
Interchangeability in Soft CSPs

Stefano Bistarelli1, Boi Faltings2 and Nicoleta Neagu2

1 Istituto di Informatica e Telematica (IIT), CNR, Pisa, Italy
Stefano.Bistarelli@iit.cnr.it,

2 Artificial Intelligence Laboratory (LIA), EPFL, Ecublens, Switzerland
boi.faltings|nicoleta.neagu@epfl.ch

Abstract. Substitutability and interchangeability in constraint satisfac-
tion problems (CSPs) have been used as a basis for search heuristics, so-
lution adaptation and abstraction techniques. In this paper, we consider
how the same concepts can be extended to soft constraint satisfaction
problems (SCSPs).
We introduce the notions of threshold α and degradation δ for substi-
tutability and interchangeability. In αinterchangeability, values are in-
terchangeable in any solution that is better than a threshold α, thus al-
lowing to disregard differences among solutions that are not sufficiently
good anyway. In δinterchangeability, values are interchangeable if their
exchange could not degrade the solution by more than a factor of δ.
Theorems, algorithms to compute (δ/α)interchangeable sets of values,
and a more general treatment of all the ideas presented in this paper can
be found in [2].

1 Introduction

Substitutability and interchangeability in CSPs have been introduced by
Freuder ([8]) in 1991 with the intention of improving search efficiency for solving
CSP.
Interchangeability has since found other applications in abstraction frame-

works ([10, 15, 8, 5]) and solution adaptation ([14, 11]). One of the difficulties
with interchangeability has been that it does not occur very frequently.
In many practical applications, constraints can be violated at a cost, and

solving a CSP thus means finding a value assignment of minimum cost. Various
frameworks for solving such soft constraints have been proposed [9, 6, 12, 7, 13,
3, 4, 1]. The soft constraints framework of c-semirings [3, 1] has been shown
to express most of the known variants through different instantiations of its
operators, and this is the framework we are considering in this paper.
The most straightforward generalization of interchangeability to soft CSP

would require that exchanging one value for another does not change the qual-
ity of the solution at all. This generalization is likely to suffer from the same
weaknesses as interchangeability in hard CSP, namely that it is very rare.
Fortunately, soft constraints also allow weaker forms of interchangeabil-

ity where exchanging values may result in a degradation of solution quality
by some measure δ. By allowing more degradation, it is possible to increase

the amount of interchangeability in a problem to the desired level. We define
δ
substitutability/interchangeability as a concept which ensures this quality. This
is particularly useful when interchangeability is used for solution adaptation.
Another use of interchangeability is to reduce search complexity by group-

ing together values that would never give a sufficiently good solution. In

αsubstitutability/interchangeability, we consider values interchangeable if they
give equal solution quality in all solutions better than α, but possibly different
quality for solutions whose quality is ≤ α.
Just like for hard constraints, full interchangeability is hard to compute, but

can be approximated by neighbourhood interchangeability which can be com-
puted efficiently and implies full interchangeability. We define the same concepts
for soft constraints.

2 Background

2.1 Soft CSPs

A soft constraint may be seen as a constraint where each instantiations of its
variables has an associated value from a partially ordered set which can be
interpreted as a set of preference values. Combining constraints will then have
to take into account such additional values, and thus the formalism has also to
provide suitable operations for combination (×) and comparison (+) of tuples
of values and constraints. This is why this formalization is based on the concept
of c-semiring S = 〈A,+,×,0,1〉, which is just a set A plus two operations1.

Constraint Problems. Given a semiring S = 〈A,+,×,0,1〉 and an ordered set
of variables V over a finite domain D, a constraint is a function which, given an
assignment η : V → D of the variables, returns a value of the semiring.
By using this notation we define C = η → A as the set of all possible con-

straints that can be built starting from S, D and V .
Consider a constraint c ∈ C. We define his support as supp(c) = {v ∈ V |

∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modified with the association
v := d1 (that is the operator [] has precedence over application).
Fig. 1 shows the graph representation of a fuzzy CSP2. Variables and con-

straints are represented respectively by nodes and by undirected (unary for c1

and c3 and binary for c2) arcs, and semiring values are written to the right of
the corresponding tuples. Here we assume that the domain D of the variables
contains only elements a and b and c.

1 In [3] several properties of the structure are discussed. Let us just remind that it is
possible to define a partial order ≤S over A such that a ≤S b iff a+ b = b.

2 Fuzzy CSPs can be modeled in the SCSP framework by choosing the c-semiring
SFCSP = 〈[0, 1],max,min, 0, 1〉.

X Y

PSfrag replacements

〈a〉 → 0.9
〈a〉 → 0.9

〈b〉 → 0.1
〈b〉 → 0.5

〈c〉 → 0.9
〈c〉 → 0.5

〈a, a〉 → 0.8

〈a, b〉 → 0.2

〈c, a〉 → 0.8

〈c, b〉 → 0.2

〈b, a〉 → 0

〈b, b〉 → 0

〈a, c〉 → 0.2

〈b, c〉 → 0.1

〈c, c〉 → 0.2

c1

c2

c3

Fig. 1: A fuzzy CSP.

Combining soft constraints. When there is a set of soft constraints C, the com-
bined weight of the constraints is computed using the operator ⊗ : C×C → C is
defined as (c1 ⊗ c2)η = c1η ×S c2η.
For instance, consider again the fuzzy CSP of Fig. 1. For the tuple 〈a, a〉

(that is, x = y = a), we have to compute the minimum between 0.9 (which is
the value assigned to x = a in constraint c1), 0.8 (which is the value assigned
to 〈x = a, y = a〉 in c2) and 0.9 (which is the value for y = a in c3). Hence, the
resulting value for this tuple is 0.8.

2.2 Interchangeability

Interchangeability in constraint networks has been first proposed by Freuder
[8] to capture equivalence among values of a variable in a discrete constraint
satisfaction problem. Value v = a is substitutable for v = b if for any solution
where v = a, there is an identical solution except that v = b. Values v = a and
v = b are interchangeable if they are substitutable both ways.

3 Interchangeability in Soft CSPs

In soft CSPs, there is no crisp notion of consistency. In fact, each tuple is a
possible solution, but with different level of preference. Therefore, in this frame-
work, the notion of interchangeability become finer: to say that values a and b
are interchangeable we have also to consider the assigned semiring level.
More precisely, if a domain element a assigned to variable v can be substi-

tuted in each tuple solution with a domain element b without obtaining a worse
semiring level we say that b is full substitutable for a.

Definition 1 (Full Substitutability (FS)). Consider two domain values b
and a for a variable v, and the set of constraints C; we say that b is Full Sub-
stitutable for a on v (b ∈ FS v(a)) if and only if

⊗

Cη[v := a] ≤S

⊗

Cη[v := b]

When we restrict this notion only to the set of constraints Cv that involve
variable v we obtain a local version of substitutability.

Definition 2 (Neighborhood Substitutability (NS)). Consider two do-
main values b and a for a variable v, and the set of constraints Cv involving
v; we say that b is neighborhood substitutable for a on v (b ∈ NS v(a)) if and
only if

⊗

Cvη[v := a] ≤S

⊗

Cvη[v := b]

When the relations hold in both directions, we have the notion of
Full/Neighborhood interchangeability of b with a.

Definition 3 (Full and Neighborhood Interchangeability (FI and NI)).
Consider two domain values b and a, for a variable v, the set of all constraints C
and the set of constraints Cv involving v. We say that b is Full interchangeable
with a on v (FI v(a/b)) if and only if b ∈ FS v(a) and a ∈ FS v(b). We say that b
is Neighborhood interchangeable with a on v (NI v(a/b)) if and only if b ∈ NS v(a)
and a ∈ NS v(b).

This means that when a and b are interchangeable for variable v they can be
exchanged without affecting the level of any solution.
As an example of interchangeability and substitutability consider the fuzzy

CSP represented in Fig. 1. The domain value c is neighborhood interchangeable
with a on x (NI x(a/c)); in fact, c1 ⊗ c2η[x := a] = c1 ⊗ c2η[x := c] for all η.
The domain values c and a are also neighborhood substitutable for b on x

({a, c} ∈ NS v(b)). In fact, for any η we have c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := c]
and c1 ⊗ c2η[x := b] ≤ c1 ⊗ c2η[x := a].

3.1 Degradations and Thresholds

In soft CSPs, it is possible to obtain more interchangeability by allow-
ing degrading the solution quality when values are exchanged. We call this
δinterchangeability, where δ is the degradation factor.
When searching for solutions to soft CSP, we can gain efficiency by not

distinguishing values that could in any case not be part of a solution of sufficient
quality. In αinterchangeability, two values are interchangeable if they do not
affect the quality of any solution with quality better than α. We call α the
threshold factor.
Both concepts can be combined, i.e. we can allow both degradation and limit

search to solutions better than a certain threshold (δαinterchangeability).
Thus we define:

Definition 4 (δ/αFull Substitutability (
δ/αFS)). Consider two domain val-

ues b and a for a variable v, the set of constraints C and the semiring levels δ
and α; we say that b is δfull Substitutable for a on v (b ∈

δ
FS v(a)) if and only

if for all assignments η,
⊗

Cη[v := a]×S δ ≤S

⊗

Cη[v := b].
We say that b is αfull substitutable for a on v (b ∈ αFS v(a)) if and only if

for all assignments η,
⊗

Cη[v := a] ≥ α =⇒
⊗

Cη[v := a] ≤S

⊗

Cη[v := b]

Similar to the plain version, neighbourhoodδαsubstitutability is obtained
by only evaluating the definition on the neighbourhood of a variable, and
δ
αinterchangeability is defined as substitutability both ways.
As an example consider Fig. 1. The domain values c and b for variable y

are 0.2Neighborhood Interchangeable. In fact, the tuple involving c and b only
differ for the tuple 〈b, c〉 that has value 0.1 and for the tuple 〈b, b〉 that has value
0. Since we are interested only to solutions greater than 0.2, these tuples are
excluded from the match.

In [2], we present a number of useful theorems relating to
δ
αinterchangeability, in particular that neighbourhoodδαinterchangeability
implies fullδαinterchangeability, and results on transitivity and limit cases.

4 Conclusions

Interchangeability in CSPs has found many applications for problem abstraction
and solution adaptation. In this paper, we give hints to extend the concept of
Interchangeability to soft CSPs in a way that maintains the attractive properties
already known for hard constraints.
The two parameters α and δ allow us to express a wide range of practical

situations. The threshold α is used to eliminate distinctions that would not
interest us anyway, while the allowed degradation δ specifies how precisely we
want to optimize our solution.

References

[1] Bistarelli, S.: Soft Constraint Solving and programming: a general framework.
PhD thesis, Dipartimento di Informatica, Università di Pisa, Italy (2001) TD-
2/01.

[2] Bistarelli, S., Faltings, B., Neagu, N.: A definition of interchangeability for soft
csps. In: Proc. of the Joint Workshop of the ERCIM Working Group on Con-
straints and the CologNet area on Constraint and Logic Programming on Con-
straint Solving and Constraint Logic Programming. (2002) Selected papers will
be published in LNCS series.

[3] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and
Optimization. J. ACM 44 (1997)

[4] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Logic Program-
ming: Syntax and Semantics. TOPLAS ACM 23 (2001)

[5] Choueiry, B.Y.: Abstraction Methods for Resource Allocation. PhD thesis, EPFL
PhD Thesis no 1292 (1994)

[6] Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis
for flexible constraint satisfaction. In: Proc. IEEE International Conference on
Fuzzy Systems. (1993)

[7] Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a proba-
bilistic approach. In: Proc. European Conference on Symbolic and Qualitative
Approaches to Reasoning and Uncertainty (ECSQARU). Volume 747 of LNCS.
(1993)

[8] Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Proc. of AAAI-91. (1991)

[9] Freuder, E., Wallace, R.: Partial constraint satisfaction. AI Journal 58 (1992)
[10] Haselbock, A.: Exploiting interchangeabilities in constraint satisfaction problems.

In: Proc. of the 13th IJCAI. (1993)
[11] Neagu, N., Faltings, B.: Exploiting interchangeabilities for case adaptation. In:

In Proc. of the 4th ICCBR01. (2001)
[12] Ruttkay, Z.: Fuzzy constraint satisfaction. In: Proc. 3rd IEEE International

Conference on Fuzzy Systems. (1994)
[13] Schiex, T., Fargier, H., Verfaille, G.: Valued Constraint Satisfaction Problems:

Hard and Easy Problems. In: Proc. IJCAI95. (1995)
[14] Weigel, R., Faltings, B.: Interchangeability for case adaptation in configuration

problems. In: Proc. of the AAAI98 Spring Symposium on Multimodal Reasoning,
Stanford, CA. (1998) TR SS-98-04.

[15] Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artificial
Intelligence 115 (1999)

