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1 INTRODUCTION

Real-life problems present several kinds of preferences. In this pa-
per we focus on problems with both positive and negative prefer-
ences, that we callbipolar problems. Although seemingly specular
notions, these two kinds of preferences should be dealt differently to
obtain the desired natural behaviour. In fact, assume, for example, to
have a scenario with two objects A and B. If we like both A and B,
i.e., if we give to A and B positive preferences, then the overall sce-
nario should be more preferred than having just A or B alone, and so
the combination of such a preferences should give an higher positive
preference. Instead, if we dislike both A and B, i.e., if we give to A
and B negative preferences, then the overall scenario should be less
preferred than having just A or B alone and so the combinationof
such a negative preferences should give a lower negative preference.
When dealing with both kinds of preferences, it is natural toexpress
also indifference, which means that we express neither a positive nor
a negative preference over an object. A desired behaviour ofindif-
ference is that, when combined with any preference, it should not
influence the overall preference.

Finally, besides combining positive preferences among them-
selves, and also negative preferences among themselves, wealso
want to be able to combine positive with negative preferences, allow-
ing compensation. For example, if we have a meal with meat (which
we like very much) and wine (which we don’t like), then what should
be the preference of the meal? To know that, we should be able to
compensate the positive preference given to meat with the negative
preference given to wine.

In this paper we start from the soft constraint formalism [2]based
on c-semirings, that models only negative preferences. We then ex-
tend it via a new mathematical structure, which allows to handle posi-
tive preferences as well and we address the issue of the compensation
between positive and negative preferences, studying the properties of
this operation. Parts of this paper have appeared in [3].

2 SOFT CONSTRAINT FORMALISM

A soft constraint [2] is a classical constraint [4] where each instan-
tiation of its variables has an associated value from a (totally or par-
tially ordered) set. This set has two operations, which makes it simi-
lar to a semiring, and is called a c-semiring. A c-semiring isa tuple
(A, +,×,0, 1) where:A is a set and0,1 ∈ A; + is commutative,
associative, idempotent,0 is its unit element, and1 is its absorbing
element;× is associative, commutative, distributes over+, 1 is its
unit element and0 is its absorbing element. Consider the relation≤S

over A such thata ≤S b iff a+ b = b. Then:≤S is a partial order;+
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and× are monotone on≤S ; 0 is its minimum and1 its maximum;
(A,≤S) is a lattice and,∀ a, b ∈ A, a + b = lub(a, b). Moreover,
if × is idempotent, then(A,≤S) is a distributive lattice and× is its
glb. Informally, the relation≤S gives us a way to compare (some of
the) tuples of values and constraints. In fact, when we havea ≤S b,
we will say thatb is better than a.

Given a c-semiringS = (A, +,×,0, 1), a finite setD (the do-
main of the variables), and an ordered set of variablesV , a con-
straint is a pair〈def, con〉 wherecon ⊆ V anddef : D|con| → A.
Therefore, a constraint specifies a set of variables (the ones in con),
and assigns to each tuple of values ofD of these variables an el-
ement ofA. A soft constraint satisfaction problem (SCSP) is just
a set of soft constraints over a set of variables. For example, fuzzy
CSPs [5] and weighted CSPS [2] are SCSPs that can be modeled by
choosing resp. c-semiringsSF CSP = ([0, 1], max,min, 0, 1) and
SWCSP = (ℜ+, min, sum, +∞, 0).

3 NEGATIVE PREFERENCES

The structure we use to model negative preferences is exactly a c-
semiring [2] as described in the previous section. In fact, in a c-
semiring there is an element which acts as indifference, that is 1,
since∀a ∈ A, a × 1 = a, and the combination between negative
preferences goes down in the ordering (in fact,a × b ≤ a, b), that is
a desired property. This interpretation is very natural when consider-
ing, for example, the weighted c-semiring(R+, min, +,+∞, 0). In
fact, in this case the real numbers are costs and thus negative prefer-
ences. The sum of different costs is worse in general w.r.t. the order-
ing induced by the additive operator (that is,min) of the c-semiring.
From now on, we will use a standard c-semiring to model negative
preferences, denoted as:(N, +n,×n,⊥n,⊤n).

4 POSITIVE PREFERENCES

When dealing with positive preferences, we want two main prop-
erties to hold: combination should bring to better preferences, and
indifference should be lower than all the other positive preferences.
A positive preference structure is a tuple(P , +p, ×p, ⊥p, ⊤p) s. t.
P is a set and⊤p, ⊥p∈P ; +p, the additive operator, is commuta-
tive, associative, idempotent, with⊥p as its unit element (∀a ∈ P ,
a+p ⊥p= a) and⊤p as its absorbing element (∀a ∈ P , a +p ⊤p =
⊤p); ×p, the multiplicative operator, is associative, commutative and
distributes over+p (a ×p (b +p c) = (a ×p b) +p (a ×p c)), with
⊥p as its unit element and⊤p as its absorbing element2.

The additive operator of this structure has the same properties as
the corresponding one in c-semirings, and thus it induces a partial
order overP in the usual way:a ≤p b iff a +p b = b. This allows
to prove that+p is monotone (∀a, b, d ∈ P s. t.a ≤p b, a ×p d ≤p

2 In fact, the absorbing nature of⊤p can be derived from the other properties.



b ×p d) and that it is the least upper bound in the lattice(P,≤p)
(∀a, b ∈ P , a ×p b ≥p a +p b ≥p a, b).

On the other hand,×p has different properties w.r.t.×n: the best
element in the ordering(⊤p) is now its absorbing element, while
the worst element(⊥p) is its unit element.⊥p models indifference.
These are exactly the desired properties for the combination and
for indifference w.r.t. positive preferences. An example of a pos-
itive preference structure is(ℜ+,max,sum,0,+∞), where prefer-
ences are positive real numbers aggregated withsum and compared
with max.

5 BIPOLAR PREFERENCE STRUCTURES

For handing both positive and negative preferences we propose to
combine the two structures described in sections 4 and 3 in what
we call abipolar preference structure. A bipolar preference structure
is a tuple(N, P, +,×, ⊥, 2,⊤) where,(P, +|P ,×|P , 2,⊤) is a
positive preference structure;(N, +|N ,×|N ,⊥, 2) is a c-semiring;
+ : (N ∪ P )2 −→ (N ∪ P ) is an operator s. t.an + ap = ap,
∀an ∈ N andap ∈ P ; it induces a partial ordering onN ∪ P :
∀a, b ∈ P ∪ N , a ≤ b iff a + b = b; × : (N ∪ P )2 −→ (N ∪ P )
is a commutative and monotone (∀a, b, c ∈ N ∪ P , if a ≤ b, then
a × c ≤ b × c) operator.

Bipolar preference structures generalize both c-semirings and pos-
itive structures. In fact, when2 = ⊤, we have a c-semiring and,
when2 = ⊥, we have a positive structure. Given the way the or-
dering is induced by+ on N ∪ P , easily, we have⊥≤ 2 ≤ ⊤.
Thus, there is a unique maximum element (that is,⊤), a unique min-
imum element (that is,⊥); the element2 is smaller than any positive
preference and greater than any negative preference, and itis used to
model indifference.

A bipolar preference structure allows to have a richer structure for
one kind of preference, that is common in real-life problems. In fact,
we can have different lattices(P,≤p) and(N,≤n). In the following,
we will write +n instead of+|N and+p instead of+|P . Similarly
for ×n and×p. When× is applied to a pair in(N × P ), we will
sometimes write×np and we will call it compensation operator.

An example of bipolar structure is the tuple (N=[−1, 0], P=[0, 1],
+=max,×, ⊥=−1, 2=0, ⊤=1), where× is such that×p= max,
×n=min and×np=sum. Negative preferences are between -1 and
0, positive preferences between 0 and 1, compensation is sum, and
the order is given by max. In this case× is not associative.

In general, operator× may be not associative. For example, if
⊤×⊥ = c ∈ (N ∪P )−{⊤,⊥} or if there are at least two elements
p ∈ P − {⊤}, n ∈ N − {⊥} s.t. p × n = 2 and×n or ×p is
idempotent, then× is not associative. Since these conditions often
occur in practice, it is not reasonable to require associativity of ×.

The combination of a positive and a negative preference is a pref-
erence which is higher than, or equal to, the negative one andlower
than, or equal to, the positive one.

Possible choices for combining strictly positive with strictly nega-
tive preferences are thus the average, the median, the min orthe max
operator. Moreover, by monotonicity, if⊤ × ⊥ = ⊥, then∀p ∈ P ,
p ×⊥ = ⊥. Similarly, if ⊤×⊥ = ⊤, then∀n ∈ N , n ×⊤ = ⊤.

6 BIPOLAR PREFERENCE PROBLEMS

Once we have defined bipolar preference structures, we can define a
notion of bipolar constraint, which is just a constraint where each as-
signment of values to its variables is associated to one of the elements
in a bipolar preference structure. Given a bipolar preference structure

(N, P, +,×, ⊥, 2,⊤) a finite setD (the domain of the variables),
and an ordered set of variablesV , a constraint is a pair〈def, con〉
wherecon ⊆ V anddef : D|con| → (N ∪ P ).

A bipolar CSP(V, C) is then just a set of variablesV and a set of
bipolar constraintsC overV .

A solution of a bipolar CSP(V, C) is a complete assignment to
all variables inV , says, with an associated preferencepref(s) =
(p1 ×p . . . ×p pk) × (n1 ×n . . . ×n nl), where, fori := 1, . . . , k

pi ∈ P , for j := 1, . . . , l nj ∈ N , and∃〈def, con〉 ∈ C such
that pi = def(s ↓con) or nj = def(s ↓con). A solutions is op-
timal if there is no other solutions′ with pref(s′) > pref(s). In
this definition, the preference of a solutions is obtained by combin-
ing all the positive preferences associated to its projections over the
constraints, combining all the negative preferences associated to its
projections over the constraints, and then, combining the two pref-
erences obtained so far. If× is associative, then other definitions of
solution preference could be used while giving the same result.

7 RELATED AND FUTURE WORK

Bipolar reasoning and preferences have recently attractedsome inter-
est in the AI community. In [1], a bipolar preference model based on
a fuzzy-possibilistic approach is described, but positiveand negative
preferences are kept separate and no compensation is allowed. In [6]
only totally ordered unipolar and bipolar preference scales are used,
while we have presented a way to deal with partially ordered ones.
On totally ordered scales the t-norm and t-conorm of [6] correspond
to×n and×p, while the uninorm of [6], similar to×, is less general
than×, since it is associative.

We plan to adapt constraint propagation and branch and bound
techniques to deal with bipolar problems and we intend to develop
a solver for bipolar CSPs, which should be flexible enough to ac-
commodate for both associative and non-associative compensation
operators. We also intend to consider the presence of uncertainty in
bipolar problems, possibly using possibility theory and todevelop
solving techniques for such scenarios. We also want to generalize
other preference formalisms, such as multicriteria methods and CP-
nets.
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