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Abstract

We suggest a formal model to represent and solve the multicast routing problem in multicast networks. To
attain this, we model the network adapting it to a weighted and-or graph, where the weight on a connector
corresponds to the cost of sending a packet on the network link modelled by that connector. Then, we
use the Soft Constraint Logic Programming (SCLP) framework as a convenient declarative programming
environment in which to specify related problems. In particular, we show how the semantics of an SCLP
program computes the best tree in the corresponding and-or graph: this result can be adopted to find, from
a given source node, the multicast distribution tree having minimum cost and reaching all the destination
nodes of the multicast communication. The costs on the connectors can be described also as vectors (multi-
dimensional costs), each component representing a different Quality of Service metric value. Therefore, the
construction of the best tree may involve a set of criteria, all of which are to be optimized (multi-criteria
problem), e.g. maximum global bandwidth and minimum delay that can be experienced on a single link.
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1 Motivation and main idea

Multicast is an important bandwidth-conserving technology that reduces traffic
by simultaneously delivering a single stream of information to multiple receivers.
Therefore, while saving resources, multicast is well suited to concurrently distribute
contents on behalf of applications asking for a certain timeliness of delivery: thus,
multicast routing has naturally been extended to guarantee Quality of Service (QoS)
requirements [22].

In this paper we suggest a formal model to represent and solve the multicast
routing problem in multicast networks with QoS. For the representation we use
and-or graphs [15] to model the network and SCLP programs [2,4,12] on the graphs
to compute the best tree according to QoS criteria.

Given a multicast group of receiver nodes and a set of optimization objective
functions, the multicast routing problem is the process of building a multicast tree
that optimizes these functions, often expressing the aim of minimizing the cost of
the tree. If we are dealing with QoS requirements, a set of constraints is also given:
constraints are in the form of, for example, end-to-end delay bounds, jitter bound,
minimum bandwidth of the path or other QoS metrics. The resulting multicast tree
must provide both reachability from source to all destinations, and satisfy the QoS
constraints.

First, we will describe how to represent a network configuration in its corre-
sponding and-or graph, mapping network nodes to and-or graph nodes and links
to graph connectors. QoS link costs will be translated into costs for the connectors.
Generally, and-or graphs are used to model problem solving processes, and together
with minimum cost solution graphs have been studied extensively in artificial intel-
ligence [19].

Afterwards, we will propose the Soft Constraint Logic Programming (SCLP)
framework [2,4,12] as a convenient declarative programming environment in which
to specify and solve such problem. SCLP programs are an extension of usual Con-
straint Logic Programming (CLP) [14] programs where logic programming is used
in conjunction with soft constraints, that is, constraints which can be satisfied at
a certain level. In particular, we will show how to represent an and-or graph as
an SCLP program, and how the semantics of such a program computes the best
tree in the corresponding weighted and-or graph. Therefore, the best tree found
in this way, can be used to shape the optimized multicast tree that ensures QoS
requirements on the corresponding network.

Since several QoS parameters express the cost of a link at the same time, this
problem can be addressed as a multi-criteria problem [6], where the combination
of the costs is done via an operator which is more general than the usual sum of
the link weights. This extension can be easily cast within the SCLP programming
framework, because it is based on the general structure of a semiring with two
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operations (× and +). Then, × is used to combine the costs, while the partial order
defined by + operation (see Section 4), is used to compare the costs.

The work presented and suggested in this paper extends some results on shortest
path problems presented in [5] and [6]. In these two works, the main idea concerned
the use of non-linear clauses in SCLP, that is, clauses which have more than one atom
in their body. In this paper, we use instead clauses closer to logic programming,
and we represent trees instead of paths. Related formal approaches dealing with
QoS, e.g. [18] and [13], adopt a hypergraph model in joint with semirings too, but
the minimal path between two nodes (thus, not over an entire tree) is computed via
a graphical calculous instead of SCLP.

This paper is organized as follows: in Sec. 2 we present some general background
information about multicast routing, including also its QoS extensions, then in Sec. 3
we describe the problem of finding the best weighted tree in an and-or graph.
Section 4 features the SCLP framework, while Sec. 5 depicts how to represent a
network environment with an and-or graph. At last, in Sec. 6 we describe the way
to pass from and-or graphs to SCLP programs, showing that the semantic of SCLP
program is able to compute the best tree in the corresponding and-or graph. This
tree represents the solution: the multicast tree that optimizes QoS requirements.
Section 7 draws the final conclusions and outlines intentions for future works.

2 Multicast Routing with QoS extensions

Given a node generating packets, we can classify network data delivery schemas
into three main types: i) Unicast, when data is delivered from one sender to one
specific recipient, providing one-to-one delivery, ii) Broadcast, when data is instead
delivered to all hosts, providing one-to-all delivery, and finally, iii) Multicast, when
data is delivered to all the selected hosts that have expressed interest; thus, this
last method provides one-to-many delivery.

In this paper we concentrate on the third paradigm, since our intention is to
provide a solution to the problem of transmitting a data packet from one source
to K receivers. In its simplest implementation, multicast can be provided using
multiple unicast transmissions, but with this solution, the same packet can traverse
the same link multiple times. For this reason, the network must provide this service
natively.

A multicast address is also called a multicast group address, with which the
routers can locate and send packets to all the members in the group. A group
member is a host that expresses interest in receiving packets sent to a specific
group address. A group member is also sometimes called a receiver or a listener. A
multicast source is a host that sends packets with the destination address set to a
multicast group. To deliver data only to interested parties, routers in the network
build a multicast (or distribution) tree (Figure 1). Each subnetwork that contains
at least one interested listener is a leaf on the tree. Where the tree branches, routers
replicate the data and send a single packet down each branch. No link ever carries
a duplicate flow of packets, since packets are replicated in the network only at the
point where paths diverge, reducing the global traffic.

Applications that take advantage of multicast routing include, for example, video
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Fig. 1. An example of a multicast distribution tree built on a network: oriented arcs highlight the tree
(direction is down stream), while dashed lines correspond to links not traversed by the flow.

conference, corporate communications, distance learning, distributed simulation,
resource discovery, software distribution, stock quotes, news and also entertainment
applications such as, video-on-demand, games, interactive chatlines and internet
jukebox.

Since many applications that need multicast distribution also require a certain
timeliness of delivery (real-time applications), multicast routing has been clearly
extended to include and guarantee QoS requirements; a global picture of QoS is
given in [24]. In this case, the Constraint-Based multicast routing, the problem
is to find the best distribution tree with respect to certain performance related
constraints, to better utilize network resources and to support QoS requirements
of the applications. Constraint-Based Routing (CBR) denotes a class of routing
algorithms that base path selection decisions on a set of requirements or constraints,
in addition to the destination: constraints can be imposed by administrative policies,
or by QoS needs [25]. The other intent of CBR is to increase the utilization of the
network (CBR is a tool for Traffic Engineering [24,25]), and is a part of the global
framework that provide Internet QoS [24].

Multicast problem has been studied with several algorithms and variants, such
as Shortest-Path Tree (SPT), Minimum Spanning Tree (MST), Steiner Tree (ST),
Constrained Steiner Tree (CST), and other miscellaneous trees [22]. Algorithms
based on SPT (e.g. Dijkstra or Bellman-Ford [11]) aim to minimize the sum of the
weights on the links from the source to each receiver, and if all the link cost one unit,
the resulting tree is the least-hop one. The MST (e.g. Prim algorithm [11]) spans
all the receivers in the multicast group, minimizing the total weight of the tree at
the same time; at each step, the tree is augmented with an edge that contributes the
minimum amount possible to the total cost of the tree, so the algorithm is greedy. A
ST [23] is a tree which spans a given subset of vertices in the graph with the minimal
total distance on its edges. If the subset matches the entire multicast group, ST
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problem reduces to the MST problem. ST has been extended to CST, including side
constraints concerning QoS metrics. ST and CST are NP-Complete problems [23],
and many heuristics have been proposed to efficiently deal with them [22,23].

The most popular solutions to multicast routing involve tree construction. There
are two reasons for basing efficient multicast routes on trees: i) the data can be
transmitted in parallel to the various destinations along the branches of the tree,
and ii) a minimum number of copies of the data are transmitted.

Multicast QoS routing is generally more complex than unicast QoS routing, and
less proposals have been elaborated in this area [25]. With respect to unicast, the
additional complexity stems from the need to support shared and heterogeneous
reservation styles (towards distinct group members) and global admission control
of the distribution flow. Some of the approaches use a Steiner tree formulation [1]
or extend existing algorithm to optimize the delay (MOSPF [17] is the multicast
version of OSPF), while the Delay Variation Multicast Algorithm (DVMA) [21]
computes a multicast tree with both bounded delay and bounded jitter. Also,
delay-bounded and cost-optimized multicast routing can be formulated as a Steiner
tree: an example approach is QoS-aware Multicast Routing Protocol [10] (QMRP).
Other multicast QoS routing algorithms and related problems (entailing stability,
robustness and scalability) are presented in [25], and we did not include them here
for lack of space.

Our solution, described in Section 5 and 6, is instead a formal model based
on a transformation of the network into a corresponding and-or graph and on a
description of the graph via SCLP clauses that can be solved to find multicast trees
over the graph. The solutions are represented by the costs of the trees, in terms of
QoS metric values.

3 And-or Graphs and Best Solution Trees

An and-or graph [15] is defined essentially as a hypergraph. Namely, instead of
arcs connecting pairs of nodes there are hyperarcs connecting an n-tuple of nodes
(n = 1, 2, 3, . . .). Hyperarcs are called connectors and they must be considered as
directed from their first node to all others. Formally an and-or graph is a pair
G = (N, C), where N is a set of nodes and C is a set of connectors

C ⊆ N ×
k⋃

i=0

N i.

Each k-connector (ni0 , ni1 , . . . , nik) is an ordered (k+1)-tuple, where ni0 is the input
node and ni1 , . . . , nik are the k output nodes. We say that ni0 is the predecessor
of ni1 , . . . , nik and these nodes are the successors of ni0 . Note that when C ⊆ N2

we have a usual graph whose arcs are the 1-connectors. Note that there are also
0-connectors, i.e., connectors with one input and no output node.

In Figure 2 we give an example of an and-or graph, whose nodes are n0, . . . , n8.
The 0-connectors are represented as a line ending with a square, whereas k-
connectors (k ≥ 0) are represented as k directed lines connected together. For
instance, (n0, n1) and (n0, n5, n4) are the 1-connector and 2-connector, respectively,
with input node n0. The order of the output nodes (when more than one) in the
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tuple representing the connector is decided by the orientation of the arrow represent-
ing the connector in the and-or graph: i.e. considering the connector (n0, n5, n4) in
Figure 2, the arrow goes from n5 to n4, and thus n5 precedes n4 in the tuple.

An and tree is a special case of an and-or graph, where every node appears
exactly twice in the set of connectors C, once as an input node of some connector,
and once as an output node of some other connector. The only exception is a node
called root which appears only once, as an input node of some connector. The leaves
of an and tree are those nodes which are input nodes of a 0-connector. An example
of an and tree with root n′

2 is given in Fig. 3. Here n′
7, n

′
8 and n′′

8 are leaves.

n7

n6

n5

n4

n2

n0

n1

n8

n3
f 4,8

=2

f 6,7,8
=3

f 5,6=3
f 3,6,5=1

f 0,5,4=2
f 0,1=3

f 1,3=7
f 1,2=3

f 2,3
=1

f 2,5,4=3

f 4,5=2

f 5,7,8
=2

4

3

Fig. 2. A weighted and-or graph problem.

Fig. 3. A minimal cost solution and tree for the graph in Fig. 2, with start node nr = n2.

Given an and-or graph G, an and tree H is a solution tree of G with start node
nr, if there is a function g mapping nodes of H into nodes of G such that:

• the root of H is mapped in nr.
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• if (ni0 , ni1 , . . . , nik) is a connector of H, then (g(ni0), g(ni1), . . . , g(nik)) is a con-
nector of G.

Informally, a solution tree of an and-or graph is analogous to a path of an
ordinary graph. It can be obtained by selecting exactly one outgoing connector for
each node. For instance, the and tree in Fig. 3 is a solution tree of the graph in
Fig. 2 with start node nr = n2, if we let g(n′

2) = n2, g(n′
4) = n4, g(n′

5) = n5, g(n′
7) =

n7, g(n′
8) = n8 and g(n′′

8) = n8. Note that distinct nodes of the tree can be mapped
into the same node of the graph.

The and-or graph in Fig. 2 has a k-adic function over the reals (cost function)
associated with each k-connector, and is therefore defined as functionally weighted
and-or graph. In particular, a constant is associated with each 0-connector. It is
easy to see that if the functionally weighted graph is an and tree H, a cost can be
given to it, just evaluating the functions associated with its connectors. Recursively,
to every subtree of H with root node ni0 , a cost ci0 is given as follows:

• If ni0 is a leaf, then its cost is the associated constant.
• If ni0 is the input node of a connector (ni0 , ni1 , . . . , nik), then its cost is ci0 =

fr(ci1 , . . . , cik) where fr is the function cost associated with the connector, and
ci1 , . . . , cik are the costs of the subtrees rooted at nodes ni1 , . . . , nik .

The general optimization problem can be stated as follows: given a func-
tionally weighted and-or graph, find a minimal cost solution tree with start node
nr. The function used to assign a value to the input node ni0 of a k-connector
(ni0 , ni1 , . . . , nik) is of the form fr(ci1 , . . . , cik) = ar + ci1 + . . . + cik where ar is a
constant associated to the connector and ci1 , . . . , cik are the costs of the subtrees
rooted at nodes ni1 , . . . , nik . Therefore, the cost of the tree in Fig. 3, with root node
n2, is 17.

In the next Sections we will show that this cost function is an instantiation of a
more general one based on the notion of c-semiring [2,3].

4 Soft Constraint Logic Programming

The SCLP framework [2,4,12], is based on the notion of c-semiring introduced
in [3,8]. A c-semiring S is a tuple 〈A,+,×,0,1〉 where A is a set with two special
elements (0,1 ∈ A) and with two operations + and × that satisfy certain properties:
+ is defined over (possibly infinite) sets of elements of A and thus is commutative,
associative, idempotent, it is closed and 0 is its unit element and 1 is its absorbing
element; × is closed, associative, commutative, distributes over +, 1 is its unit
element, and 0 is its absorbing element (for the exhaustive definition, please refer
to [8]).

The + operation defines a partial order ≤S over A such that a ≤S b iff a+b = b;
we say that a ≤S b if b represents a value better than a. Other properties related
to the two operations are that + and × are monotone on ≤S , 0 is its minimum
and 1 its maximum, 〈A,≤S〉 is a complete lattice and + is its lub. Finally, if ×
is idempotent, then + distributes over ×, 〈A,≤S〉 is a complete distributive lattice
and × its glb.

Semiring-based constraint satisfaction problems (SCSPs) are constraint prob-
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lems where each variable instantiation is associated to an element of a c-semiring A

(to be interpreted as a cost, level of preference, . . . ), and constraints are combined
via the × operation and compared via the ≤S ordering. Varying the set A and the
meaning of the + and × operations, we can represent many different kinds of prob-
lems, having features like fuzziness, probability, and optimization. Moreover, in [8]
we have shown that the cartesian product of two c-semirings is another c-semiring,
and this can be fruitfully used to describe multi-criteria constraint satisfaction and
optimization problems.

Constraint Logic Programming [14] extends Logic Programming by replacing
term equalities with constraints and unification with constraint solving. The SCLP
framework extends the classical CLP formalism in order to be able to handle also
SCSP [3,8] problems. In passing from CLP to SCLP languages, we replace classical
constraints with the more general SCSP constraints where we are able to assign a
level of preference to each instantiated constraint (i.e. a ground atom). To do this,
we also modify the notions of interpretation, model, model intersection, and others,
since we have to take into account the semiring operations and not the usual CLP
operations.

The fact that we have to combine several refutation paths when we have a partial
order among the elements of the semiring (instead of a total one), can be fruitfully
used in the context of this paper when we have an and-or graph problem with
incomparable costs associated to the connectors. In fact, in the case of a partial
order, the solution of the problem of finding a best tree should consists of all those
trees whose cost is not “dominated” by others.

Table 1
A simple example of an SCLP program.

s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).
q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

A simple example of an SCLP program over the semiring 〈N, min, +,+∞, 0〉,
where N is the set of non-negative integers and D = {a, b, c}, is represented in
Table 1. The choice of this semiring allows us to represent constraint optimization
problems where the semiring elements are the costs for the instantiated atoms. To
better understand this Table, we briefly recall the SCLP syntax: a program is a set
of clauses and each clause is composed by a head and a body. The head is just an
atom, and the body is either a collection of atoms, or a value of the semiring, or a
special symbol (2) to denote that it is empty. Clauses where the body is empty or
it is just a semiring element are called facts and define predicates which represent
constraints. When the body is empty, we interpret it as having the best semiring
element (that is, 1).

The intuitive meaning of a semiring value like 3 associated to the atom r(a) (in
Table 1) is that r(a) costs 3 units. Thus the set N contains all possible costs, and
the choice of the two operations min and + implies that we intend to minimize
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the sum of the costs. This gives us the possibility to select the atom instantiation
which gives the minimum cost overall. Given a goal like s(x) to this program, the
operational semantics collects both a substitution for x (in this case, x = a) and
also a semiring value (in this case, 2) which represents the minimum cost among the
costs for all derivations for s(x). To find one of these solutions, it starts from the
goal and uses the clauses as usual in logic programming, except that at each step
two items are accumulated and combined with the current state: a substitution and
a semiring value (both provided by the used clause). The combination of these two
items with what is contained in the current goal is done via the usual combination
of substitutions (for the substitution part) and via the multiplicative operation of
the semiring (for the semiring value part), which in this example is +. Thus, in the
example of goal s(X), we get two possible solutions, both with substitution X = a

but with two different semiring values: 2 and 3. Then, the combination of such two
solutions via the min operation give us the semiring value 2.

5 Using and-or Graphs to represent QoS multicast net-
works

In this Section we explain a method to translate the representation of a multicast
network with QoS requirements (Figure 5a) into a corresponding weighted and-
or graph model (Figure 5b). This procedure can be split in three distinct steps,
respectively focusing on the representation of i) network nodes, ii) network links
and iii) link costs in terms of QoS metrics.

Each of the network nodes can be easily cast in the corresponding and-or graphs
as a single graph node: thus, each node in the graph can represent an interconnecting
device (e.g. a router), or a node acting as the source of a multicast communication
(injecting packets in the network), or, finally, a receiver belonging to a multicast
group and participating in the communication. In Sec. 6, when we will look for
the best tree solution, the root of the best and tree will be mapped to the node
representing the source of the multicast communication; in the same way, receivers
will be modelled by the leaves of the resulting and tree. When we translate a
receiver, we add an outgoing 0-connector (Figure 5b), whose meaning (cost) will be
explained below. Suppose that {n0, n1, . . . , n9} in Fig. 5a are the identifiers of the
network nodes.

To model the links, we examine the forward star (f-star) of each node in the
network (i.e. the set of arcs outgoing from a node): we consider the links as oriented,
since the cost of sending packets from node ni to nj can be different from the cost of
sending from nj to ni (one non-oriented link can be easily replaced by two oriented
ones). Supposing that the f-star of node ni includes the arcs (ni, nj), (ni, nk) and
(ni, nz), we translate this f-star by constructing one connector directed from ni to
each of the subsets of destination nodes {j, k, z} (Figure 4), for a total number of
2n − 1 subsets, excluding the emptyset. Thus, all the resulting connectors with ni

as the input node are (ni, nj), (ni, nk), (ni, nz), (ni, nk, nj), (ni, nk, nz), (ni, nj , nz)
and (ni, nj , nk, nz). As already stated in Section 3, in the tuple ordering of the
nodes, the input node is at the first position and the output nodes (when more than
one) follows the orientation of the related arrow in Figure 4.
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To simplify Fig. 4b, arcs linking directly two nodes represent 1-connectors
(ni, nj), (ni, nk) and (ni, nz), while curved oriented lines represent n-connectors
(with n > 1), where the set of their output nodes correspond to the output nodes of
the traversed arcs. With respect to ni, in Fig. 4 we have curved line labelled with
a that correspond to (ni, nk, nj , nz), b to (ni, nk, nj), c to (ni, nj , nz), and, at last,
d to (ni, nk, nz). To have a clear figure, the network links in Fig. 5a are oriented
“towards” the receivers, thus we put only the corresponding connectors in Fig 5b.

Fig. 4. a) the f-star of ni network-node and b) its representation with connectors.

In the example we propose here, we are interested in QoS link-state information
concerning only bandwidth and delay. Therefore, each link of the network can
be labeled with a 2-dimensional cost, for example the pair 〈7, 3〉 tells us that the
maximum bandwidth on that specific link is 70Mbps and the maximum delay is
30msec. In general, we could have a cost expressed with a n-dimensional vector,
where n is the number of metrics to be taken in account while computing the best
distribution tree. Since we want to maintain this link state information even in the
and-or graph, we label the corresponding connector with the same tuple of values
(Figure 5).

In the case when a connector represent more than one network link, its cost is
decided by assembling the costs of the these links with the composition operation
◦, which takes as many n-dimensional vectors as operands, as the number of links
represented by the connector. Naturally, we can instantiate this operation for the
particular types of costs adopted to express QoS: for the example given in this
Section, the result of ◦ is the minimum bandwidth and the highest delay, ergo, the
worst QoS metric values:

◦(〈b1, d1〉, 〈b2, d2〉, . . . , 〈bn, dn〉) −→ 〈min(b1, b2, . . . , bn), max(d1, d2, . . . , dn)〉

The cost of the connector (n1, n3, n4) in Fig. 5b will be 〈7, 3〉, since the costs of
connectors (n1, n3) and (n1, n4) are respectively 〈7, 2〉 and 〈10, 3〉:

◦(〈7, 2〉, 〈10, 3〉) = 〈7, 3〉

To simplify Fig. 5b, we inserted only the costs for the 1-connectors, but the costs
for the other connectors can be easily computed with the ◦ operation, and are all
reported in Table 2.
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So far, we are able to translate an entire network with QoS requirements in a
corresponding and-or weighted graph, but still we need some algebraic framework
to model our preferences for the links to use in the best tree. For this reason,
we use the semiring structure (Sec. 4). An exhaustive explanation of the semiring
framework approach for shortest-distance problems is presented in [16].

For example, if we are interested in maximizing the bandwidth of the distribu-
tion tree, we can use the c-semiring SBandwidth = 〈B ∪ {0, +∞},max, min, 0, +∞〉
(otherwise, we could be interested in minimizing the global bandwidth with 〈B ∪
{0, +∞}, max, min, +∞, 0〉. We can use SDelay = 〈D ∪ {0, +∞},min, max, +∞, 0〉
for the delay, if we need to minimize the maximum delay that can be experienced
on a single link. With this result and the depth of the final tree, we can compute
an upper bound for the end-to-end delay. Elements of B (i.e. the set of bandwidth
values) and D (i.e. the set of delay values) can be obtained by collecting information
about the network configuration, the current traffic state and technical information
about the links. Since the composition of c-semirings is still a c-semiring [8],

SNetwork = 〈〈B ∪ {0, +∞},D ∪ {0, +∞}〉, +′,×′, 〈0, +∞〉, 〈+∞, 0〉〉

where +′ and ×′ correspond to the vectorization of the + and × operations in the
two c-semirings: given b1, b2 ∈ B ∪ {0, +∞} and d1, d2 ∈ D ∪ {0, +∞},

〈b1, d1〉+′ 〈b2, d2〉 = 〈max(b1, b2), min(d1, d2)〉

〈b1, d1〉 ×′ 〈b2, d2〉 = 〈min(b1, b2), max(d1, d2)〉

Clearly, the problem of finding best distribution tree is multi-criteria, since both
bandwidth and delay must be optimized. We consider the criteria as independent
among them, otherwise they can be rephrased to a single criteria. Thus, the mul-
tidimensional costs of the connectors are not elements of a totally ordered set, and
it may be possible to obtain several trees, all of which are not dominated by others,
but which have different incomparable costs.

For each destination node, the costs of its outgoing 0-connector will be always
included in every path reaching the node. As seen in Section 3, a 0-connector has
only one input node but no destination nodes. If we consider a receiver as a plain
node, we can set the cost as the 1 element of the adopted c-semiring (1 is the unit
element for ×), since the costs to reach this node are already totally described by
the other connectors ending in this node: practically, we give highest QoS values
to this 0-connector, infinite bandwidth and null delay. Otherwise we can imagine
a receiver as a more complex subnetwork, and thus we can set the cost of the 0-
connector as the cost needed to finally reach a node in that subnetwork (in case we
do not want, or cannot, show the topology of the subnetwork).

Figure 5 shows the transformation of the network of Fig. 1 into a corresponding
and-or graph. Group members not interested in the communication are not rep-
resented, since the distribution tree does not have to reach them. In Fig. 5a, one
receiver (node n9) has been replaced with a subnetwork, with respect to Fig. 1.
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Fig. 5. A network example and the corresponding and-or graph representation.

6 And-or graphs using SCLP

In this Section, we represent an and-or graph, as the one found in Section 5, with
a program in SCLP. This decision is derived from two important features of this
programming framework: the first is that SCLP is a declarative programming en-
vironment and, thus, is relatively easy to specify a lot of different problems; the
second one is that the c-semiring structure is a very parametric tool where to rep-
resent several and different cost models, with respect to QoS metrics. Using this
framework, we can easily solve the multi-criteria example concerning the multicast
QoS network in Fig. 5b.

As already proposed in [5] and [6], to represent the connectors in SCLP we can
write clauses like c(ni, [nj , nk]) : −〈10, 3〉, stating that the graph has connector from
n0 to nodes nj and nk with a bandwidth cost of 100Mbps and a delay of 30msec.
Other SCLP clauses can properly describe the structure of the tree we desire to
search over the graph.

We chose to represent an and-or graph with a program in CIAO Prolog [9], a sys-
tem that offers a complete Prolog system supporting ISO-Prolog, but, at the same
time its modular design allows both restricting and extending the basic language.
Thus, it allows both to work with subsets of Prolog and to work with programming
extensions implementing functions, higher-order (with predicate abstractions), con-
straints, objects, concurrency, parallel and distributed computations, sockets, inter-
faces to other programming languages (C, Java, Tcl/Tk) and relational databases
and many more.

CIAO Prolog has also a fuzzy extension, but since it does not completely conform
to the semantic of SCLP defined in [4] (due to interpolation in the interval of the
fuzzy set), we decided to use the CIAO operators among constraints (as < and
≤), and to model the × operator of the c-semiring with them. For this reason, we
inserted the cost of the connector in the head of the clauses, differently from SCLP

12



Bistarelli et al

clauses which have the cost in the body of the clause.
As an example, from the weighted and-or graph problem in Fig. 5b we can build

a corresponding CIAO program of Table 2 as follows. We describe the connectors
of the graph with facts like

connector(source node, [list of destination nodes], [link bandwidth, link delay])

e.g., the fact connector(n0, [n2, n3, n4], [3, 6]) represents the connector of the graph
(n0, n1, n2, n3, n4) with bandwidth 30Mbps and delay 60msec. The set of this facts
is highlighted as Connectors in Table 2. In despite of what we declare in Sections 3
and 5, here we choose a different ordering for the nodes in the connector tuples
when we have to write the program clauses: the input node is again (as in the
previous Sections) at the first position of the list representing the connector in the
clause, but in this Section we decide to lexicographically order the output nodes
(i.e., n0 precedes n1, n1 precedes n2 and so on). This decision is dictated by the
resulting simplification in writing the program and the queries, since the ordering
of the nodes can be easily remembered.

The Leaves of Table 2 represent the terminations for the Prolog rules, and their
cost is the cost of the associated 0-connector (a value of 100 (Mbps) represents the
∞ for the bandwidth).

The Aggregators rules, times in Table 2, mimic the × operation of
the c-semiring proposed in Section 5: SNetwork = 〈〈B ∪ {0, +∞},D ∪
{0, +∞}〉, +′,×′, 〈0, +∞〉, 〈+∞, 0〉〉, where ×′ is equal to 〈min, max〉, and +′ is equal
to 〈max, min〉 as defined in Section 5.

At last, the rules 1− 2− 3− 4 of Table 2 describe the structure of the trees we
want to find over the graph. Rule 1 represents a tree of only one leaf node, Rule 2
outlines a tree made of a connector plus a list of sub-trees with root nodes in the
list of the destination nodes of the connector, Rule 3 is the termination for Rule 4,
and Rule 4 is needed to manage the junction of the disjoint sub-trees with roots in
the list [X|Xs]. When we compose connectors and trees (Rule 2 and Rule 4 ), we
use the Aggregators to compose their costs together.

To make the program in Table 2 as readable as possible, we omitted two predi-
cates: the sort predicate, needed to order the elements inside the list of destination-
nodes of connectors and trees (otherwise, the query tree(n0, [n6, n7, n8, n9], [B, D])
and tree(n0, [n9, n7, n8, n6], [B, D]) produce different results), and the intersection
predicate to check that multiple occurrences of the same node do not appear in the
same list of destination nodes, if reachable from different connectors (otherwise, for
example, the tree n0, [n7, n7, n8, n9] can be a valid result).

To solve the and-or graph problem it is enough to perform a query in Prolog
language: for example, if we want to compute the cost of all the trees rooted at n0

and having as leaves the nodes representing the receivers (in this case, {n7, n8}), we
have to perform the query tree(n0, [n6, n7, n8, n9], [B, D]), where B and D variables
will be instantiated with the bandwidth and delay costs of the returned trees. One
of the outputs of the CIAO program for this query corresponds to the cost of the
tree in Fig. 6 (〈2, 5〉), since ×′ computes the minimum bandwidth - maximum delay
of the connectors.
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Table 2
The CIAO program representing all the AND trees over the weighted and-or graph problem in Fig. 5b.

The final cost of the tree obtained with the CIAO program is equivalent to the
one that can be computed using ×′ inside the fr function given in Sec. 3. Starting
from source node n0 and connector (n0, n1) with cost 〈10, 1〉, the cost of the tree
cn0 is

cn0 = fr(cn1) = 〈10, 1〉 ×′ cn1

7 Conclusions

We have described a method to represent and solve the multicast QoS problem
with the combination of and-or graph and SCLP programming: the best tree on
a and-or graph correspond to the best multicast distribution tree modelled by the
graph. The best tree optimizes some objectives regarding QoS performance, e.g.
minimizing the global bandwidth consumption or reducing the delay. The structure
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Fig. 6. One of the multicast distribution tree that can be found with the program in Table 2.

of a c-semiring defines the algebraic framework to model the costs of the links,
and SCLP framework describes and solves the SCSP problem (the best tree) in a
declarative fashion. Since several distinct criteria must be all optimized (the costs
of the arcs include different QoS metric values), the best tree problem belongs to
multi-criteria problem class.

A first future improvement could be the use of Dynamic Programming tech-
niques, for example Memoization, to reduce the exponential explosion during the
search of multicast trees over the graph representing the network. However, in
the future we plan to perform some experiments to directly test the computational
complexity of our framework.

Moreover, we plan to enrich this framework by using Soft Concurrent Constraint
Programming [7] to handle the interactions among the routing devices and the
receivers, and, consequently, we would like to introduce new “soft” operations (e.g.
a retract of a constraint) to release the resources reserved by the multicast receivers,
introducing a non-monotonic evolution of the constraint store.

Future research could address also the remodelling of the best tree due to the
continuous network-state changes, including the requests of multicast group mem-
bers to dynamically join in and leave from the communication, or the modifications
of the QoS metric values on the links, since a network must be efficiently used to
transport multiple flows at the same time.

Even if in this paper we have applied SCLP programs over and-or graph to
find the best multicast distribution tree, the same framework could be used also
to solve problems on decision tables [20], by translating them into and-or graphs,
or even other dynamic programming problems. Decision tables are widely used in
many data processing applications for specifying which action must be taken for
any condition in some exhaustive set. Every condition is characterized by some
combination of the outcomes of a set of condition tests. An important problem is to
derive from a given decision table a decision tree which is optimal in some specified
sense.
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