of compromise beyond that accepted by the
assurance level. For example, it may be an acceptable risk
to store only secret and top-secret data on a medium as-
surance system, and only classified and secret data on an-
other medium assurance system: classified and top-secret
data may be stored simultaneously only on ‘high’ assurance
systems. However, if these medium assurance systems inter-
operate at classification secret, then the acceptable risk of
compromise is no longer adequate as there is an unaccept-
able cascading risk from top-secret across the network to
classified.

Existing research has considered schemes fordetecting
these security vulnerabilities and foreliminatingthem by re-
configuring system inter-operation. While detection of some
security vulnerability (Millen & Schwartz 1988; Horton &
others 1993; Fitch & Hoffman 1993; Gong & Qian 1994)
can be easily achieved, their optimal elimination is NP-
complete (Horton & others 1993; Gritalis & Spinellis 1998;
Gong & Qian 1994).

We present an approach to using constraints (Dechter
2003) for reasoning about secure inter-operation. Con-
straint solving is an emerging software technology for mod-
eling and solving large-scale optimization problems (Wal-
lace 1996). Constraints have been successfully applied to
a number of problems in computer security (Bharadwaj &
Baras 2003; Bistarelli & Foley 2003; Pierro, Hankin, &
Wiklicky 2002; Bella & Bistarelli 2001). However, the cas-
cade vulnerability problem, and secure inter-operation in
general, have not been studied in the context of constraints.

The approach that we present in this paper represents a
paradigm shift in the modeling, detection and elimination
of the cascade problem. We present a constraint model that
provides a natural description of an arbitrary multilevel se-
cure network. Any solution to the model represents a cas-
cading path through the network, providing significantly
more information on its vulnerabilities than the existing ap-
proaches, and providing a basis for eliminating the cascade
vulnerability problem. Previous approaches (Fitch & Hoff-
man 1993; Horton & others 1993) detect a single cascading



path in polynomial time, but correcting the cascade in an op-
timal way is NP-complete. Using a constraint model, we can
rely on a significant body of successful techniques from the
field of constraint processing for finding the set of cascad-
ing paths with reasonable effort, which once found, can be
eliminated in polynomial time. These results are applicable
to secure inter-operation in general.

Background

The Cascade Problem

Figure 1 gives an example of a multi-level secure (MLS)
network configuration with a cascade vulnerability prob-
lem (Fitch & Hoffman 1993).

Assurance Ratings
System Level
Sys.A B2
Sys.B B3
Sys.C B1
Sys.D C2

Figure 1: Network configuration with a potential cascade problem.

The network is comprised of multilevel secure systems
Sys.A, Sys.B, Sys.C and Sys.D storing classified (C), se-
cret (S) and top-secret (T ) information as depicted in Fig-
ure 1. Each system is accredited according to levels of as-
surance C2<B1<B2<B3 from (TNI 1987; TCSEC 1985).
For example, Sys.B is used to simultaneously storeC, S
andT information and, therefore, (according to (TNI 1987;
TCSEC 1985)) must be evaluated at level B3 or higher, re-
flecting the high level of confidence that must be placed in
the secure operation of the system. This is to counter the
risk of an attacker compromising the system and copyingT
information toC. Sys.D, on the other hand, has been evalu-
ated at the lowest level of assurance C2 and, therefore, may
be used only to store single level data.

However, the security-level inter-operability defined by
the system connections in Figure 1 results in a cascade vul-
nerability across the network. There is a risk that an attacker
who has the ability to compromise security on B2 or lower
assured systems can copyT to S on Sys.A, toS on Sys.D
to S to C on Sys.C. This is contrary to the criteria require-
ment that the level of assurance thatT cannot be copied to
C should be B3 or higher. This requirement is met by the in-
dividual systems but not as a result of their inter-operation.
A generalized form of the cascade problem is defined as fol-
lows.

MLS A multilevel secure system enforces a lattice-based
security policyL of security levels that has ordering relation
≤. Givenx, y : L thenx ≤ y means that information may
flow from levelx to levely, for example,C ≤ S ≤ T .

Assurance Levels Security criteria define a lattice,A, of
assurance levels with ordering≤. Givenx, y : A, thenx ≤
y means that a system evaluated aty is no less secure than a
system evaluated atx, or alternatively, that an attacker that
can compromise a system evaluated aty can compromise a
system evaluated atx. Let S define the set of all system
names. We defineaccred : S → A whereaccred(s) gives
the assurance level of systems : S, and is taken to represent
the minimum effort required by an attacker to compromise
systems.

Acceptable Risk Security evaluation criteria also define
an acceptable risk functionrisk : L × L → A, such that
given l, l′ : L thenrisk(l, l′) defines the minimum accept-
able risk of compromise froml to l′; it represents the min-
imum acceptable effort required to ‘compromise security’
and copy/downgrade information from levell to level l′.
Without any loss of generalization we assume that there is
no security enforcement at the lowest assurance level0, and
thus, if l ≤ l′ thenrisk(l, l′) = 0. For example, function
risk encodes the assurance matrix from (TNI 1987; TCSEC
1985) asrisk(C,S) = risk(C, T ) = risk(S, T ) = 0 [C2],
risk(S, C) = 1 [B1], and so forth.

Evaluated Systems Individual systems must be assured
higher than the minimum acceptable risk to compromise the
data they store. If a systems can hold information at levels
l andl′ thenrisk(l, l′) ≤ accred(s).

Network Model A node is a pair(s, l) and represents the
fact that systems can hold information at levell. A sys-
tem is a collection of nodes that represent the data it holds.
For example, in Figure 1, Sys.A is represented by nodes
(Sys.A, S) and (Sys.A, T ). A network of systems is a
weighted graph of these nodes according to how they are
connected. Anw-weighted arc from(s, l) to (s′, l′) means
that it requires minimumw effort to directly copy informa-
tion at levell held on systems to levell′ on systems′.

Cascading Risks Arcs are used to represent direct flows
within a system and inter-operation links between systems.
A flow l ≤ l′ that is permitted on systems is represented as
a (assurance)0-weighted arc from(s, l) to (s, l′); if a flow is
not permitted between levelsl andl′ that are held on system
s then it is represented as an arc weighted asaccred(s) from
(s, l) to (s, l′).

A link from systems to s′ that connectsl-level informa-
tion is represented as a0-weighted arc from(s, l) to (s′, l)—
all other pairs(s, l) to (s′, l) not related in this way are either
represented as having no arc, or an arc with the maximum
assurance value1.

Given pairs (s, l) and (s, l′) we then define
effort((s, l), (s′, l′)) as the minimum effort required
to compromise the network and copy/downgrade level
l information held on systems to level l′ informa-
tion on system s′. As an example, in Figure 1,
effort((Sys.A, T ), (Sys.C, C)) = B2 via the path
throughSys.D.

Cascade Freedom We require that for any systemss,s′

and levelsl,l′ then risk(l, l′) ≤ effort((s, l), (s′, l′)).
Given a path in the network from(s, l) to (s′, l′), then



its cascade weighting is the maximum weight that di-
rectly connects any two nodes on the path. This reflects
the minimum effort that will be required by an attacker
to copy information from(s, l) to (s′, l′) by using this
path. effort((s, l), (s′, l′)) is the minimum of the cascade
weightings for all paths that connect(s, l) to (s′, l′).

Soft Constraints

Several formalizations of the concept ofsoft constraintsare
currently available. In the following, we refer to the one
based on c-semirings (Bistarelli, Montanari, & Rossi 1997)
which can be shown to generalize and express many of the
others (Bistarelliet al. 1999).

Soft constraints associate a qualitative or quantitative
value either with the entire constraint or with each assign-
ment of its variables. More precisely, they are based on a
semiring structureS = 〈A,+,×,0,1〉 and a set of variables
V with domainD. In particular the semiring operation× is
used to combine constraints together, and the+ operator for
projection.

Technically, aconstraintis a function which, given an as-
signmentη : V → D of the variables, returns a value of
the semiring. SoC = η → A is the set of all possible con-
straints that can be built starting fromS, D andV (values
in A are interpreted as level of preference or importance or
cost). Using the levels, we can order constraints: to say that
c1 is better thenc2 we will write c1 w c2.

When using soft constraints it is necessary to specify, via
suitable combination operators, how the level of preference
of a global solution is obtained from the preferences in the
constraints. The combined weight of a set of constraints is
computed using the operator⊗ : C×C → C defined as(c1⊗
c2)η = c1η ×S c2η. Moreover, given a constraintc ∈ C and
a variablev ∈ V , theprojectionof c overV − {v}, written
c ⇓(V −{v}) is the constraintc′ s.t. c′η =

∑
d∈D cη[v := d].

Figure 2: A simple network.

Modeling MLS Networks

Consider a networkN = {A,B, C, . . .} of a finite arbitrary
numbern of systems. In our constraint model, this network
of n nodes is represented using2×n system-node variables.
Each system-node variableSs

i andSd
i , for i := 1 . . . n can

be instantiated to be one system of the network. Each of the
possible flows of information among the systems of the net-
work are represented by a specific instantiation of the vari-
ablesSs

1 ,Sd
1 ,Ss

2 ,Sd
2 ,. . . ,Ss

n,Sd
n. In particular, the instantiation

of the pair of nodesSs
i andSd

i , for i := 1 . . . n, represents
the flow from the sourceSs

i to the destinationSd
i inside the

i-th System in the specific path. Similarly, instantiation of
Sd

i andSs
i+1, for i := 1 . . . n− 1 represents the flow among

the thei-th and thei+1-th System in the specific instantiated
path.

Consider for instance the networkN = {A,B} repre-
sented in Figure 2 involving two systems,A andB, with
systemA handling information at level Top-Secret (T ) and
Secret (S), and systemB handling information at level Se-
cret (S) and Confidential (C). We can capture this instance
by using 4 system-node variables:Ss

1 ,Sd
1 ,Ss

2 ,Sd
2 .

System-Node Variable Domains
The domain of each system-node variable defines the set of
possible security levels available on each system. In par-
ticular, eachsourcevariableSs

i contains domain elements
marked withs, and eachdestinationvariableSd

i contains
domain elements marked withd.

The network in Figure 2 has in our model 4 variables
Ss

1 , Sd
1 , Ss

2 , Sd
2 with domainD(Ss

i ) = {T s
A, Ss

A, Ss
B , Cs

B},
with i := 1, 2, and D(Sd

i ) = {T d
A, Sd

A, Sd
B , Cd

B}, with
i := 1, 2.

In general, when the network containsn > 2 systems, we
also need to be able to deal with paths of lengthk < n. To
do this, we need to extend the domain of each system-node
variable,S?

i (where? stands alternatively fors andd), for
anyi > 2, with some artificial elements. More precisely, we
extended the domainD(S?

i )′ = D(S?
i )∪{∗?

1, ∗?
2, . . . , ∗?

i−2}.
These∗ elements are added to deal with paths shorter than
n. This is necessary because solving SCSP requires finding
an assignment for each variable in the SCSP and we may
want to represent paths shorter than the number of nodes in
the network.

Modeling each System
The constraint on each system defines three classes of sys-
tem flows.:
• Flowpermitted represents the information flows permitted

by the policy in each node;
• Flowrisk represents the information flows that are not per-

mitted by the policy, but for which there is a risk of flow
if the system became compromised;

• Flowinvalid represents all the remaining flows which are
not valid (i.e. that are impossible for the given network).
Between each pair of system-node variablesSs

i andSd
i for

each systemi, we define a soft constraint,c(Ss
i ,Sd

i ), that gives
a weight to each possible (permitted or risk) flow within sys-
temi. Various semirings could be used to represent the net-
work and the associated policy. We use the following semir-
ing in this paper, although our results are general and are not
limited to this particular semiring:

Scascade = 〈IN, min, max,+∞, 0〉.
Given this semiring, the constraintc(Ss

i ,Sd
i ) representing the

flow inside systemi is defined as follows:

c(Ss
i ,Sd

i )(s, d) =



accred(Si) (s, d) ∈ Flowrisk

(risk flows)
0 (s, d) ∈ Flowpermitted

(permitted flows)
+∞ otherwise.

(invalid flows)



Recall thataccred(Si) is the accreditation value of System
i. For example, given the MLS policy orderingC ≤ S ≤ T ,
then we have

Flowpermitted = {(T s
A, T d

A), (Ss
A, Sd

A), (Ss
A, T d

A),

(Ss
B , Sd

B), (Cs
B , Cd

B), (Cs
B , Sd

B)}
Flowrisk = {(T s

A, Sd
A), (Ss

B , Cd
B)}

and theFlowinvalid set contains all the remaining tuples.
Since the domain of the variablesS?

i (where ? stands
for s and d) has been extended with the elements
{∗?

1, ∗?
2, . . . , ∗?

i−2}, we have also to consider these “artifi-
cial” values. In particular, we extend the definition of each
constraintc(Ss

i ,Sd
i ) as follows:

c(Ss
i ,Sd

i )(s, d) =


0 (s, d) ∈ {(∗s

1, ∗d
1), . . . , (∗s

i−2, ∗d
i−2)}

(Artificial permitted flows)
+∞ otherwise

(Artificial invalid flows)

Modeling the Network

Flow constraints between systems result in two classes of
network flows.
• Networkpermitted represents information flows permitted

by the connection policy between each system and repre-
sents direct synchronization flows between systems;

• Networkinvalid represents the absence of direct connec-
tion between the systems.
Between each pair of systems,Si and Si+1, we define

a soft constraint,c(Sd
i ,Ss

i+1)
, that defines the possible syn-

chronizations between systemsi andi + 1. Note that these
constraints are defined between the destination system-node
variable of the first system,Sd

i , and the source system-
node variable of the second system,Ss

i+1. The constraint
c(Sd

i ,Ss
i+1)

representing the synchronization flows between
systemi andi + 1 can be defined as follows:

c(Sd
i ,Ss

i+1)
(d, s) =


0 (d, s) ∈ Networkpermitted

(Policy permitted synchronization)
+∞ otherwise.

(invalid synchronization)

For example, constraintNetworkpermitted for Figure 2 is de-
fined as follows.

Networkpermitted = {(Sd
A, Ss

B), (Sd
B , Ss

A)}

Note that the model does not consider assurance risks for
connections: this can be achieved, if desired, by explicitly
modeling the connections by their components (for exam-
ple, a link encryption device) and corresponding assurance
levels.

When connecting systemsSd
i andSs

i+1 it is also necessary
to consider the constraints imposed by the artificial elements
∗?

i . The definition of each constraintc(Sd
i ,Ss

i+1)
is extended

as follows:

c(Sd
i ,Ss

i+1)
(d, s) =



0 (d, s) ∈ {(∗d
1, ∗s

2), . . . , (∗d
i−3, ∗s

i−2)}
∪ {(], ∗s

1)s.t. ] ∈ D(Sd
i )}

(Artificial permitted synchronization)
+∞ otherwise

(Artificial invalid synchronization)

The extension of this constraint is slightly different to the
previous system-level constraints. In particular, it enables
us to model the connection between the last real domain el-
ement in the path and the first∗s

1-element.
In addition to ensuring that systems are configured in

a valid way, we also need to ensure that no two pairs of
system-node variables represent the same system. This en-
sures that our model does not capture cyclic paths. There-
fore, we need to post analldifferent(Regin 1994) constraint
amongst all the variables in the model. Analldifferentcon-
straint ensures that all variables over which it is defined take
on different values.

The solution of the defined Soft CSP,E, that is all the so-
lution with level lower than+∞, represents all of the possi-
ble paths through the system. The semiring level associated
with each path gives a measure of the effort required to com-
promise the network using that specific path.

Detecting Cascade Vulnerabilities
To determine whether or not there exists a cascade vulner-
ability problem, we need to compare the effort required to
compromise the network with the risk of compromising the
system as a whole. Therefore, we introduce a set ofrisk
constraints,R = {r(Ss

1 ,Sd
i )|i ∈ {2, . . . , n}}. The weight of

each instance ofr(Ss
1 ,Sd

i ) represents the risk associated with

the path fromSs
1 to Sd

i . The cost of each tuple in these con-
straints is defined as follows:

r(Ss
1 ,Sd

i )(s, d) =
{

0 if d = ∗d
i ,

risk(s, d) otherwise.

The set of solutions of the soft CSPE (that is the Effort-
CSP defined above) whose associated semiring level is lower
than+∞ represents the set of paths through the network.
The semiring level associated with each solution-path ofE
represents the minimumeffort required to compromise the
network, while the combination of the constraints inR (the
Risk-CSP), gives the risk for all the paths. Therefore, a cas-
cading path can be identified as any pathη where the risk
associated with the path exceeds the effort to compromise it,
i.e. where the following constraint is satisfied:⊗

Rη >
⊗

Eη

Therefore, by adding the above constraint to our constraint
model, the existence of a solution to that model indicates
that here exists a cascading path. Furthermore, the set of so-
lutions provides the set of cascading paths. This provides us
with a basis upon which we can set about removing the cas-
cade vulnerability problem from the network by eliminating
all solutions from the model.



An Example
In this section we encode the network example described in
Figure 2 within the proposed constraints model. Figure 3
depicts the structure of the constraint relationships in this
model. We first present an example of how our model iden-
tifies a cascade-free path, before we present an example of
detecting a cascading path.

Figure 3: A constraint Model Structure.

For the purposes of the examples, the risk lattice is as-
sumed to be as follows:risk(C,S) = risk(C, T ) =
risk(S, T ) = 0, risk(S, C) = 1, risk(T, S) = 2,
risk(T,C) = 3.

Figure 3 presents the structure of the constraint
model for an example from (Fitch & Hoffman
1993). Our model comprises 8 system-node variables,
Ss

1 , Sd
1 , Ss

2 , Sd
2 , Ss

3 , Sd
3 , Ss

4 , andSd
4 , and 3 risk variables,

r(Ss
1 ,Sd

2 ), r(Ss
1 ,Sd

3 )andr(Ss
1 ,Sd

4 ). The domain of each system-

node variable, D(S?
i ), is: {T ?

A, S?
A, T ?

B , S?
B , C?

B , S?
C ,

C?
C , S?

D} (where ? stands alternatively fors and d) and
i := 1, . . . , 4. Note that we also extend each domain using
∗?

i values as described above, but don’t show this here for
conciseness.

A Cascade-free Path
Consider the following path through the network:

η = [Ss
1 := T s

A, Sd
1 := T d

A, Ss
2 := T s

B , Sd
2 := Sd

B ,

Ss
3 := Ss

C , Sd
3 := Cd

C , Ss
4 := ∗s

1, S
d
4 := ∗d

1]
This scenario is illustrated in Figure 4.

Evaluating the cascade detection constraint we get the fol-
lowing, proving that this path is cascade-free:⊗

Rη >
⊗

Eη ≡ 3 > 3 ≡ False

A Cascading Path
Consider the following path through the network, depicted
in Figure 5:

η = [Ss
1 := T s

A, Sd
1 := Sd

A, Ss
2 := Ss

D, Sd
2 := Sd

D,

Ss
3 := Ss

C , Sd
3 := Cd

C , Ss
4 := ∗s

1, S
d
4 := ∗d

1]
Evaluating the cascade detection constraint we get the fol-

lowing, characterizing a cascading path:⊗
Rη >

⊗
Eη ≡ 3 > 2 ≡ True

Figure 4: Cascade-free Path.

Figure 5: Cascading Path.

Eliminating Cascade Vulnerabilities

Clearly, in order to eliminate the cascade vulnerability prob-
lem from an MLS network we need to remove all cascading
paths through it. However, by breaking links (connections)
between systems, the services provided by the network are
affected. Therefore, when eliminating the cascade vulner-
ability problem we require that the number of links to be
broken is minimal.

The set of solutions to the constraint model presented ear-
lier provides all the cascading paths in the network. There-
fore, in order to remove all cascade vulnerabilities from the
network, we need to eliminate all solutions to the constraint
model. Central to our approach to eliminating cascading
paths is the notion of aminimal cascading path.

Definition 1 (Minimal Cascading Path) A minimal cas-
cading path,η, is a path involving a sequence of assign-
ments to system-node variables that is not a sub-sequence of
another cascading path. Note that we ignore the artificial
values∗?

i .



Recall that the set of solutions to the constraint model not
only contains all minimal cascading paths, but also all of
their extensions. Thus, in order to focus attention on the
causes of the cascade vulnerabilities we must limit ourselves
to the set of minimal cascading paths. These can be obtained
from the set of solutions in polynomial-time.

Each minimal cascading path has a very important prop-
erty; namely, that it is sufficient to remove one link on the
path in order to remove the cascading effect associated with
it.

Theorem 1 Given a minimal cascading pathη, removing
any of the links on that path removes the cascading effect
along that path.

Therefore, given the set of minimal cascading paths, we
simply apply the following simple steps in order to remove
the minimal number of links to eliminate the cascade vul-
nerability problem:
1. we maintain a counter for each link involved in the set of

minimal cascading paths we need to remove;
2. we remove the most common link (the link with the high-

est counter), thus removing all minimal cascading paths
involving that link;

3. we update the link counters built in Step 1 to reflect the
effect of reducing the set of minimal cascading paths that
we need to consider;

4. we continue removing links and updating the link coun-
ters until all cascading paths have been removed.
This is a polynomial-time procedure, for which the fol-

lowing can be easily proven:

Theorem 2 (Soundness)The network we obtain from ap-
plying the procedure is cascade free.

Theorem 3 (Optimality) The number of links that are re-
moved from the network is minimal.

Conclusion
In this paper we have presented a new approach to detecting
and eliminating the cascade vulnerability problem in multi-
level secure systems based on soft constraints. These results
demonstrate the usefulness of constraints as a general pur-
pose modeling technique for security.

The approach we present in this paper represents a
paradigm shift in the modeling, detection and elimination
of the cascade problem. In particular, our constraint model
provides a natural and declarative description of an arbitrary
multilevel secure network. Any solution to the model rep-
resents a cascading path, which provides significantly more
information regarding the vulnerabilities in the network than
the existing approaches. The set of solutions to the proposed
constraint model provides a basis for removing the cascade
vulnerability problem. Previous approaches (Fitch & Hoff-
man 1993; Horton & others 1993) detect a single cascading
path in polynomial time, but correcting the cascade in an op-
timal way is NP-complete. As described above, detecting all
paths in the constraint model is NP-complete, however their
optimal elimination is polynomial.

While constraint solving is NP-complete in general, this
has not detracted from its uptake as a practical approach

to solving many real-world problems (Wallace 1996). Us-
ing a constraint model, we can rely on a significant body
of successful techniques for finding the set of cascading
paths, which once found, can be eliminated in polynomial
time. In this paper we explored the cascade vulnerability
problem in the context of inter-operating multi-level secure
systems. We expect that it is straightforward to general-
ize these results to cascades within secure inter-operation in
general (Foley 2000; Gong & Qian 1994).

References
Bella, G., and Bistarelli, S. 2001. Soft Constraints for Security
Protocol Analysis: Confidentiality. InProc. of PADL’01, LNCS
1990, 108–122.

Bharadwaj, V., and Baras, J. 2003. Towards automated nego-
tiation of access control policies. InProc. of IEEE Workshop
Policies for Distributed Systems and Networks, 77–80.

Bistarelli, S., and Foley, S. 2003. Analysis of integrity policies
using soft constraints. InProc. of IEEE Workshop Policies for
Distributed Systems and Networks, 77–80.

Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex, T.;
and Verfaillie, G. 1999. Semiring-based CSPs and Valued CSPs:
Frameworks, properties, and comparison.CONSTRAINTS: An
international journal. Kluwer4(3).

Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-based
Constraint Solving and Optimization.JACM44(2):201–236.

Dechter, R. 2003.Constraint Processing. Morgan Kaufmann.

Fitch, J. A., and Hoffman, L. J. 1993. A shortest path network
security model.Computers and Security12(2):169–189.

Foley, S. 2000. Conduit cascades and secure synchronization. In
ACM New Security Paradigms Workshop.

Gong, L., and Qian, X. 1994. The complexity and composability
of secure interoperation. InProceedings of the Symposium on
Security and Privacy, 190–200. Oakland, CA: IEEE Comp. Soc.
Press.

Gritalis, S., and Spinellis, D. 1998. The cascade vulnerabil-
ity problem: The detection problem and a simulated annealing
approach to its correction.Microprocessors and Microsystems
21(10):621–628.

Horton, R., et al. 1993. The cascade vulnerability problem.Jour-
nal of Computer Security2(4):279–290.

Millen, J., and Schwartz, M. 1988. The cascading problem for
interconnected networks. In4th Aerospace Computer Security
Applications Conference, 269–273.

Pierro, A. D.; Hankin, C.; and Wiklicky, H. 2002. On approx-
imate non-interference. InProc. of Workshop on Issues in the
Theory of Security. IFIP WG1.7.

Regin, J.-C. 1994. A filtering algorithm for constraints of differ-
ence in csps. InProceedings AAAI-94, 362–367.

TCSEC. 1985. Computer security requirements – guidance for
applying the department of defense trusted computer system eval-
uation criteria in specific environments. Technical Report CSC-
STD-003-85, National Computer Security Center. Orange Book.

TNI. 1987. Trusted computer system evaluation criteria: Trusted
network interpretation. Technical report, National Computer Se-
curity Center. Red Book.

Wallace, M. 1996. Practical applications of constraint program-
ming. Constraints1(1–2):139–168.


