
Computers & Security (2005) 24, 322e333

www.elsevier.com/locate/cose
Information Assurance for security
protocols

Giampaolo Bellaa,*, Stefano Bistarellib,c

aUniversità di Catania, Dipartimento di Matematica e Informatica, Viale A. Doria 6,
I-95125 Catania, Italy
bCNR, Istituto di Informatica e Telematica, Via G. Moruzzi 1, I-56124 Pisa, Italy
cUniversità ‘‘D’Annunzio’’, Dipartimento di Scienze, Viale Pindaro 42, I-65127 Pescara, Italy

Received 17 March 2004; revised 6 October 2004; accepted 25 October 2004

KEYWORDS
Formal analysis;
Constraint solving;
Soft constraints;
Cryptographic

protocol;
Realism;
Accuracy;
Formalism;
Retaliation

Abstract Security protocols are used pervasively to protect distributed commu-
nications in the third Millennium. This motivates the need for a definition of
Information Assurance for security protocols, which, to the best of our knowledge,
is still missing. Such a definition is advanced in terms of the requirements that
security protocols be analysed at the same time realistically, accurately and
formally, notions that the existing literature only favours in separate contexts. The
precise meanings of these terms are described by means of general considerations
and concrete examples. The main goal of this paper is to draw attention to and
raise concern on this novel but significant niche of computer security.
ª 2004 Elsevier Ltd. All rights reserved.
Overview

Computer Security began its course with the
implementation of some rudimentary access-con-
trol features in Multics (Corbatò and Vyssotsky,
1965), that is in the late 1960s. At that time,
security merely meant to regulate access to the
sensitive resources of a single computer. Technol-
ogy progressed fast, bringing a number of new
problems forward. With the development of large-
scale computer networks, the figure of a new

* Corresponding author.
E-mail addresses: giamp@dmi.unict.it (G. Bella),

stefano.bistarelli@iit.cnr.it, bista@sci.unich.it (S. Bistarelli).
0167-4048/$ - see front matter ª 2004 Elsevier Ltd. All rights rese
doi:10.1016/j.cose.2004.10.004
expert became necessary, the security architect.
We are not going to survey the history of computer
security here, but a few observations are neces-
sary to set the ground for our discussion on
Information Assurance for security protocols.

Security architects are concerned with security
problems that require solutions, and the existing
technology where to derive those solutions from.
Until the 1980s, their decisions were only taken on
the basis of informal reasoning. In the best case,
teams of architects used to brain-storm together
for months or years in the hope to account for all
possible strengths or weaknesses of a certain
security measure. Only if ideas converged on the
strengths would that measure be put in place.
rved.

mailto:giamp@dmi.unict.it
mailto:stefano.bistarelli@iit.cnr.it
mailto:bista@sci.unich.it
http://www.elsevier.com/locate/cose


Information assurance for security protocols 323
But convergence of ideas very rarely derives
from unanimous agreement. Indeed, enforcing
certain measures in the real world may signify
weakening others, which means that what was
expected as a solution turns out to be in fact
a tradeoff. An enormous number of examples can
be made to support the claim that even after the
security measures are enforced, acceptance of
some ‘‘level of risk’’ is often still required. We only
sketch three groups of examples here, which can
be skipped for skim-reading: security installations,
protocol design principles, and semi-trusted code.

‘‘Security’’ installations

There exists empirical evidence that protecting
a WWW server by allowing only SSH connections
has decreased the number of external break-ins.
Tolerable drawbacks are the cost of the new
software, the time of installing SSH clients on all
remote machines, and the efforts to create peo-
ple’s mentality in using the new software. But
since the number of attacks has at times been too
far from zero yet, many academic sites have
decided to even restrict SSH access to principals
within the local domain (Cheswick et al., 2004).

Analogous caution must be taken with security
protocols. A security protocol is a set of prescribed
message exchanges between principals over an
insecure network. Each protocol aims at achieving
specific security goals, such as confidentiality and
authentication. Paulson has proved formally that
the BULL recursive protocol meets its goals if
encryption is perfect, that is if cryptanalysis is
impossible (Paulson, 1997). This may have fav-
oured the use of the protocol for some time, but
Ryan and Schneider (1998) soon found an attack on
the protocol if encryption is bit-wise exclusive-or.
At installation time, the security architect would
hopefully have the option of choosing a stronger
encryption function, which in any case would be
far from provably perfect. No boolean statement
about the strengths of the installed software
would be conceivable.

Protocol design principles

Anderson and Needham (1995) propose a number
of influential principles for designing security
protocols. Often has it been remarked that those
principles are not meant to totally ensure the
protocol goals, but that it merely is prudent to
conform to them, as the title of an influential
paper confirms (Abadi and Needham, 1996). In
other words, no design principle should be taken as
biblic. For example, one of the most popular
principles states that each protocol message
should be explicit about its meaning, that is to
say that nothing should be taken for granted. But
Syverson (1996) warns us that this principle too has
limitations. Protocols such as Bellovin and Meritt’s
(1993) Encrypted Key Exchange (EKE) do not
conform to it, and indeed meet their goals by not
conforming to it. The contents of any encrypted
message of the EKE protocol can equally be either
a key or a nonce, so that not even a legitimate
principal gets evidence about which session a
cipher-text belongs to until he terminates the
protocol on faith.

Semi-trusted code

Code downloaded from the Internet should not be
entirely trusted. A number of viruses spread
through the world as email attachments for exam-
ple. A possible strategy to control the behaviour of
the code and limit its potential damages is to
execute it in a sandbox. The principal is granted
fine-grained access control for each potentially
dangerous call, so he can take informed decisions.
But experience shows that to run code in a sandbox
may result lengthy and tedious, so that the
principal ends up granting too many permissions
to the code anyway. Even more crucial is the
problem of executing code from different origins,
hence with different levels of trust, in the same
runtime. Some levels may have to be lowered or
decreased. Techniques based on inspection of the
execution stack or on execution history are cur-
rently being developed (Abadi and Fournet, 2001).

What now

The third Millennium seems to be favouring an
increasing awareness about the issues sketched
above, which support the claim that ‘‘Security is
not a simple boolean predicate’’ (Anderson, 1993).
Worse yet, complete security still seems out of
reach or perhaps impossible. Modern security
architects normally build their arguments on top
of such postulates. As from the late 1980s they
have also started to take into account insights
derived from formal analyses, which were just
beginning to be conceived, as opposed to the
merely informal analyses they relied on before.
Skepticism has gone up and down throughout the
years, but the contribution of formal reasoning in
general is nowadays unquestionable. This can be
seen throughout nearly all niches of computer
security, ranging frompolicies (Cholvy andCuppens,
1997; Halpern and Weissman, 2003) to protocols
(Fábrega et al., 1998; Gollmann, 2000a).



324 G. Bella, S. Bistarelli
With this paper, we intend to develop a notion
of Information Assurance (‘‘IA’’ in the following)
for security protocols. These are pre-established
cryptographic message exchanges between remote
principals wishing to communicate securely over
an insecure network. We advance a tentative
notion of IA for security protocols, which the
literature appears to be lacking. In doing so, our
aim is to provide strong assurances about the
information that principals derive from executing
the protocols, such as confidentiality of messages
or authentication of remote principals. On these
bases, we advance the following definition.

IA for security protocols

Providing Information Assurance for security pro-
tocols is the process of analysing the protocols
under the following three provisos:

1. Realism
2. Accuracy
3. Formalism

The three provisos are easy to motivate. The
present ratio cost/technology allows every Inter-
net principal to be a potential attacker; each
attacker even is in a condition to exploit attacks
mounted by other principals for his own sake.
Hence, protocol analyses must be realistic and
account for a distributed model of attacker. The
general impossibility of making strong boolean
claims in the field of security, which we have
exemplified above, convinces that protocol analy-
ses must also be accurate and capture some notion
of ‘‘level’’ of the goals achieved by a protocol.
Furthermore, security architects require formal
assurance that a protocol meets its goals in the
real world, which is intrinsically difficult because
formal models somewhat idealise reality. Hence,
a formalism that embeds the first two provisos is
needed.

Our definition is purposely abstract so as to
suscitate different views among different re-
searchers, and hopefully give occasion to the
international debate on a niche of computer
security that at present deserves consideration.
Our own views of the three provisos of realism,
accuracy, and formalism are given in the following
sections. The last section draws some conclusions.

Realism

During the last two decades, Dolev and Yao’s
(1983) famous paper has substantially influenced
security protocol analyses, regardless of whether
they were informal or formal. Dolev and Yao’s
contribution is essential evidence that collusion of
a number of principals to subvert a protocol is
equivalent to the hostility of a single, powerful
attacker. ‘‘Powerful’’ means the ability to monitor
the entire network traffic, to break down messages
by the conventional operations of splitting and
decryption, to build up new messages by the
conventional operations of concatenation and
encryption, and to engage in unlimited protocol
sessions. The only constraint is that the attacker
cannot mount brute-force cryptanalysis attacks,
hence he can only rely on the keys that become
available by any interleaving of the four allowed
operations. Their model makes no account for the
different security conditions that different areas
of the network may have.

These simplifications to the threat model char-
acterise essentially all approaches to analysing
security protocols formally. What has never been
considered in this context is a threat model where
each principal is malicious so as to act for his
own profit in every way Dolev and Yao’s attacker
would. In other words, no principal colludes with
anyone else, but they are all separate attackers,
as we can see in the real world. (The model is
inspired to recent fair-exchange protocols;
Shmatikov and Mitchell, 2000.) As a first require-
ment of IA for security protocols, we propose the
use of realistic threat models in the sense de-
scribed above.

Here is one example of a previously unknown
insight that our threat model allows us to get.
Fig. 1 presents the simple protocol due to Need-
ham and Schroeder (1978), a milestone in the field.
This is the variant that relies on asymmetric
cryptography, that is each principal owns a private
key and a corresponding public key. A nonce is
a ‘‘number that is used only once’’ (Needham and
Schroeder, 1978). The protocol assumes that prin-
cipals can invent truly-random nonces, so that,
given a nonce N invented by a principal P, the
probability that principals other than P guess N is
negligible.

The first step sees an initiator A initiate the
protocol with a responder B. Principal A invents
a nonce Na and encrypts it along with her identity
under B’s public key. Upon reception of that

Figure 1 The asymmetric NeedhameSchroeder
protocol.



Information assurance for security protocols 325
message, B decrypts it and extracts A’s nonce.
Then, he invents a nonce Nb and encrypts it along
with Na under A’s public key. When A receives
message 2, she extracts Nb and sends it back to B,
encrypted under his public key.

The goal of the protocol is authentication: at
completion of a protocol session initiated by A with
B, A should get evidence to have communicated
with B and, likewise, B should get evidence to have
communicated with A. We emphasise how confi-
dentiality of the nonces is here used to achieve
authentication. Indeed, upon reception of Na
inside message 2, A would conclude that she is
interacting with B, the only principal who could
retrieve Na from message 1, since Na is a truly-
random nonce and encryption is perfect. In the
same fashion, when B receives Nb inside message
3, he would conclude that A was at the other end
of the network because Nb must have been
obtained from message 2, and no one but A could
perform this operation. However, Lowe (1995)
shows that this protocol is flawed within Dolev
and Yao’s threat model by exhibiting the attack we
present in Fig. 2.

Lowe assumes that principal C impersonates
Dolev and Yao’s attacker. Notice that C could be
a registered principal of the network, so no one
could suspect his tampering. Since A initiates with
C, she encrypts her nonce and her identity under
C’s public key. Once these data are obtained, C
initiates another session (indicated by the primes)
with another principal B, quoting A’s data rather
than his own. From this message, B deduces that A
is trying to communicate with him. Therefore, B
replies to A, quoting her nonce and his own, Nb.
Since the entire network is under C’s control, C
intercepts this message before it is delivered to A
but cannot decrypt it because encryption is per-
fect. So, C forwards it to A. The message is of the
form that A was expecting, hence A extracts Nb
and sends it to the principal with whom she had
initiated the first session, C. This hinders the
confidentiality of Nb, so C can use it to complete

Figure 2 Lowe’s attack to the NeedhameSchroeder
protocol.
the session with B by issuing message 3#, which is
of the form that B was expecting.

As a result, B believes to have communicated
with A, while A was in fact communicating with C.
In other words, C impersonates A with B: the
protocol has ultimately failed to achieve authen-
tication because it has failed to keep Nb confiden-
tial. Lowe observes that this may have drastic
consequences, such as the following. If B is a bank,
C can steal money from A’s account as shown in
Fig. 3. The bank B would honour the request
believing it came from the account holder A.

This terminates Lowe’s study, which is sound
within Dolev and Yao’s threat model. We studied
the protocol within our own threat model and
highlighted an indeliberate attack (Bella and
Bistarelli, 2002) whereby B learns A’s nonce Na,
which is meant for use with C, not with B.
‘‘Indeliberate attack’’ means that B obtains the
nonce without any deliberate actiondstill, it
counts as an attack because the nonce is not
meant to be known to B. This indeliberate attack
may have another drastic consequence. If A is
a bank, B can steal money from C’s account as
shown in Fig. 4. The bank A would honour the
request believing it came from the account
holder C.

The threat model given here allows retaliation
of B against C, a novel concept that has been
recently developed Bella et al. (2003). In short,
because C initially steals from A’s account and
frauds B, principal B can then retaliate by stealing
from C’s account and frauding A. This form of
retaliation whereby a principal who is attacked in
turn exploits this attack to attack back appears
perfectly realistic in the present Internet setting
where any principal may have sufficient knowledge
and instruments.

We can meet the first requirement, that of
realism, by adopting the realistic threat model
described here.

Accuracy

We concentrate on the goals of confidentiality and
authentication. Confidentiality of a message
means that the message remains undisclosed to
those not intended to learn it (Dolev and Yao,
1983; Neuman and Ts’o, 1996). Authentication of
a principal means that we truly are communicating

Figure 3 Lowe’s fraud to bank B.



326 G. Bella, S. Bistarelli
with that principal (Gollmann, 2000b, 2001). We
observe that neither of these two properties is
boolean in the real world: only certain levels of
confidentiality or authentication are achieved in
practice. Levels are known as a means to conduct
reasoning, as is the case of Abadi’s types (Abadi,
1999), which means they are in fact meta-levels. In
contrast, we are introducing object-levels.

We now tackle the second requirement of our
notion of IA for security protocols, the require-
ment of accuracy. (The treatment is informal here,
its formal version is deferredd see section ‘For-
malism’.)

Confidentiality

To set about this goal, let us consider session keys
for example. One or two of them are invented per
each session (that is, execution) of a protocol, the
reason being that each key is only meant to be
used for a short lifetime. Clearly one such key is
less sensitive information than a principal’s pass-
word or PIN number, whose lifetimes usually are
considerably long. That is to say that the accept-
able level of confidentiality on a session key is
lower than the acceptable level of confidentiality
on a password. Most protocols follow this proviso.
While session keys may be sent within message
bodies on repeated occasions, passwords are only
used as encryption keys typically once or twice.
Indeed, sending a secret over the network exposes
it to risks. The more the secret is used to form
messages, the higher the risks that an attacker
tampers with itdthe longer the secret is on the
network, the higher the risks it runs. Also, we may
have chains of session keys, each encrypting the
next one. The confidentiality levels of the keys
decrease along the chain, as confidentiality of
each key rests on confidentiality of all preceding
keys. In practice, one would prefer to rely on
cipher-texts sealed under the first key in the chain
rather than under the last one.

Such a dependency chain is a didactic example,
but we remark that all protocols exchange com-
ponents some of which are more sensitive than
others. Kerberos (Bella and Paulson, 1998) and the
Yahalom protocol (Paulson, 2001), for example,
have dependency chains of length two. An exam-
ple of a lengthy dependency chain derives from
the Cardholder Registration phase of the SET

Figure 4 Our fraud to bank A.
protocol, a large e-commerce protocol by Visa
and Mastercard (Bella et al., 2003). Fig. 5 shows
a simplified version of the last two messages.

The peers are a cardholder C and a certification
authority CA. In message 5, C sends CA a digital
envelope formed by the concatenation of two
cipher-texts.

The first is sealed under CA’s public encryption
key, pubEK CA, which is known to all, and contains
the following items: a session key KC3, the PAN
(Personal Account Number) that is written on C’s
credit card, and Csecret, which is a secret number
invented by C. The second component is sealed
under session key KC3 and contains the cardhold-
er’s identity, another session key KC2 and many
other components, which we are hiding behind
rest as they are irrelevant to our discussion.

Upon receipt of message 5, the CA decrypts the
first component by its private encryption key priEK
CA, extracts KC3 and uses it to decrypt the second
component. So, the CA gets KC2 and uses it to
encrypt a secret number it has just invented,
CASecret. The so formed cipher-text is sent back
to C in message 6. When the protocol session
terminates, the cardholder C uses CA’s secret
number CASecret to compute another secret num-
ber PANSecret to be used in the subsequent phases
of the protocol.

The protocol presents the following dependency
chain. Confidentiality of PANSecret depends on
confidentiality of CASecret, which depends on
confidentiality of KC2, which depends on confiden-
tiality of KC3, which depends on confidentiality of
priEK CA. The level of confidentiality the protocol
achieves on PANSecret is certainly lower than that
achieved on priEK CA. This example demonstrates
that a confidentiality argument based on merely
boolean statements of the form ‘‘KC2 remains
confidential and so does PANSecret’’ would not
be sufficiently accurate. Clearly, proving confiden-
tiality of the message at the end of the chain
implies that confidentiality of the message at the
beginning of the chain is achieved too. But the
opposite implication does not hold. For example,
we could imagine that confidentiality levels were
linearly ordered as I, II, III, IV, ., IX, X, with I
being the maximum level. More appropriate claims
should have the form ‘‘priEK CA is I-confidential,
and PANSecret is V-confidential’’ for example, in
case the security level only decreases by one at
each node along the dependency chain.

Figure 5 A simplified fragment of the SET protocol.



Information assurance for security protocols 327
Once fixed criteria are established to manipu-
late the security levels, the protocol analyser
could even compare the security level achieved
by different protocols on sensitive message com-
ponents. For example, the analyser could consider
two different key-distribution protocols, such as
Otway-Rees and Kerberos as they are presented by
Burrows et al. (1989), and study what confidenti-
ality levels they achieve on the session key. This
would give security architects deeper insights than
current analyses do. In our threat model formal-
ised above, where each principal sees the entire
network traffic, a secret runs risks of leaking that
are proportional to the time the secret has been on
the network. Therefore, one appropriate criterion
to manipulate the security levels is to decrease the
level associated to a message component every
time that component is manipulated by any of
the operations on messages (concatenation, split-
ting, encryption and decryption)dsee section
‘Formalism’.

A message that has been disclosed to the
attacker can be seen as having the minimum
confidentiality level. This inspires a strategy to
compare confidentiality attacks. For example,
leaking a message that was I-confidential reports
a more significant attack than leaking a message
that was V-confidential. To the best of our knowl-
edge, such accuracy is missing to existing protocol
analyses, but we find it an indispensable pre-
requisite of appropriate IA for security protocols.

Authentication

Analogous considerations apply to the authentica-
tion goal. Classifications of the different kinds of
authentication exist (Gollmann, 1996; Lowe, 1997)
but each of them should be studied in terms of the
levels we introduce here.

Authentication (of whatever kind) of a principal
is normally established by means of a message that
expresses the principal’s presence. The more the
message is confidential, the stronger the achieved
authentication. For example, sending Alice’s iden-
tity on the network to Bob is the weakest form of
authentication of Alice to Bob because message
‘‘Alice’’ is in fact public (all principals know each
other’s identities). Clearly, a much stronger au-
thentication would Alice achieve by sending Bob
a cipher-text sealed under Alice’s private key,
which has a high confidentiality level. And some in-
termediate level of authentication Alice would get
by sealing a cipher-text under some session key.
The existence of a dependency chain generalises
these observations. If we consider the fragment of
the SET protocol as shown in Fig. 5, principal C
achieves a higher authentication level with CA
by using KC3 rather than by using CASecret.

It is desirable to also have a strategy to compare
authentication attacks. A possible strategy is
based on the following observation. If an attacker
impersonates Alice with Bob, the significance of
the attack is proportional to the confidentiality
level of the message used by the attacker to
impersonate Alice. For example, if the attacker
gets hold of Alice’s private signature key, he can
mount a more significant authentication attack on
Bob (and on any other principal) than if he gets
hold of Alice’s session key shared with Bob (in
which case he could only cheat on that session).

Formalism

Formal analyses of security protocols facilitate
a deep understanding of the protocols. A variety
of approaches have been taken, ranging from state
enumeration (Ryan and Schneider, 2000), to prov-
able security (Bellare and Rogaway, 1995), to
induction (Paulson, 1998). These efforts have led
to the discovery of a number of protocol attacks
(and of the corresponding patches), or to the
formal establishment that certain goals are
achieved.

However, we observe that the exhibition of an
attack raises more interest among the security
architects than the exhibition of a proof that a goal
is met. While it is easy to verify that the former
can take place, it is less easy to believe that
a formal proof would still hold in the real world.
Such skepticism is motivated by the idealised
models within which any formal proof is con-
ducted. Although it is virtually impossible to bridge
the gap between a formal model and the real
world, following our first requirement (see section
‘Realism’) certainly is an improvement. Reluc-
tance towards formal proofs that goals are met
also comes from the nature of the offered insights.
These are firm boolean claims of the form ‘‘session
key K is confidential’’ or ‘‘principal A authenti-
cates principal B’’, while security architects rely
on levels of those goals, whose importance was
stated above by our second requirement (see
section ‘Accuracy’). We meet the two require-
ments by adopting the realistic threat model and
the confidentiality/authentication levels de-
scribed in the previous two sections.

Our third requirement towards IA for security
protocols is therefore formal analysis, which, as
remarked above, is severely limited on its own, but
can be powered with the other two requirements.
It was not obvious in the beginning what approach



328 G. Bella, S. Bistarelli
to protocol analysis could embed all three
requirements, but Constraint Solving soon seemed
to be an appropriate candidate (Bistarelli, 2004).
We present here only the basics of our approach,
which is at the same time realistic, accurate and
formal. The complete description can be found
elsewhere (Bella and Bistarelli, 2004). It should be
remarked that ours is one possible approach that
embeds all three features, but certainly others
may be taken. We expect that some existing
formal approaches can be extended to accommo-
date our first two requirements (see sections
‘Realism’ and ‘Accuracy’).

Basics of soft constraint programming

Informally speaking, given a set of variables V and
a set of domain values D, a constraint is a law that
associates n-tuples of domain elements to n-tuples
of variables. A soft constraint is a constraint where
each association of its variables has an associated
value from a partially ordered set A. On this set,
two operations are defined that allow for combi-
nation, !, and comparison, C. If 0 is the unit
element of C, and 1 is the unit element of !, we
can require appropriate properties on the two
operations so that the tuple CA;C;!;0;1D is a
c-semiring (Bistarelli et al., 1997).

Let us consider the relation %S over A such that
a %S b iff aC bZ b. It can be proved that %S is
a partial order, C and ! are monotone on %S, 0 is
its minimum and 1 its maximum. The relation %S

gives us a way to compare (some of the) tuples of
values and constraints. In fact, when we have
a %S b, we will say that b is better than a. Below,
%S will be often indicated by %.

A constraint system is a tuple CSZCS;D;VD
where S is a c-semiring, D is a finite set (the
domain of the variables) and V is an ordered set of
variables. Given a semiring SZCA;C;!;0;1D and
a constraint system CSZCS;D;VD, a constraint is
a pair Cdef, conD where con4V and def :Djconj/
A. Therefore, a constraint specifies a set of
variables (the ones in con), and assigns to each
tuple of values of these variables an element of
the semiring.

A soft constraint satisfaction problem (SCSP) is
a pair CC, conD where con4V and C is a set of
constraints: con is the set of variables of interest
for the constraint set C, which however may
concern also variables not in con.

We use the semiring SSCSPZ C[0,1], max, min, 0,
1D, for the sake of demonstration, to build the
example SCSP as shown in Fig. 6. Variables and
constraints are represented, respectively, by no-
des and by undirected (unary for c1 and c3 and
binary for c2) arcs, and semiring values are written
to the right of the corresponding tuples. The
variables of interest (that is the set con) are
represented with a double circle. It is assumed
that the domain D of the variables contains only
elements a and b.

Combining soft constraints
Given two constraints c1Z Cdef1, con1D and
c2Z Cdef2, con2D, their combination c15 c2 is the
constraint Cdef, conD defined by con Z con1W con2

and defðtÞZdef1ðtYcon
con1

Þ!def2ðtYcon
con2

Þ, where tYX
Y

denotes the tuple of values over the variables in Y,
obtained by projecting tuple t from X to Y. In other
words, combining two constraints means building
a new constraint involving all the variables of the
original ones, and which associates to each tuple of
domain values for such variables a semiring element
that is obtained by multiplying the elements asso-
ciated by the original constraints to the appropriate
subtuples. In short, combination is performed via
the multiplicative operation of the semiring.

Projecting soft constraints
Given a constraint c Z Cdef, conD and a subset I of
V, the projection of c over I, written c ZI is the
constraint Cdef#, con#D where con#Z con X I and
def#

�
t#
�
Z

P
t=tYcon

IXconZt# defðtÞ. Informally, projec-
ting means eliminating some variables. This is
done by associating to each tuple over the remain-
ing variables a semiring element that is the sum of
the elements associated by the original constraint
to all the extensions of this tuple over the
eliminated variables. In short, projection is per-
formed via the additive operation of the semiring.

Solution of an SCSP
The solution of an SCSP PZ CC, conD is the
constraint Sol(P)Z (5C ) Zcon.That is, we com-
bine all constraints, and then project over the
Figure 6 An example SCSP.



Information assurance for security protocols 329
variables in con. In this way we get the constraint
over con that is ‘‘induced’’ by the entire SCSP.

For example, the solution of the example SCSP
in Fig. 6 consists of all possible pairs of domain
values (that is, a domain value for each of the two
variables) and an associated semiring element.
Such an element is obtained by looking at the
smallest value for all the subtuples (as many as the
constraints) forming the pair. For example, for
tuple Ca, aD (that is, xZyZ a), we have to
compute the minimum between 0.9 (which is the
value for xZ a), 0.8 (which is the value for CxZ a,
yZ aD) and 0.9 (which is the value for yZ a).
Hence, the resulting value for this tuple is 0.8.

Soft constraint programming to
analysing security protocols

We define the security semiring to specify each
principal’s trust on the confidentiality of each
message, that is each principal’s security level
on each message. The security levels form the
career set L of the security semiring.

They range from the most secure (highest) level
unknown (double named as traded�1) to the least
secure (lowest) level public (double named as
tradednC1). Intuitively, if A’s security level on m
is unknown, then no principal (included A) knows
m according to A, and, if A’s security level on m is
public, then all principals potentially know m
according to A. The lower A’s security level on
m, the higher the number of principals knowing m
according to A. For simplicity, we state no relation
between the granularity of the security levels and
the number of principals. We define Csec and !sec

by the following axioms.

Axiom 1. tradedi Csec tradedj Z tradedmin(i,j )

Axiom 2. tradedi !sec tradedj Z tradedmax(i,j )

The structure SsecZCL;Csec;!sec;public;
unknownD can be easily proved to be a c-semiring.

Using the security semiring, we define the net-
work constraint system, which represents the

LZ {unknown htraded�1,
private htraded0,
traded1,
traded2,
.,
tradedn,
public htradednC1}
computer network on which the security protocols
can be executed. It does not depend on any specific
protocol. It is expressed as CSnZCSsec;D; VD where:

� Ssec is the security semiring just mentioned;
� V is a bounded set of variables, each standing
for a principal;

� D is a bounded set of values including the
empty message fj jg and all atomic messages,
as well as all messages recursively obtained by
concatenation and encryption.

The development of the principals’ security
levels from manipulation of the messages seen
during the protocol sessions can be formalised as
a security entailment, which is an entailment
relation between constraints (Bella and Bistarelli,
2002; Bistarelli et al., 2002). The relation is defined
by four rules, one for each operation on the
messages (splitting, decryption, concatenation
and encryption). In brief, every time a principal
invents a secret message, the principal’s security
level on the message decreases from unknown to
private; every time the message is sent on the
network the secret level of the message is de-
creased (for example from private to traded1, from
traded1 to traded2, etc.) to represent exposure to
the network risks. This influences the principal’s
security levels on all messages that feature that
secret, whose new (decreased) levels are computed
by entailment. For example, encryption and con-
catenation build up new messages from known
ones. The new messages must not get a worse
security level than the known ones have. So, the
corresponding rules choose the better of the given
levels (Bella and Bistarelli, 2004). Precisely, if
messages m1 and m2 have security levels v1 and v2,
respectively, then the encrypted message fjm1jgm2

and the compound message fjm1, m2jg get a new
level that is the better of v1 and v2, namely
v1Csec v2.

At this stage, given a specific protocol, we
represent the policy that accompanies the pro-
tocol as an SCSP called the policy SCSP. It formal-
ises all admissible network configurations arising
from the protocol execution as prescribed by the
protocol designers. Therefore, any interleaving of
protocol sessions in which no principal has acted
maliciously is represented in the policy SCSP for
the given protocol. The exact construction is done
algorithmically, but is irrelevant to our discussion.
Then, a particular network configuration arising
from the protocol execution in the real world can
be represented as another SCSP, an imputable
SCSP. We have designed another algorithm for this
task. There exists one such SCSP per each possible



330 G. Bella, S. Bistarelli
network configuration under the given protocol,
while there exists one policy SCSP per each pro-
tocol (Bella and Bistarelli, 2004).

Given a security level l, we use l-confidentiality
and l-authentication to formally capture the level
of achievement of the goal. In case of confidenti-
ality of a message for a principal in an SCSP, that
level is the principal’s security level on the
message. It is computed by calculating the solution
of the SCSP, projecting it on the principal and
evaluating it on the message.

Definition 1 (l-Confidentiality). Given an SCSP p,
let Sol(p) ZfAgZ CdefA, fAgD; l-confidentiality of m
for A in p holds iff defA(m)Z l.

By comparing the solutions of the policy and the
given imputable SCSPs we can formally define
a confidentiality attack.

Definition 2 (Confidentiality attack). Given the
policy SCSP P for a given protocol, and an imput-
able SCSP p for the same protocol, there is
a confidentiality attack by A on m in p iff l-con-
fidentiality of m in p for A holds, l#-confidentiality
of m in p for A holds, and l#! l.

Therefore, if Sol (P) ZfAgZ CDefA,fAgD, there
is a confidentiality attack by A on m in p iff
defA(m)! DefA(m). Attacks can be realistically
compared: the more an attack lowers a security
level allowed by the policy SCSP, the worse that
attack.

We exemplify this treatment on the Needhame
Schroeder protocol seen above (section ‘Realism’).
Fig. 7 presents the fragment of policy SCSP for the
protocol pertaining to a single session between
principals A and B. Notice the unary constraints
formalising each principal’s security levels prior to
the beginning of any protocol session, and the
binary constraints each formalising a session step.
If the reader is familiar with Roscoe’s intensional/
extensional specifications of protocols (Roscoe,
1996), the binary constraints may be seen as
intensional specification as they assert a property
in terms of communications within the protocol.
Conversely, the unary constraints may be seen as
extensional specification because they convey the
principals’ security level independently of the
details of the protocol.

The figure shows that A’s security level on her
nonce Na was initially private prior to the begin-
ning of any protocol session, but it is lowered to
traded1 by entailment as soon as A invents it and
sends it off in step 2 of the protocol. Likewise, B’s
security level on Nb is traded2 though it was
originally private. All details that are irrelevant
to the session are omitted from the figure. For
example, all other principals’ security levels on Na
and Nb are unknown because the policy prescribes
that no one acts maliciously.

Fig. 8 formalises the network configuration de-
fined by Lowe’s attack. The solution of this
SCSP projected on variable C is a constraint that
associates security level traded4 to the nonce
Nb. Following Definition 1, Nb is traded4-confiden-
tial for C in this SCSP. Hence, by Definition 2, there
is a confidentiality attack by C on Nb in this
problem, because Nb got level unknown in the
policy SCSP.

The problem solution projected on variable B
gives security level traded2 to the nonce Na, which
Figure 7 Fragment of the policy SCSP for the NeedhameSchroeder protocol.



Information assurance for security protocols 331
Figure 8 Fragment of the imputable SCSP corresponding to Lowe’s attack.
instead got level unknown in the policy SCSP. This
signifies that B has learnt a nonce that he was not
allowed to learn by policy, hence there is an
indeliberate confidentiality attack by B on Na.
Notice that the two attacksdthe deliberate
(Lowe, 1995) and the indeliberate (Bella and
Bistarelli, 2002)dare uniformly formalised.

Our approach is realistic, accurate and formal.
It is amenable to mechanization by model checking
if we appropriately bond all quantities, hence the
possible network configurations are finite (Durgin
et al., 1999).

Conclusions

We have laid the ground towards the development
of a definition of Information Assurance for secu-
rity protocols. We require that security protocols
be analysed realistically, accurately and formally.

‘‘Realistically’’ means that the model underly-
ing the analysis should exceed the limits of the
classical Dolev and Yao’s model. We showed how
this highlights another consequence of Lowe’s
attack on the popular asymmetric Needhame
Schroeder protocol.

‘‘Accurately’’ means that the protocol goals
should not be considered mere boolean properties
because security never is a boolean feature. In
contrast, we advocate reasoning about levels of
confidentiality or authentication.

‘‘Formally’’ means that the analysis should be
conducted within a formal framework. The litera-
ture seems to be missing an approach to protocol
analysis that embeds all the three features, so we
have sketched a new approach based on Constraint
Solving. This confirms that the three requirements
we set towards Information Assurance for security
protocols can coexist together within a single
approach to analysing protocols.

Acknowledgements

We are grateful to Simon Foley, Michael Leuschel
and Fabio Massacci for useful discussions on the
topic of this paper.



332 G. Bella, S. Bistarelli
References

Abadi M. Secrecy by typing in security protocols. Journal of the
ACM 1999;46(5):749e86.

Abadi M, Fournet C. Mobile values, new names, and secure
communication. In: Proceedings of the 28th ACM SIGACT-
SIGPLAN symposium on principles of programming lan-
guages (POPL’01). ACM Press and Addison Wesley; 2001. p.
104e15.

Abadi M, Needham RM. Prudent engineering practice for
cryptographic protocols. IEEE Transactions on Software
Engineering January 1996;22(1):6e15.

Anderson R. Why cryptosystems fail, Proceedings of the 1st ACM
conference on communications and computer security
(CCS’93). ACM Press and Addison Wesley; 1993. p. 217e27.

Anderson R, Needham RM. Robustness principles for public key
protocols. In: Coppersmith D, editor. Proceedings of ad-
vances in cryptographydCRYPTO’95, LNCS 963. Springer-
Verlag; 1995. p. 236e47.

Bella G, Bistarelli S. Confidentiality levels and deliberate/inde-
liberate protocol attacks. In: Christianson B, Crispo B,
Harbison WS, Roe M, editors. Proceedings of the 10th
international workshop on security protocols Cambridge,
UK, LNCS 2845. Springer; 2002. p. 104e19.

Bella G, Bistarelli S. Soft constraint programming to analysing
security protocols. Theory and Practice of Logic Program-
ming 2004;4(5):1e28.

Bella G, Paulson LC. Kerberos version IV: inductive analysis of
the secrecy goals. In: Quisquater J-J, Deswarte Y,
Meadows C, Gollmann D, editors. Proceedings of the 5th
European symposium on research in computer security
(ESORICS’98), LNCS 1485. Springer-Verlag; 1998. p. 361e75.

Bella G, Massacci F, Paulson LC. Verifying the SET registration
protocols. IEEE Journal of Selected Areas in Communications
2003;21(1):77e87.

Bella G, Bistarelli S, Massacci F. A protocol’s life after attacks.
In: Proceedings of the 11th international workshop on
security protocols Cambridge, UK, LNCS series. Springer-
Verlag; 2003, in press.

Bellare M, Rogaway P. Provably secure session key distributiond
the three party case. In: Proceedings of the 27th ACM
SIGACT symposium on theory of computing (STOC’95). ACM
Press and Addison Wesley; 1995. p. 57e66.

Bellovin SM, Merritt M. Augmented encrypted key exchange:
a password-based protocol secure against dictionary attacks
and password file compromise. In: ACM conference on
computer and communications security; 1993. p. 244e50.

Bistarelli S. Semirings for soft constraint solving and program-
mingIn: LNCS 2962. Springer; 2004.

Bistarelli S, Montanari U, Rossi F. Semiring-based constraint
solving and optimization. Journal of the ACM 1997;201e36.

Bistarelli S, Montanari U, Rossi F. Soft concurrent constraint
programming. In: Proceedings of the 11th European sympo-
sium on programming (ESOP’02). LNCS 2305. Springer-
Verlag; 2002. p. 53e67.

Burrows M, Abadi M, Needham RM. A logic of authentication.
Proceedings of the Royal Society of London 1989;426:233e71.

Cheswick W, Bellovin SM, Rubin AD. Firewalls and Internet
security: repelling the wily hacker. Addison-Wesley 2004.

Cholvy L, Cuppens F. Analyzing consistency of security policies.
Proceedings of the 16th IEEE symposium on security and
privacy 1997.

Corbatò FJ, Vyssotsky VA. Introduction and overview of the
multics system. In: Proceedings of the American Federation
of information processing societies conference (AFIPS’65);
1965. p. 185e96.
Dolev D, Yao A. On the security of public-key protocols. IEEE
Transactions on Information Theory 1983;2(29).

Durgin N, Lincoln P, Mitchell J, Scedrov A. Undecidability of
bounded security protocols. In: Proceedings of the FMSP’99.

Fábrega FJT, Herzog JC, Guttman JD. Strand spaces: why is
a security protocol correct? In: Proceedings of the 17th IEEE
symposium on security and privacy. IEEE Press; 1998.

Gollmann D. What do we mean by entity authentication?
Proceedings of the 15th IEEE symposium on security and
privacy. IEEE Press; 1996. p. 46e54.

Gollmann D. On the verification of cryptographic protocolsda
tale of two committees. Proceedings of the workshop on
secure architectures and information flow. In: ENTCS 32.
Elsevier Science; 2000a.

Gollmann D. What is authentication? In: Christianson B,
Crispo B, Malcolm J, Roe M, editors. Proceedings of the
7th international workshop on security protocols, LNCS 1796.
Springer-Verlag; 2000b. p. 65e72.

Gollmann D. Authenticationdmyths and misconceptions. In:
Lam K-Y, Shparlinski IE, Wang H, Xing C, editors. Proceedings
of the workshop on cryptography and computational number
theory (CCNT’99). Birkhäuser; 2001. p. 203e26.

Halpern JY, Weissman V. Using first-order logic to reason about
policies. Proceedings of the 16th IEEE computer security
foundations workshop. IEEE Press; 2003.

Lowe G. An attack on the NeedhameSchroeder public-key
authentication protocol. Information Processing Letters
1995;56(3):131e3.

Lowe G. A hierarchy of authentication specifications. Proceed-
ings of the 10th IEEE computer security foundations
workshop. IEEE Press; 1997. p. 31e43.

Needham RM, Schroeder MD. Using encryption for authentica-
tion in large networks of computers. Communications of the
ACM 1978;21(12):993e9.

Neuman BC, Ts’o T. Kerberos: an authentication service for
computer networks, from IEEE communications magazine.
September, 1994, William Stallings, Practical cryptography
for data Internetworks. IEEE Press; 1996.

Paulson LC. Mechanized proofs for a recursive authentication
protocol. In: Proceedings of the 10th IEEE computer security
foundations workshop. IEEE Press; 1997. p. 84e95.

Paulson LC. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security 1998;6:85e128.

Paulson LC. Relations between secrets: two formal analyses of
the Yahalom protocol. Journal of Computer Security 2001;
9(3):197e216.

Roscoe AW. Intensional specifications of security protocols. In:
Proceedings of the 9th IEEE computer security foundations
workshop. IEEE Press; 1996. p. 28e38.

Ryan PYA, Schneider SA. An attack on a recursive authen-
tication protocol: a cautionary tale. Information Processing
Letters 1998;65. Elsevier Science Publishers (North-Holland)
Amsterdam.

Ryan PYA, Schneider SA. The modelling and analysis of security
protocols: the CSP approach. Addison-Wesley; 2000.

Syverson PF. Limitations on design principles for public key
protocols. In: Proceedings of the 15th IEEE symposium on
security and privacy. IEEE Press; 1996. p. 62e72.

Shmatikov V, Mitchell JC. Analysis of a fair exchange protocol,
Network and distributed system security symposium
(NDSS-00); 2000. p. 119e28.

Giampaolo Bella is an Assistant Professor at the University of
Catania (Italy), teaching the Computer Security course and
classes in Computer Architectures. His main research interests
are in the use of formal methods for the verification of crucial
security properties, but he is also interested in hardware



Information assurance for security protocols 333
verification and in constraint programming. He was a Research
Associate at the Technical University of Munich (Germany) in
the year 2000, after he received his Ph.D. from the Cambridge
University Computer Laboratory. His Ph.D. dissertation, entitled
‘‘Inductive Verification of Cryptographic Protocols’’ (CUCL
Technical Report 493), focuses on how to use inductive
techniques with a mechanized proof assistant to verify real-
world security protocols.

Stefano Bistarelli is an Assistant Professor of Computer Science
at the Department of Science of the University of Chieti-Pescara
and External Researcher of the Institute of Informatics and
Telematics of C.N.R. Pisa. He obtained his Ph.D. in Computer
Science in 2001 at the Computer Science Department of the
University of Pisa. His thesis was awarded by the Italian
Association of Artificial Intelligence and by the Italian Chapter
of the European Association of Theoretical Computer Science.
His research interests range from Artificial Intelligence to
Programming Languages, with particular attention to constraint
programming, constraint solution algorithms, and soft con-
straints. He is also interested in Security. Recently, he published
his work as book LNCS 2962 by Springer.


	Information Assurance for security �protocols
	Overview
	"Security" installations
	Protocol design principles
	Semi-trusted code
	What now
	IA for security protocols

	Realism
	Accuracy
	Confidentiality
	Authentication

	Formalism
	Basics of soft constraint programming
	Combining soft constraints
	Projecting soft constraints
	Solution of an SCSP

	Soft constraint programming to analysing security protocols

	Conclusions
	Acknowledgements
	References


