
Book Title
Book Editors
IOS Press, 2003

1

Retaliation: Can We Live with Flaws?

Giampaolo Bella a,1, Stefano Bistarelli b,2 and Fabio Massacci c,3

a Dipartimento di Matematica e Informatica, Università di Catania, Italy
b Dipartimento di Scienze, Università "G. D’Annunzio" di Pescara, Italy

Istituto di Informatica e Telematica, C.N.R., Pisa, Italy
c Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

Abstract.
Security protocols intend to give their parties reasonable assurance that certain

security properties will protect their communication session. However, the litera-
ture confirms that the protocols may suffer subtle and hidden attacks. Flawed proto-
cols are customarily sent back to the design process, but the costs of reengineering
a deployed protocol may be prohibitive. This paper outlines the concept of retal-
iation: who would steal a sum of money today, should this pose significant risks
of having twice as much stolen back tomorrow? Attacks are always balanced de-
cisions: if an attack can be retaliated, the economics of security may convince us
to live with a flawed protocol. This new perspective requires a new threat model
where any party may decide to subvert the protocol for his own sake, depending
on the risks of retaliation. This threat model, which for example is also suitable
to studying non-repudiation protocols, seems more appropriate than the Dolev-Yao
model to the present technological/social setting.

Keywords. Security, specification techniques, protocol verification, attack, network
security and protection.

1. Introduction

A security protocol is a social behaviour that principals of a distributed system must fol-
low to obtain some important collective benefits in terms of security. For the good prin-
cipals, it is sufficient to state some clear, understandable, and acceptable rules describing
how to execute the security protocol correctly, namely by the book. Because they are
good principals, they will conform to the rules, and behave as the protocol prescribes.
The bad principals, by definition, will not conform to the rules and, rather, will execute
the protocol arbitrarily, that is incorrectly.

Classical research in distributed systems and security starts off exactly from the need
to counter the disruptive behaviour of the bad principals. Research efforts have focused
on designing a protocol so that if the good principals outnumber the bad ones, the col-
lective benefits will be achieved regardless of the bad principals’ behaviours. Another
perspective aims at limiting the bad principals’ profit, regardless of how many or how

1Correspondence to: Giampaolo Bella, Dipartimento di Matematica e Informatica, Università di Catania,
Viale A. Doria 6, I-95125 Catania, ITALY. E-mail: giamp@dmi.unict.it

2E-mail: bista@sci.unich.it
3E-mail: massacci@ing.unitn.it

2 G. Bella et al. / IOS Press Style Sample

smart they are [8]. The general line of research seems towards proving that those who
conform to the protocol are somewhat safeguarded with their own aims. Our contribution
substantially enriches this line.

There has been a stable relation between verification and design. Whenever verifi-
cation denounces an attack, the protocol must go back to the design phase. It generally
tells people that the original design is a complete failure, although it literally only sig-
nifies that it is flawed. These acute considerations lead us to wondering what may hap-
pen after an attack takes place. Can we still get something useful from the protocol or
merely repeated instances of the attack that was just found? We expect to obtain deeper
insights about the entanglements of a protocol by continuing its analysis after an attack
is pinpointed. In other terms, we are crossing a doorstep that usually stops researchers
and sends them to publishing their findings.

Our analysis helps us understand whether it is at all possible to threaten the bad prin-
cipals exactly when they execute the protocol incorrectly. In the real world, a virtuous
behaviour is imposed on people by taking measures of real security such as hardening the
windows against crash. There is a perfect simile with security protocols so far. However,
the real world also relies on countermeasures of security so that the vandals who, despite
the rules, crash the windows are jailed. Our simile flickers here. People balance the ad-
vantages of breaking the law on one side with its consequences on the other side. We
observe that this applies to both the real and the digital world. So, if we convince the pro-
tocol participants to weigh up the benefits of an incorrect execution with the consequent
threats, they would opt to execute the protocol correctly if the threats were heavier.

The essence of retaliation for security protocols has come clear. Let us consider
Lowe’s famous attack to the public-key Needham-Schroeder protocol [10]. The attack
entitles the bad principal to ask for a transfer of money. Would he really steal a sum
of money if the threats that twice as much would consequently be stolen to him were
significant? This kind of analysis opens up the ground to novel, realistic considerations
about security protocols. When an attack is discovered, it is worth studying further to
verify if it can be retaliated. An affirmative conclusion, perhaps supported by appropriate
risk analysis, may let us decide to keep the protocol in use as it stands. If redesign is
costly, retaliation may signify that a flawed protocol can still achieve a sufficient and
stable level of security.

The present paper builds on top of ideas that we informally sketched [3]. The pre-
sentation gains a precise formulation of the novel threat model that supports the notion
of retaliation. Moreover, all definitions are presented formally here. Finally, the novel
concept of out-of-band challenge is advanced. Because each principal minds his own
business with any legal (if he is good) or also illegal (if he is bad) means, he can issue
out-of-band challenge messages to suspect or detect that something dodgy happened.

The organisation of this manuscript is simple. The presentation opens up by trig-
gering the reader’s intuition with an example (§2). Only at that stage are the key formal
elements introduced (§3), and the novel threat model specified (§4). The core of the pa-
per deals with the continuation of protocol analysis after an attack is found (§5). Then,
some hints to protocol verification are given under the new perspective of retaliation (§6).
Finally, some conclusions terminate the paper (§7).

G. Bella et al. / IOS Press Style Sample 3

2. Indirect Retaliation in Needham-Schroeder

The popular public-key protocol due to Needham-Schroeder [12] is a good starting point
to our presentation. The notation can be easily summarised as follows.

• Cryptographic keys are denoted by letter K in general. Each letter may feature a
principal name as a subscript, expressing the principal who knows the key.

• Nonces are denoted by letter N . Each letter may feature a principal name as a
subscript, expressing the principal who invented the nonce.

• The message concatenation operator is denoted by a comma.
• The message encryption operator is denoted by external curly braces featuring the

encryption key as a subscript. This paper only features asymmetric encryption.

Having seen the basic protocol notation, the actual protocol can be found Figure 1.

1. A → B : {|Na, A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A → B : {|Nb|}Kb

Figure 1. The public-key Needham-Schroeder protocol

The goal of this protocol is authentication: at completion of a session initiated by
A with B, principal A should get evidence to have communicated with B and, likewise,
principal B should get evidence to have communicated with A. Assuming that encryp-
tion is perfect and that the nonces are truly random, authentication is achieved here by
exchange of nonces. Upon reception of Na inside message 2, A should be allowed to
conclude that she is interacting with B, the only principal who could retrieve Na from
message 1. In the same fashion, upon reception of Nb inside message 3, B should be
allowed to conclude that he is interacting with A, the only principal who could retrieve
Nb from message 2. However, let us consider Lowe’s attack reported in Figure 2.

1. A → C : {|Na, A|}Kc

1′. C → B : {|Na, A|}Kb

2′. B → A : {|Na,Nb|}Ka

2. C → A : {|Na,Nb|}Ka

3. A → C : {|Nb|}Kc

3′. C → B : {|Nb|}Kb

Figure 2. Lowe’s attack to the Needham-Schroeder Protocol

The attack consists in a malicious principal C masquerade as a principal A with a
principal B, after A initiated a session with C. This scenario, which sees C interleave

4 G. Bella et al. / IOS Press Style Sample

two sessions, indicates failure of authentication of A with B, which follows from failure
of confidentiality of Nb. Lowe also reports that, if B is a bank for example, C can steal
money from A’s account by sending a single message (Figure 3). Upon reception of the
two nonces of the session with A, the bank B would honour the request believing it came
from the account holder A. The sender label can be changed at will, and notoriously is
unreliable.

4. C → B : {|Na,Nb, “Transfer £1000 from A’s account to C’s”|}Kb

Figure 3. Completion of Lowe’s attack

A more thorough confidentiality analysis with soft-constraints [2] reveals that, as a
by-product of Lowe’s attack, B has learnt nonce Na , which was invented by A to be
shared with C only. It somewhat counts as a violation of the protocol. On one hand,
it may not seem a major observation, as we already know that the protocol is flawed
and is flawed exactly in terms of confidentiality of the nonces. On the other hand, we
wonder what may happen in practice if B later realises the significance of the nonce he
mysteriously received, and hence decides to take advantage of it. In terms of security
analysis, it is not interesting to study how B could realise that: if one has a key ring with
many keys, he may systematically try them all at the available locks. Rather, the very
consequences of the most pessimistic case that sees B exploit Na are the focus here: B
can also rob the robber by a single message, as described in Figure 4. Upon reception of
the two nonces of the session with C, the bank A would honour the request believing it
came from the account holder C.

4′ B → A : {|Na,Nb, “Transfer £2000 from C’s account to B’s”|}Ka

Figure 4. Retaliating Lowe’s attack

This is a form of indirect retaliation: C robs A through B, hence B robs C through
A. It may turn out to be more or less appealing in practice. Nevertheless, what can be
learnt is that something significant may follow after an attack happens in the first place,
and therefore we should also look beyond protocol attacks. It is something that is made
possible exactly because the first attack took place, so it is not just another attack. Also,
it is imprecise to see this scenario as a classical cascade of attacks because the victim of
the first attack changes in the retaliation attack. The most appropriate connotation indeed
seems to us that of retaliation: because something happens, something else can happen
against that.

A fundamental prerequisite to study this scenario accurately is to allow the principals
to change behaviour from unaware mediator to active attacker, as is the case of B in
the example above, or from victimiser to victim, as is the case of C. It seems that the
classical Dolev-Yao threat model consisting in a super-potent attacker is inappropriate
to the present technological/social setting. Today, each principal may have capacity and
competence to decide to act illegally for his own sake. This change to the threat model is
defined below (§4) but some basic terminology must be introduced first.

G. Bella et al. / IOS Press Style Sample 5

3. Basic terminology

For simplicity, in the following we do not specify a more or less free algebra of mes-
sages, since this is only needed when modelling a specific protocol with a specific formal
method. We only assume one exists, so that messages are elements of this algebra and
can be suitably identified by a number to avoid ambiguity. Following Backes et al. [1]
we uniquely identify each message so that even if a principal takes a message and simply
forwards it to another one, it will be denoted by a different identifier. The underlying
algebra of messages would then tell us that the messages are indeed “equal in content”.
Such a notion can then be used when modelling a specific protocol step.

Definition 1 (Events) An Event is one of the following actions:

• a principal sends a message to another principal; it is denoted by a 4-uple
s (A : A′ → B[#]) mentioning the actual sender A, the alleged sender A′, the
recipient B, and the message number #;

• a principal receives a message; it is denoted by a tuple r (A : #) mentioning the
receiver A and the message number #.

Example 1 Consider the Needham-Schroeder protocol (Figure 1). Its events and mes-
sages can be easily formalised as follows. The event whereby A initiates with B can be
denoted by s (A : A → B[1]); the event whereby B receives the message can be denoted
by r (B : 1); the event whereby some C intercepts the same message can be denoted by
r (C : 1).

Definition 2 (Traces) A Trace T is a list of events formalising a specific network history.
It must respect Lamport’s causality principle and the unique identification of messages
by Backes et al. [1]: each sending event must precede the corresponding receiving event
and each sending event must introduce a message with a new formal identifier.

Example 2 Consider the network history on which Lowe’s attack (Figure 2) takes place.
It can be formalised by the trace:

TLowe =



s (A : A → C[1]) , r (C : 1) ,

s (C : A → B[1′]) , r (B : 1′) ,

s (B : B → A[2′]) , r (C : 2′) ,

s (C : C → A[2]) , r (A : 2) ,

s (A : A → C[3]) , r (C : 3) ,

s (C : A → B[3′]) , r (B : 3′)


It can be seen that the reception events in TLowe confirm that C learns nonce Nb and B
learns nonce Na .

Definition 3 (Trace Projections and Extensions) A Projection T/A of a trace T over
a set of principals A is the sublist of events in T that are performed by some principal
in A. An Extension T ′ of a trace T is any trace beginning with T . In symbols: T v T ′;
the concatenated trace T1;T2 is such that T1 v T1;T2.

6 G. Bella et al. / IOS Press Style Sample

A remark is necessary about trace projection. Let us suppose that a trace features the
event whereby A sends a message to B. This event certainly belongs to the projection of
the trace over set {A}, but not over the set {B} because reception is not guaranteed in
general. Likewise, if the original trace features the event whereby A receives a message,
this event belongs to projection of the trace over {A}. There is no strong relation between
the projection and extension operators, so that in general T \ {A} 6v T .

Example 3 Consider the trace representing Lowe’s attack. It can be easily projected
over the attacker C as:

TLowe/ {C} =

 s (C : A → B[1′]) , r (C : 2′) ,

s (C : C → A[2]) , r (C : 3) ,

s (C : A → B[3′])


.

Example 4 Consider the example trace:

T ′ = [s (A : A → C[1]) , r (C : 1) , s (C : A → B[1′])]

It follows that T ′ v TLowe, but T ′ /vTLowe/ {C} because A’s sending the first message
does not appear in TLowe/ {C}. Also, TLowe/ {C} /v TLowe.

Classical security terms such as spoofing and sniffing can be easily defined formally
using the notion of trace. A principal spoofs a message on a trace if the trace features an
event in which the actual sender is different from the alleged sender. A principal inter-
cepts a message meant for someone else on a trace if the trace features an event whereby
the principal receives the message but no event whereby the intended recipient of the
message receives it. If a trace on which an interception event takes place is extended with
the event whereby the intended recipient of the intercepted message actually receives
it, then the interception event should be more correctly addressed as a sniffing event. It
means that these notions only make sense exactly with respect to a trace and precisely to
the very trace under consideration. By contrast, they are pointless on their own.

A formal protocol model generically is the set of all possible traces induced by
the protocol. It can be defined in the formal model of choice (CSP [15], Inductive
Method [13], Strand Spaces [17], etc). It is denoted by (variants of) the Greek letter Π.

4. A New Threat Model

A subtler classification of principals than the classical spy/non-spy one is needed. Our
interest is in a social taxonomy reflecting whether the principals behave legally or not,
rather than in notions such as initiator or responder. The taxonomy is taken as a threat
model for the security considerations that follow.

Definition 4 (BUG Threat Model) The BUG threat model partitions the principals ac-
cording to three, disjoint, social behaviours: the bad, the good and the ugly principals.
These are defined as follows:

G. Bella et al. / IOS Press Style Sample 7

Bad principals are attempting to break the protocol for their own illegal benefits. They
may or may not collude with each other. They are denoted by (variants of) the
calligraphic letter B.

Ugly principals are acting with no precise social/legal commitment: they may follow the
protocol and may, deliberately or not, let the bad principals exploit them. They are
denoted by (variants of) the calligraphic letter U .

Good principals follow the protocol rules, and are exactly those who should enjoy the
protocol goals exactly by conforming to its rules. They are denoted by (variants
of) the calligraphic letter G.

Our taxonomy is both similar to and different from the Dolev-Yao [7] simple classi-
fication of principals. It is similar in the admission that someone can act illegally. We are
however accounting for a set of bad principals rather than for a single spy, signifying that
more than one principal may want to subvert the protocol. Crucially, each bad principal
may want to act by himself, as it is realistic nowadays. By contrast, the Dolev-Yao spy
is the logical product of any set of colluding principals, as it was more realistic decades
ago when computer networks were rare.

A distinction is necessary between good/bad and ugly participants because we want
to discuss what happens after an attack. It is important to identify the participants who
should have benefited from the protocol goals (the good), the participants who actually
benefited from the flaw (the bad) and finally those who took part in the session and
indeliberately contributed to the flaw (the ugly). Because the principals can change role,
for example from good to bad, by performing some event, the taxonomy depends on
the specific trace under consideration. This relation requires further specification, but for
simplicity it is sufficient to clarify that if a specific partition (of the principals into the
roles) underlies a trace, another partition can underly an extension of the given trace.

In the original Dolev-Yao model, and in some later more complicated incarnation
such as the Bellare-Rogaway [4] model, the ugly and the bad were grouped together: the
intruder can use as oracle any stage of the protocol. However this does not distinguish
who gained from the protocol failure. But such a clear distinction is always present in
the informal description of an attack in a research paper: sentences such as "and thus
A can impersonate B", "C can learn M" etc. mark exactly the notion of who is gaining.
However, to impersonate Bob, it might be the case that Alice needs to exploit Ive’s par-
ticipation in the protocol, in which case Ive would be playing, deliberately or not, the
role of an ugly principal.

Before moving on to a formal example, we assume the existence of a predicate over
a protocol trace that evaluates to true if the trace contains an attack according to some
suitable definition. The predicate takes as parameters also the specific social behaviours
of the principals on that trace: A(T ,B,U ,G). Clearly, additional predicates can be intro-
duced formalising specific attacks, but we can do with one for the sake of presentation.

Example 5 Consider Lowe’s attack (Figure 2) to the Needham-Schroeder protocol and
the trace TLowe (Example 2) formalising it. On this trace it can be observed that: C is
the subject of the attack, the attacker; A is just playing by the rules with no deliberate
commitment; B is the object of the attack, the victim. So, we define:

• B = {C}
• U = {A}

8 G. Bella et al. / IOS Press Style Sample

• G = {B}

It follows that A(TLowe,B,U ,G) holds.

Example 6 Consider the completion of Lowe’s attack (Figure 3). It can be formalised as
an extension of the trace TLowe (Example 2) as:

T1 = TLowe; [s (C : A → B[4]) , r (B : 4)]

On this trace it can be observed that: C is the subject of the attack, the attacker; B is
just playing by the rules with no deliberate commitment; A is the object of the attack, the
victim. So, we define:

• B1 = {C}
• U1 = {B}
• G1 = {A}

It follows that A(T1,B1,U1,G1) holds.

The two previous examples show that the social roles that the agents play vary from
the trace TLowe formalising Lowe’s attack, to the trace T1 formalising its completion
with the illegal money transfer. It is clear that, while Lowe’s attack directly impacts B,
the consequent theft impacts A.

Example 7 Consider our continuation of Lowe’s complete attack (Figure 4). It can be
formalised as an extension of the trace T1 (Example 6) as:

T2 = T1; [s (B : C → A[4′]) ; r (A : 4′)]

On this trace it can be observed that: B is the subject of the attack, the attacker; A is
just playing by the rules with no deliberate commitment; C is the object of the attack, the
victim. So, we define:

• B2 = {B}
• U2 = {A}
• G2 = {C}

It follows that A(T2,B2,U2,G2) holds.

5. Beyond Protocol Attacks

Before going beyond protocol attacks, we provide a classical formal definition of proto-
col vulnerability.

Definition 5 (Vulnerability) A protocol Π is vulnerable to an attack A that is mounted
by the principals in B exploiting those in U against those in G if there exists a protocol
trace T that features A mounted by B exploiting U against G (Figure 5).

Definition 5 is formalised in Figure 5, where a suitable predicate representing vul-
nerability is introduced as a function of the protocol, the attack and the principals’ be-
haviours. Building on top of this definition we will characterise the subtler notion of
retaliation.

G. Bella et al. / IOS Press Style Sample 9

Vulnerability(Π, A, B, U , G) ≡
∃ T . T ∈ Π ∧ A(T ,B,U ,G)

Figure 5. Defining Protocol Vulnerability formally

5.1. Retaliation

What is the essence of retaliation? Should a principal cheat, he can be cheated back. It
is therefore not obvious whether the principal will choose to cheat. A positive decision
requires the absence of unbearable hazards. Clearly, retaliation is meaningful if hitting
back is a meaningful property in the context of the given protocol. As the bad principals
are protocol participants, namely insiders, we can assume that they want to reap the ben-
efits of the protocol (such as authentication), plus any additional benefits they may obtain
by misbehaving. These latter benefits should be balanced with the threats of being hit
back. Designing a protocol so as to increase those threats will simply produce a stronger
protocol.

Definition 6 (Retaliation) A protocol Π allows retaliation of an attack A that is mounted
by the principals in B exploiting those in U against those in G if, for every protocol trace
that features A mounted by B exploiting U against G, there exists an extension of the trace
featuring A mounted by some B′ exploiting some U ′ against some G′. The principals in
B change their role in the extended trace; vice versa, those in B′ did not play the same
role in the original trace. If B′ = G and B = G′, then Π allows direct retaliation, else Π
allows indirect retaliation.

Clearly, direct retaliation is the most intuitive form of retaliation, which sees the good
and the bad principals exactly switch their roles. However, our examples have shown
that more articulated forms of the property, such as indirect retaliation, are possible.
Definition 6 is formalised in Figure 6, where a suitable predicate representing retaliation
is introduced as function of the protocol, the attack and the principals’ behaviours. The
intuition is that each time there is an attack, some additional event may take place to
retaliate, that is to attack the initial attackers. This typically involves some principals’
changing their social behaviour. The formal definition in the figure confirms the change
of roles: those who are now bad, the B′, are a subset of those who were either ugly or
good; those who were bad, the B, are a subset of those who are currently either ugly or
good.

Retaliation(Π, A, B, U , G) ≡
∀ T . T ∈ Π ∧ A(T ,B,U ,G) →

(∃ T ′,B’,U’,G’. T ′ ∈ Π ∧ T v T ′ ∧ B′ ⊆ U ∪ G ∧ B ⊆ U ′ ∪ G′ ∧
A(T ′,B’,U’,G’))

Figure 6. Defining Retaliation formally

10 G. Bella et al. / IOS Press Style Sample

5.2. Suspicion and Detection

In the previous section we introduced the definitions of protocol vulnerability and retalia-
tion. These were given in terms of a global view of the traces of events, a god-centric per-
spective. Equivalent principal-centric versions are of little significance because an attack
is by its definition undetectable by its target principal.

However, a principal-centric perspective is possible if we envisage some empirical
control event that principals can perform outside the protocol, which we call out-of-band
challenge. The principals can easily use this method to check whether something fishy
happened during the protocol.

The protocol responder can use the out-of-band challenge to raise his suspicion that
something went wrong. Precisely, suspicion means that a good principal suspects that an
attack was attempted, but has no clue on the possible attacker. In our example protocol,
this can be achieved by a suitable message, as in Figure 7. Principal B is attempting a

B → A: {|Na,Nb, “Transfer £1 from B’s account to B’s”|}Ka

Figure 7. B’s challenge for suspicion

dull money transfer either within his own account or between two of his accounts. Notice
that the amount is meaningless here — it may be 0 or another irrelevant value. Principal
B can verify from his bank statement if the transfer went through. If this is affirmative,
B gets a confirmation that A acknowledges the pair Na,Nb with him. Otherwise, B
learns that his session with A was somewhat compromised by someone, exactly because
A does not acknowledge the pair of nonces.

The challenge for suspicion can be made stronger, indeed becoming a challenge for
detection. In our example protocol, this can be achieved by a suitable set of messages,
as in Figure 8. Principal B is again attempting a dull money transfer from any account

∀X. B → A : {|Na,Nb, “Transfer £1 from X’s account to B’s”|}Ka

Figure 8. B’s challenge for detection

holder onto his own. Principal B can verify from his bank statement for which principal
X his attempt went through. This means that A associated the pair Na,Nb to X rather
than to B. In consequence, B detects that X acted as a bad principal between A and B:
the protocol admits a trace modelling this social behaviour.

After detection, B has sufficient evidence against the attacker, so he can draw a
balance between two alternatives: either sue the attacker or retaliate against him.

6. Implications for Formal Protocol Verification

Classical properties such as authentication have been vastly analysed. Can we formally
analyse properties such as retaliation? From a theoretical standpoint there is not a big

G. Bella et al. / IOS Press Style Sample 11

difference. We have casted our properties as properties of traces because almost all re-
search in tool-supported security verification is based on defining the protocol goals as
properties of traces [9,10,11,13,14,15,6] or fragments thereof [5,16].

The key observation is that the emphasis in the traditional work on security verifica-
tion was on finding attacks or showing that no attack existed. This was reflected on for-
mal models by the nature of the checked properties, which were essentially of existential
nature: is there a trace T in the protocol Π such that A holds on T? Here, T , Π, and A
can be complicated at will. Indeed, A as a formally defined property can be extremely
complicated, for instance including arithmetical constraints on the number of events and
arbitrarily many quantifiers. Theorem-proving fellows wished to prove that no such trace
existed, while model-checking fans longed for a witness of its existence.

Our properties are much more complex, as they feature at least two quantifiers over
a single trace, and we may also expect quantifier alternation. Lifting one’s pet theory of
authentication to our framework appears to be simple. Lifting the automatic tool support
will be the real challenge.

7. Conclusions

Our account is motivated by the novel settings in which security protocols are executed
nowadays, significantly different from settings dating back to nearly three decades ago.
Security protocols, whose use was typically appanage of 007s to protect their communi-
cations from the rest of the world during espionage missions, have now become accessi-
ble to a huge international community. The threat model has indeed changed. It is now
perfectly realistic to even conceive that each principal may want to attack (whatever this
means in a context) everyone else — on-line auctions in particular and e-commerce in
general come as examples. Also non-repudiation protocols assume that everyone trusts
no-one else.

The good principals were expected in the taxonomy, but the ugly principals perhaps
not. The identification of this social behaviour brings forward another new concept: prin-
cipals cannot and should not be constrained to be playing a single social behaviour for-
ever. Imposing such a constraint would limit formal analysis significantly in scope. More
precisely, given a trace of events representing participation in a protocol, the social be-
haviours played by each principal can be easily identified, but they may vary in a differ-
ent trace, such as an extension of the original trace. More simplistically, we could even
see all principals as ugly, who turn out to behave as good or as bad according to specific
circumstances.

This paper has formalised the notion of retaliation in the context of security proto-
cols. If an attack is discovered, it is worth investigating whether it can be retaliated. If yes,
risk analysis may lean towards keeping the protocol in use. This perspective advances on
the long-established practice of going back to redesign soon after one attack. An attack
signifies a flaw, not necessarily a complete failure. Also the notions of suspicion and de-
tection appear to have never been spelled out explicitly. They are adequately supported
by the new threat model. It seems fair to conclude that the path to a new, important niche
of protocol verification has just been drawn.

12 G. Bella et al. / IOS Press Style Sample

Acknowledgements

Giampaolo Bella was partially supported by the Italian MIUR and AIVE S.p.A project
"Extended Logistics". Stefano Bistarelli was partially supported by the Italian PRIN
project "Vincoli e preferenze come formalismo unificante per l’analisi di sistemi infor-
matici e la soluzione di problemi reali". Fabio Massacci was partially supported by the
FIRB "Security" and IST-FET-IP "Sensoria" projects.

References

[1] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations (extended abstract). In Proceedings of 10th ACM Conference on Computer and
Communications Security (CCS), pages 220–230. ACM Press and Addison Wesley, 2003.

[2] G. Bella and S. Bistarelli. Soft constraint programming to analysing security protocols. Jour-
nal of Theory and Practice of Logic Programming, 4(5):1–28, 2004.

[3] G. Bella, S. Bistarelli, and F. Massacci. A protocol’s life after attacks. In Proc. of the 11th
Security Protocols Workshop (SPW’03), LNCS 3364, pages 3–18. Springer-Verlag, 2005.

[4] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution — the Three Party
Case. In Proceedings of the 27th ACM SIGACT Symposium on Theory of Computing
(STOC’95), pages 57–66. ACM Press and Addison Wesley, 1995.

[5] L. Carlucci Aiello and F. Massacci. Verifying security protocols as planning in logic pro-
gramming. ACM Transactions on Computational Logic, 2(4):542–580, 2001.

[6] E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with brutus. ACM Trans.
Softw. Eng. Methodol., 9(4):443–487, 2000.

[7] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Infor-
mation Theory, 2(29), 1983.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. The MIT
Press, 1995.

[9] R. Kemmerer, C. Meadows, and J. Millen. Three system for cryptographic protocol analysis.
Journal of Cryptology, 7(2):79–130, 1994.

[10] G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication Protocol. Infor-
mation Processing Letters, 56(3):131–133, 1995.

[11] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using
Murphi. In Proceedings of the 16th IEEE Symposium on Security and Privacy, pages 141–
151. IEEE Computer Society Press, 1997.

[12] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

[13] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, 6:85–128, 1998.

[14] F. R. and R. Gorrieri. The compositional security checker: A tool for the verification of infor-
mation flow security properties. IEEE Transactions on Software Engineering, 23(9):550–571,
1997.

[15] S. Schneider. Security properties and CSP. In Proceedings of the 15th IEEE Symposium on
Security and Privacy, pages 174–187. IEEE Computer Society Press, 1996.

[16] D. Song. Athena: An automatic checker for security protocol analysis. In Proceedings of the
12th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press, 1999.

[17] F. Thayer Fabrega, J. Herzog, and J. Guttman. Honest ideals on strand spaces. In Proceedings
of the 11th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press,
1998.

