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1 Dipartimento di Scienze, Università degli Studi “G. d’Annunzio”, Pescara, Italy
{bista,maglio,peretti}@sci.unich.it

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@iit.cnr.it

Abstract. In this paper we use defense trees, an extension of attack
trees with countermeasures, to represent attack scenarios and game the-
ory to detect the most promising actions attacker and defender. On one
side the attacker wants to break the system (with as little efforts as pos-
sible), on the opposite side the defender want to protect it (sustaining
the minimum cost).
As utility function for the attacker and for the defender we consider
economic indexes (like the Return on Investment (ROI) and the Return
on Attack (ROA)). We show how our approach can be used to evaluate
effectiveness and economic profitability of countermeasures as well as
their deterrent effect on attackers, thus providing decision makers with
a useful tool for performing better evaluation of IT security investments
during the risk management process.
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1 Introduction

Security has become today a fundamental part of the enterprise investment. In
fact, more and more cases are reported showing the importance of assuring an
adequate level of protection to the enterprise’s assets.

In order to focus on the real and concrete threats that could affect the enter-
prise’s assets, a risk management process is needed in order to identify, describe
and analyze the possible vulnerabilities that must be eliminated or reduced. The
final goal of the process is to make security managers aware of the possible risks,
and to guide them toward the adoption of a set of countermeasures which bring
the overall risk under an acceptable level.

The determination of the acceptable risk level and the selection of the
best countermeasure is unfortunately not an easy task. There are no standard
methodologies for the process, and often security managers have to decide among
too many alternatives.

To model the attack scenario and the defender possibilities we use defense

trees [1], an extension of attacks trees with countermeasures. The vulnerabilities
are represented as leaf nodes of the tree and are decorated with the counter-
measures able to mitigate the damage of threats using such a vulnerability.
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Moreover, economic indexes are used as labels for countermeasures and attacks.
The Return on Investment (ROI) [18, 17] index gives a measure of the efficacy of
a specific security investment in a countermeasure w.r.t. a specific attack. The
Return on Attack (ROA) [3] is instead an index that is aimed at measuring the
convenience of attacks, by considering the impact of a security solution on the
attacker’s behavior.

The computed ROI and ROA function are then considered as utility functions
(payoffs) in a two player strategic game. On one side the system administrator
wants to protect the system by buying and adopting countermeasures; on the
other side the attacker wants to exploit the vulnerabilities and obtain some profit
by breaking the system.

We solve the games by looking at their Nash equilibria with both pure and
mixed strategies. Our results show that is always worth installing countermea-
sures for the defender; however, it is not true that increasing the number of
countermeasure gives an overall better benefit to the enterprise (as showed in [7]
investing in security measure is not profitable beyond a certain level). This is
not completely surprising, since more and more sophisticated protection may
be accompanied by escalating marginal costs, while the probability that any
given type of protection will be needed (that is, its expected benefit) may re-
main constant. Also interesting is the fact that the strategies of no-attacks and
no-countermeasures is not (unfortunately) a point of equilibrium.

After an introduction to the concepts of security risk management and of
defense trees (Section 2) we study the selection of the most promising counter-
measures by interpreting the scenario as a game with two players: the defender
and the attacker (Section 3). Section 4, instead, shows a realistic example where
the attacker wants to steal information about customers maintained in a server.
Finally, Section 5 summarizes the paper results and sketches some directions for
future work.

2 Security risk management and defense trees

Defending an IT system is hard because many are the risks that can affect each
asset of the system. Organizations need a process that enable to identify, describe
and analyze the possible vulnerability that can be exploited by an adverse indi-
vidual, and identify the security measures necessary to reduce the risks.

In [1] we propose the use of the defense tree (extension of attack trees [15,
16]), an instrument for representing an attack against a system and how it can
be mitigated by a set of countermeasures.
The difference between an attack tree and a defense tree is that the first repre-
sents only the attack strategies that an attacker can perform, while the second
adds the set of countermeasures that can be introduced into the system to mit-
igate the possible damages produced by an attack.

Integrating countermeasures into threat trees, and more generally into di-
rected acyclic graphs, is not new. In the early 90s researchers used ”threat coun-
termeasure diagrams”. One may also see examples of countermeasures in DAGs



in both Nathalie Foster’s thesis [4] and Stuart Schechter’s thesis [14], both of
which include discussions and histories of the evolution of these structures. Even
in the popular Microsoft text by Howard and LeBlanc, ”Writing Secure Code”,
one can find threat trees (another name for attack trees) in which countermea-
sures are integrated [8].

Attack tree
+
Countermeasures

Fig. 1. A defense tree.

Figure 1 shows an example of a defense tree: round nodes form the attack
tree and square nodes represent the corresponding countermeasures. The root
of the tree is associated with an asset of the IT system under consideration and
represents the attacker’s goal. Leaf nodes in the attack tree represent simple
subgoals which lead the attacker to (partially) damage the asset by exploiting
a single vulnerability. Non-leaf nodes (including the tree root) can be of two
different types: or-nodes and and-nodes. Subgoals associated with or-nodes are
completed as soon as any of its child nodes is achieved, while and-nodes represent
subgoals which require all of its child nodes to be completed (in Figure 1 we draw
an horizontal line between the children of an and-node to distinguish it from the
or-node).

We consider defense trees [1] enriched with economic indexes that quantify
the cost of attacks and the return on security investments in any branch of the
tree. We interpret such indexes as utility functions for the system administrator
and for the attacker, by viewing the scenario as a classical game with two player
looking for different and usually opposite results (see Section 3).

In particular we label the tree with:

1. the Return On Investment (ROI) [17] measuring the return that a defender
expects from a security investment over the costs he sustains for counter-
measures. It is calculated with the formula:

ROI =
ALE × RM − CSI

CSI

where:
– the Annualized Loss Expectancy (ALE) [9] measures the expected annual

financial loss which can be ascribed to a threat to the organization. It is
calculated as ALE = AV × EF × ARO, where:



• the Asset Value (AV ) is a measure of the cost of creation, develop-
ment, support, replacement and ownership values of an asset,

• the Exposure Factor (EF ) represents a measure of the magnitude
of loss or impact on the value of an asset arising from a threat (ex-
pressed as a percentage of the asset value),

• the Annualized Rate of Occurrence (ARO) is a number that repre-
sents the estimated number of annual occurrences of a threat.

– the Risk Mitigated by a countermeasure (RM) represents the effective-
ness of a countermeasure in mitigating the risk of loss deriving from
exploiting a vulnerability (RM is a numeric value in [0,1] that measures
the proportion of reduced risk),

– the Cost of Security Investment (CSI) is the cost that an enterprise
sustains for implementing a given countermeasure.

2. the Return On Attack (ROA) [3] measures the gain that an attacker expects
from a successful attack over the losses that he sustains due to the adoption
of security measures by his target. It is calculated as:

ROA =
GI × (1 − RM) − (costa + costac)

costa + costac

where:
– GI is the expected gain from the successful attack on the specified target,
– costa is the cost sustained by the attacker to succeed,
– costac is the additional cost brought by the countermeasure c adopted

by the defender to mitigate the attack a.

We will see in Section 3 that other choices for the utility functions are possible.
For instance we could consider ROI and ROA without dividing the gain by the
costs (CSI and costa + costac respectively), or by considering the damage of an
attack without considering its (often unknown) rate of occurrence (ARO).

3 Defense trees as strategic games

In this section we will show how game theory can be used to analyze the possible
strategies of the system administrator and of the attacker. In our scenario we
consider a strategic game [6] that consists of:

– n players (n is usually just 2, but we plan to extend it to the case of 1
defender and k attackers),

– a set of strategies Si for each player i,
– the utility function (or payoff) ui for each player i.

We consider here the case with n = 2 players: the defender (Bob) and the
attacker (Alice) of a system. The set of defender’s strategies is the set of coun-
termeasures that he can introduce into the systems while the set of attacker’s
strategies is the set of vulnerability that she can exploit. The payoff functions
we will consider are the Return on Investment (ROI) for the defender and the



Return on Attack (ROA) for the attacker. Notice that ROI and ROA represent
normalized payoffs; in some cases a not normalized utility function could be used
instead, that may lead to different equilibrium strategies (because each player is
trying to maximize its return rather than its payoff).
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(a) Defence tree.
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(b) Strategic game.

Fig. 2. Defense tree and the corresponding strategic game (with a pure strategy Nash
Equilibrium).

As an example consider the defense tree depicted in Figure 2(a). It can be
modeled as the strategic game in Figure 2(b), where:

– the players of the game are the defender of the enterprise that can select
actions represented in the rows, and the attacker that can choose possible
attacks (represented as columns in the table),

– the defender’s set of strategies is Sd = {c1, c2, c3}, that consists of the pos-
sible countermeasures that he can enforce to protect the system,

– the attacker’s set of action is Sa = {a1, a2} that represents the two possible
attack strategies (the columns in Figure 2(b));

– the goal of each player is to maximize his/her own payoff function (the
number in each box of Figure 2(b)). The payoffs associated to a strategy
(ci, ai) are ud(ci, ai) for the defender, and ua(ci, ai) for the attacker.

Each player chooses the best available action given his belief about the other
player’s action.

The solution of the game is the (set of) countermeasure that the defender is
more likely to adopt, and the (set of) vulnerability that the attacker feels more
suitable to exploit. In some special cases the best strategy of the attacker and of
the defender converges to a specific action profile s∗ with the property that the
defender cannot do better by choosing an action different from s∗d, given that
the attacker adopt s∗a, and viceversa. In this case we say that the game admits
a Nash Equilibrium [13].

Definition 1 (Nash Equilibrium [6]). In a strategic game with 2 players,

consider the sets S1, S2 and the functions u1, u2 that are the set of possible



strategies and the utility functions of players 1 and 2 respectively. The combina-

tion of strategy (s∗1, s
∗

2) with s∗1 ∈ S1 and s∗2 ∈ S2 is a Nash Equilibrium if and

only if, for each player i, the action s∗i is the best response to the other player:

u1(s
∗

1, s
∗

2) ≥ u1(s1, s
∗

2) for any s1 ∈ S1

u2(s
∗

1, s
∗

2) ≥ u2(s
∗

1, s2) for any s2 ∈ S2

Figure 2(a) shows an example of defense tree where two possible attacks are
represented: a1 and a2. The first one can be mitigated by two countermeasure
c2 and c3, the second one can be mitigated by c1 and c3. Figure 2(b) shows
the corresponding strategic game, where the numbers in the bimatrix are the
payoffs associated to each player (associated as label to the tree as we will see
in Section 3).

Using Definition 1 we can calculate the possible Nash Equilibria of the game.
Notice that if the attacker plays strategy a1 the best response for the defender
is to play the strategies c1 or c2 (by looking at the first column on the left we
can see that he can gain 1 instead of 0), while if the attacker plays strategy a2

the best response is to play the strategies c1 or c3.
Conversely if the defender plays the strategy c1 the best response for the attacker
is play strategy a1, if the defender plays the strategy c2 the best response is to
play strategy a2 and if the defender plays strategy c3 the best response for the
attacker is to play strategies a1 or a2. The game admits two different Nash
Equilibria (the circled payoffs): the couple of strategies {c1, a1} and {c3, a2}.

The Nash Equilibrium represents the best strategies for both the attacker
and the defender (with the hypothesis that neither the attacker nor the defender
have any knowledge of the other). In the case depicted in Figure 2, the defender
will select, if possible, both countermeasure c1 and c3. However if the financial
resources available to the system administrator are limited, only countermeasure
c3 will be selected (because it will cover both strategy of the attacks). In Section 4
a complete more realistic example will be presented where the economic indexes
will be used for the selection.

Sometimes in a strategic game it is impossible to find a Nash Equilibrium.
Moreover we often need to take into account the uncertainty of the player’s
behavior. In this case a player may consider a mixed strategy.

Definition 2 (Mixed strategy [6]). Consider a strategic game with 2 players,

G = {S1, S2;u1, u2} where Si = {si1, . . . , sik} the strategies of player i. A mixed
strategy for player 1 ≤ i ≤ 2 is a probability distribution pi = (pi1, . . . , pik),
where 0 ≤ pik.

In our context the use of mixed strategies finds a justification in the fact that a
player, especially the defender, deals with a single attacker, whose behavior is not
known. He may assume, however, that this players is drawn from a population
of attackers whose actions can be estimated as frequencies from previous attacks
(leading to the notion of repeated games where the players can randomize their
strategies).



What we obtain is shown in Figure 3. The Attacker A can play the strategy
a1 with probability pa1

, and the strategy a2 with probability pa2
, whilst the

Defender D plays the strategy ci with probability pci
, with 1 ≤ i ≤ 3.
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ud(c1,a1),ua(c1,a1)
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ud(c3,a1),ua(c3,a1)

ud(c1,a2),ua(c1,a2)

ud(c2,a2),ua(c2,a2)

ud(c3,a2),ua(c3,a2)

a2

pa1 pa2

Fig. 3. Mixed strategies.

We can compute payoffs in presence of mixed strategies by taking into ac-
count probability distributions and computing expectations. If the defender uses
a pure strategy 3 in response to a mixed strategy of the attacker, the resulting
payoffs for each possible countermeasure ci is:

ud(ci) = ud(ci, a1) × pa1
+ ud(ci, a2) × pa2

If the attacker uses a pure strategy in response of a mixed strategy of the defender
the resulting payoffs for each attack ai is:

ua(ai) = ua(c1, ai) × pc1
+ ua(c2, ai) × pc2

+ ua(c3, ai) × pc3

Definition 3. Given a game with 2 players, and 2 sets of strategies S1 =
{s11, . . . , s1K1

} and S2 = {s21, . . . , s2K2
}, if player i believes that player j will

play the strategies (sj1, . . . , sjKj
) with probability (pj1, . . . , pjKj

), the expected

payoff for player i obtained with the pure strategy sij is:

Kj
∑

k=1

pjkui(sij , sjk)

We can use Definition 3 to solve the game in Figure 2 by using the mixed
strategies. In particular suppose that the defender uses a pure strategy and the
attacker plays a mixed strategy {a1, a2} with probability (pa1

, pa2
) (as shown in

Figure 4). The expected payoff for the defender, if the attacker plays a mixed
strategy are:

1 · pa1
+ 1 · pa2

= pa1
+ pa2

for countermeasure c1

1 · pa1
+ 0 · pa2

= pa1
for countermeasure c2

0 · pa1
+ 1 · pa2

= pa2
for countermeasure c3

3 A pure strategy is a strategy that a player plays with probability 1.
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Fig. 4. Example of mixed strategy.

Conversely, if the attacker uses a pure strategy and the defender plays a mixed
strategy {c1, c2, c3} with probability (pc1

, pc2
, pc3

), the expected payoff for the
defender are:

1 · pc1
+ 1 · pc2

+ 2 · pc3
= pc1

+ pc2
+ 2pc3

for attack a1

0 · pc1
+ 2 · pc2

+ 2 · pc3
= 2pc2

+ 2pc3
for attack a2

Definition 4. If the players 1 and 2 play respectively the strategies (s11, . . . , s1J )
with probability p1 = (p11, . . . , p1J ), and (s21, . . . , s2K) with probability p2 =
(p21, . . . , p2K), the expected payoff for the players are computed as follows:

v1(p1, p2) =

J
∑

j=1

p1j

[ K
∑

k=1

p2ku1(s1j , s2k)

]

=

J
∑

j=1

K
∑

k=1

p1j · p2ku1(s1j , s2k)

v2(p1, p2) =

K
∑

k=1

p2k

[ J
∑

j=1

p1ju2(s1j , s2k)

]

=

J
∑

j=1

K
∑

k=1

p1j · p2ku2(s1j , s2k)

The mixed strategies (p∗1, p
∗

2) are a Nash Equilibrium only if the mixed strategy

for each player is the best response to the mixed strategy of the other player:

v1(p
∗

1, p
∗

2) ≥ v1(p1, p
∗

2) for any p1

v2(p
∗

1, p
∗

2) ≥ v2(p
∗

1, p2) for any p2.

By applying Definition 4 we can now compute the Nash Equilibrium when
the defender and the attacker adopt mixed strategies(Figure 4).

The utility of the defender ud and of the attacker ua are respectively:

ud = 1pc1
pa1

+ 1pc1
pa2

+ 1pc2
pa1

+ 1pc3
pa2

ua = 1pc1
pa1

+ 1pc2
pa1

+ 2pc2
pa2

+ 2pc3
pa1

+ 2pc3
pa2

.

Figure 5 shows an equilibrium with mixed strategy for the game: the defender
plays the strategy c1 with probability 1

2 and c2 with probability 1
2 , the attacker

plays a1 with probability 1.



c1

c2

1
2

c3

1

1
2

a1

1,1

1,1

0,2

1,0

0,2

1,2

a2

Fig. 5. Example of mixed strategy.

4 Using economic indexes as payoffs

In this section we show how to model a security problem by using the results
highlighted in the previous section. An enterprise’s server is used to store infor-
mation about customers. Consider the defense tree depicted in Fig. 6 reflecting
attacks to the server (the asset) and the corresponding mitigation countermea-
sures.
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Fig. 6. Example of defense tree: theft of a server.

In the example we consider a server with a value of 100.000e. The Exposure
Factor (EF) and the Annualized Rate of Occurrence (ARO) of each attack are
shown in Table 1. Notice that associated to the risk management process is the
lack of reliable statistical data to use in a quantitative analysis. In our paper
we use (when available) statistics collected in [12] that combine the information
from two surveys: a magazine survey in Information Week (October 1996) that
asked “What Security Problems have resulted in financial losses?”, and another
magazine survey, in InfoSecurity News May 1997 that asked “In the past 12
months, which of the following breaches have you experienced?”.

We need now to compute ALE for each of the possible attacks. Considering
the first attack of Figure 6 we can notice that for a successful attack we need



Attack EF ARO Countermeasures RM CSI ROI

a1 Break down 90% 0,1 c1 Install a security door 0,7 1500 3.20
the door c2 Install a video surveillance equip. 0,1 3000 -0.70
and go out c3 Employ a security guard 0,5 12000 -0.63
unobserved c4 Install a security lock 0 300 -1

a2 Open the door 93% 0,1 c1 Install a security door 0 1500 -1
with keys c2 Install a video surveillance equip. 0,1 3000 -0.69
and go out c3 Employ a security guard 0,5 12000 -0.61
unobserved c4 Install a security lock 0,2 300 5.20

Table 1. Computation of ROI.

Attack Costa Countermeasures Costac ROA

a1 Break down 4000 c1 Install a security door 2000 0.50
the door c2 Install a video surveillance equipment 1000 4.40
and go out c3 Employ a security guard 1500 1.73
unobserved c4 Install a security lock 0 6.50

a2 Open the door 4200 c1 Install a security door 0 6.14
with keys c2 Install a video surveillance equipment 1000 4.19
and go out c3 Employ a security guard 1500 1.63
unobserved c4 Install a security lock 200 4.45

Table 2. Computation of ROA.

both to break down the door and to go out unobserved. So, the EF and ARO
are associated to the pair of actions (and not to the leaf). We proceed similarly
for the second attack.

The ALE associated to the attack are, respectively, ALE =100.000e×0.9×
0.1 =9.000e and ALE =100.000e×0.93 × 0.1 =9.300e.

The second step is to compute the ROI for each countermeasure by consid-
ering the cost (CSI) and the amount of risk mitigated (RM) of Table 1.Notice
that the countermeasures c1 and c4 have two different RM values: in Figure 6
we can see that c1 is used only to mitigate the attack a1 in this case the value of
RM is 0.7, but if it is used to mitigate the attack a2 the value of decreases to 0.
The same is true for the countermeasure c4, if it is used to mitigate the attack
a2 the value of RM is 0.2 but if it is used for the attack a1 RM is 0.

For the first countermeasure (installing a security door to mitigate the

threat of breaking down a door), we have ROI = (ALE×RM)−CSI

CSI
=

(9.000e×0.7)−1.500e
1.500e = 3.20. Similarly we can compute the ROI for all the other

countermeasure as shown in Table 1.

For ROA we analyze the scenario from the attacker perspective. Let us sup-
pose that the attacker has an advantage that can be economically quantified as
30.000e for a successful attack to the server. By using the data in Table 2 we
compute the ROA for each countermeasure.



Notice that the cost an attacker has to pay depends on the attack and on the
countermeasure installed. In Table 2, for instance, the fixed cost to be sustained
by the attacker from stealing the server is different (4.000e or 4.200e): the
variable costs instead depends on the specific countermeasure (2.000e when
encountering a security door vs 1.000e for a video surveillance installation).

The data in the table are used to compute ROA for all the countermeasures
in the tree. So, for instance when installing a security door we can obtain a

ROA = GI×(1−RM)−(costa+costac)
costa+costac

= 30.000e×(1−0.7)−(4.000e+2.000e)
4.000e+2.000e = 0.50. In a

similar manner we can compute ROA for all the other countermeasures as shown
in Table 2.

The resulting defense tree labeled with ROI and ROA for each countermea-
sure and attack is depicted in Figure 7.
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Fig. 7. The defense tree of Fig. 6 decorated with ROIs and ROAs.

4.1 Selection of a single countermeasure/attack

To model the defense tree as a strategic game we consider the set of strategies for
the defender as composed by single countermeasures as represented in Figure 6.
In a similar manner the strategies for the attacker are just a1 (the left hand side
of the tree) and a2 (the right hand side). The utility functions are the indexes
ROI and ROA introduced in Section 2 as described in the bimatrix of Figure 8.

Now, using Definition 1, we look for a Nash Equilibrium of the game.
From the attacker’s viewpoint: if the defender plays the strategy c1 the best
response of the attacker is to play the strategy a2, if he plays strategies c2, c3

or c4 the best response is strategy a1. Instead, from the defender’s viewpoint: if
the attacker plays strategy a1 the defender’s best response is to play c1, while if
she plays a2 or a3 the defender plays c4.

As consequence there are no Nash Equilibrium with pure strategies. In fact,
our game is similar to a constant sum game where the payoffs of the two players
have opposite rewards. The absence of so-called equilibrium points or saddle



a1 a2
c1 3.20,0.50 -1.00,6.14
c2 -0.70,4.40 -0.69,4.19
c3 -0.63,1.73 -0.61,1.63
c4 -1.00,6.50 5.20,4.45

Fig. 8. Bimatrix for the attacker/defender game with single selection of countermea-
sures/attacks.

points (optimal for all players at once) means that there are no optimal situations
in the sense that they provide to each participant the maximum of what he/she
can get given the acts of the other players.

So there are no stable strategies to follow for the defender and the attacker in
the game. In spite of the absence of a rational choice (some advice can be however
given following other approaches [1]), when the game is repeated many times,
some optimal lines of behavior can be found. To find them one must extend
the analysis to include the adoption of mixed strategies by the players. As the
criterion for the choice of optimal mixed strategies one takes the mathematical
expectation value of the payoff which shows how much one can win on average
by repeating the game many times.

Using Definition 4 (and Gambit [11], a tool for computing equilibria4) we
look for mixed strategy equilibria.

The result is that there is one equilibrium if the defender plays the strategy
c1 with probability 205

769 and c4 with probability 564
769 , and if the attacker plays

the strategy a1 with probability 31
52 and a2 with probability 21

52 . We see that
the probability for the two attacks are pretty close, so the system administrator
cannot consider to reduce the attention to only one of the two branches. More-
over, it seems that the best that a system administrator can do is to invest in
the countermeasure c1 to avoid the first attack and in the countermeasure c4 to
avoid the second attack.

Notice however that this strategy is not so natural; in fact, why not to invest
in countermeasure c3 to be able to partially cover both the attacks? In the
example studied here we do not study indeed the possibility to have both the
attacks occurring simultaneously and to have more then one countermeasure
implemented.

4.2 Selection of set of countermeasures/attacks

In the previous strategic game we considered only one attack/countermeasure
strategy by each players. Here, instead, each player can play any set of counter-
measures/attacks together (but we have also the possibility to select no attack
or countermeasure).

In order to avoid some technical problems (division by 0) when dealing with
empty sets of countermeasures or attacks we change the utility functions for the

4 Available at http://econweb.tamu.edu/gambit/.



two players. We retain the numerator from the old utility functions.

ud = ALE × RM − CSI

ua = GI × (1 − RM) − (costa + costac)

Using the new utility functions we obtain the strategic game of Figure 9.

∅ a1 a2 {a1,a2}
∅ 0, 0 0, 26.000 0, 25.800 0, 21.800

c1 -1.500, 0 4.800, 3.000 -1.500, 25.800 11.310, -1.200
c2 -3.000, 0 -2.100, 22.000 -2.070, 21.800 -1.170, 17.800
c3 -12.000, 0 -7.500, 9.500 -7.350, 9.300 -2.850, 5.300
c4 -300, 0 -300, 26.000 1.560, 19.600 3.360, 15.500

{c1,c2} -4.500, 0 1.800, 2.000 -3.570, 21.800 8.310, -2.200
{c1,c3} -13.500, 0 -7.200, 1.500 -8.850, 9.300 -690, -2.700
{c1,c4} -1.800, 0 4.500, 3.000 60, 18.600 11.010, -1.500
{c2,c3} -15.000, 0 -10.500, 8.500 -10.350, 8.300 -5.850, 4.300
{c2,c4} -3.300, 0 -2.400, 22.000 -1.440, 18.600 360, 14.500
{c3,c4} -12.300, 0 -7.800, 9.500 -7.650, 9.100 -3.150, 5.000

{c1,c2,c3} -16.500, 0 -10.200, 500 -11.850, 8.300 -3.690, -3.700
{c1,c2,c4} -4.800, 0 1.500, 2.000 -2.940, 18.600 8.010, -2.500
{c1,c3,c4} -13.800, 0 -7.500, 1.500 -9.150, 9.100 -990, -3.000
{c2,c3,c4} -15.300, 0 -10.800, 8.500 -10.650, 8.100 -6.150, 4.000

{c1,c2,c3,c4} -16.800, 0 -10.500, 500 -12.150, 8.100 -3.990, -4.000

Fig. 9. Bimatrix for the attacker/defender game with a set selection of countermea-
sures/attacks.

Once again there are no Nash Equilibria with pure strategy, but Gambit
computes a mixed equilibrium where the defender plays the strategy c4 with
probability 39

55 and {c1, c4} with probability 16
55 , and the attacker plays the strat-

egy a1 with probability 5
21 and a2 with probability 16

21 .
As a side result we note that two compound strategies by the attacker, namely

∅ and {a1, a2}, are uniformly dominated by the simple strategies a1 and a2. This
shows that the attacker has no interest in combining the actions together.

5 Conclusions and Future Work

The use of game theory, allow us to model the interaction between the attacker
and the defender: they represent two players with opposite goals. The tactical
choices of each one of the player strictly depends from the moves of the other.
In particular, when an attacker has to select a possible attack for an asset,
he/she has to consider necessarily the possible countermeasure that the defender
have introduced into the system; vice-versa, when a system administrator has
to select which countermeasure introduce in order to protect the system, he has
to consider the possible attacks that the attacker could perform.



Using the Nash Equilibria allow us to model the above situation where at-
tacker and defender need to take some decision. The Nash equilibrium has been
used [10][5] to determine the best move of the two players, by considering the
fix point of the interactions between attacker and defender.

In this paper we first, used defense trees as extension of attack trees with
countermeasures and economic quantitative indexes for modeling attack scenar-
ios. Then such scenarios are analyzed as strategic games. The strategies of the
two players (the defender can select countermeasures and the attacker can choose
among several vulnerabilities to exploit) lead to different payoffs represented as
economic indexes. In particular ROI and ROA are used. The study confirms that
investments beyond a certain level do not produce any beneficial effect after a
certain point are not anymore useful [7] (so, only a subset of the countermeasure
usually has to be considered).

The methodology presented in this paper provides a basis for future work
along several research directions.

While it may seem obvious to compute the solution cost of a set C = {c1, c2}
of countermeasures as the sum CSIC = CSIc1

+CSIc2
of the costs of the single

countermeasures in C, it should be noticed that the total cost of implementing
a set of countermeasures could realistically be less than CSIC (e.g. discounted
price of bundled security solutions) or greater than CSIC (e.g. when countermea-
sures must be managed by different employees, due to the existence of separation
of duty constraints [2]).

On the other hand, it is not clear how to compute the value of the Risk
Mitigated attribute for a set of countermeasures {c1, c2}, as any value be-
tween max(RMc1

, RMc2
) (one countermeasure strictly entails the other) and

(RMc1
+ RMc2

) (completely independent countermeasures) appears to be ac-
ceptable depending on the type and nature of countermeasures and the asset
being protected.

We plan to extend this work by considering n player games (where we have 1
defender and n−1 attackers). This could lead to interesting discussion about the
amount of cooperation between the attacker. Usually attackers try to cooperate,
unless the cooperation reduces their gain too much (that is, the benefit coming
from the attack has to be divided among them).

When considering several attackers also notions of types (and bayesian
games) could be important. From which type of attacker we expect to have the
attack? We can differentiate between attacker w.r.t. their propension/aversion
to risk?

Dynamic games provide another source for extension. Repeat games with the
normal games described above as a stage game could be considered. As well a
game when both players refine their information as the sequence of attacks and
countermeasures progress.

We hope our work can help encourage research and experimentation with
the use of economic indexes and combined development of attacker/defender
perspectives during evaluation of alternative security investments.



References

1. Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. Defense tree for economic
evaluations of security investment. In 1st International Conference on Availability,
Reliability and Security (ARES’06), pages 416–423, 2006.

2. D.D. Clark and D.R. Wilson. A comparison of commercial and military computer
security policies. In In IEEE Symposium on Computer Security and Privacy, 1987.

3. Marco Cremonini and Patrizia Martini. Evaluating information security invest-
ments from attackers perspective: the Return-On-Attack (ROA). In Fourth Work-
shop on the Economics of Information Security, June 2005.

4. Nathalie Louise Foster. The application of software and safety engineering tech-
niques to security protocol development. PhD thesis, University of York, Depart-
ment of Computer Science, 2002.

5. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
6. Robert Gibbons. A Primer in Game Theory. Pearson Higher Education, 1992.
7. Lawrence A. Gordon and Martin P. Loeb. The economics of information security

investment. ACM Trans. Inf. Syst. Secur., 5(4):438–457, 2002.
8. Howard and LeBlanc. Writing Secure Code. Microsoft Press, 2002.
9. Ronal L. Krutz, Russell Dean Vines, and Edward M. Stroz. The CISSP Prep

Guide: Mastering the Ten Domains of Computer Security. Wiley, August 2001.
10. Yu Liu. Intrusion Detection for Wireless Networks. PhD thesis, Stevens Institute

of Technology, 2006.
11. Richard D McKelvey, Andrew M. McLennan, and Theodore L. Tur-

ocy. Gambit: Software tools for game theory (version 0.2006.01.20), 2006.
http://econweb.tamu.edu/gambit.

12. James W. Meritt. A method for quantitative risk analysis. In Proceedings of the
22nd National Information Systems Security Conference, October 1999.

13. Martin J. Osborne. An introduction to game theory. Oxford Univ. Press, 2003.
14. Stuart E. Schechter. Computer Security Strength & Risk: A Quantitative Approach.

PhD thesis, Harvard University, May 2004.
15. Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, 1999.
16. Bruce Schneier. Secrets & Lies: Digital Security in a Networked World. John Wiley

& Sons, 2000.
17. Wes Sonnenreich, Jason Albanese, and Bruce Stout. Return On Security Invest-

ment (ROSI): A practical quantitative model. In Security in Information Systems,
Proceedings of the 3rd International Workshop on Security in Information Systems,
WOSIS 2005, pages 239–252. INSTICC Press, 2005.

18. Gary Stoneburner, Alice Goguen, and Alexis Feringa. Risk management guide for
information technology systems. Nist special publication 800–30, NIST, National
Institute of Standard Technology, July 2002.


