A Protocol's Life After Attacks let's investigate beyond

Giampaolo Bella Stefano Bistarelli Fabio Massacci

@ Cambridge, Catania, Pescara, Pisa, Trento

Current verification setting

Focus is in fact on "THE attack". Is this all??

Glance at the physical world

We own a bakery, and one morning we find the window smashed. We can:

- Suspect: no-one's around it could have been any passer-by ⊗
- 2. Detect: the burglars are still there, and no-one else's around it was them! ③
- 3. Retaliate: the burglars are caught and punished accordingly by appropriate measures!! ©©

Idea: apply same concepts to security protocols

How and Why

- How? Must continue analysis after "THE attack"
 - For example:
 - Model Checkers: If I find an attack, is there another one? (retaliation)
 - Theorem Provers: If I assume there is an attack, could anyone else mount the same attack? (detection)
- Why? Can get novel insights about protocols For example:
 - Is it really convenient to attempt attacks?
 - Do we need to redesign, or the bad guys are stopped by realistic threats?
 - What if the principals change their behaviours?

Example

Take Lowe's middle-person attack on NS: if A executes with C then C impersonates A with B

- Consequence (Lowe):
 if B is a bank, C can steal from A's account
 C→B : {Na, Nb, "Transfer £1000 from A's account to C's}_{Kb}
- Extra consequence (last year's workshop):
 if A is a bank, B can steal from C's account
 B→A : {Na, Nb, "Transfer £1000 from C's account to B's}_{Ka}

Principals' behaviours

Principals are divided according to their behaviours into three disjoint sets.

- **Good**: *G* conform to the protocol
- Bad: \mathcal{B} attempt to break the protocol
- Ugly: \mathcal{U} conform to the protocol but would collaborate with bad

Crucially: principals may decide to change behaviour!

Traces and attacks

- Trace T : conventional view of protocol history as log (of events or messages, or...)
- Projection T/A : subtrace of T where some agent in A acted
- Attack A : some predicate A(T,G,B,U)

Can make Spy, owner of the network, explicit.

Current verification setting (more formal)

P vulnerable to A against G if $\exists T \in P.A(T,G,B,U)$

P immune to A against G if $\nexists T \in P$. A(T, G, B, U)

Retaliation

A protocol P allows *retaliation* of an attack A by \mathcal{B} if

 $\forall T \in \mathsf{P}, G, B, \mathcal{U} \text{ s.t. } \mathbf{A}(T, G, B, \mathcal{U}),$ $\exists T_{r} \in \mathsf{P} \text{ extending } T,$ $\exists G', B', \mathcal{U}' \text{ s.t. } B' \subset G \cup \mathcal{U} \text{ and}$ $\text{ s.t. } \mathbf{A}(T_{r}, G', B', \mathcal{U}')$

if B'=G direct retaliation
else, if B'∩G ≠ ∞ combined retaliation
else, if B'⊂U arbitrary retaliation

Appears suitable for theorem proving...

Example (mvore formal)

Lowe's middle-person attack on NS: if A executes with C then C impersonates A with B

- Consequence (Lowe): if B is a bank, C can steal from A's account
- Extra consequence (last year's workshop): if A is a bank, B can steal from C's account

Whenever

 $A(T, G:=\{B\}, B:=\{C\}, U:=\{A\})$

T can be extended as T_r s.t.

 $A(T, G:=\{A\}, B:=\{B\}, U:=\{C\})$

No Retaliation

A protocol P allows *no retaliation* of an attack A by B if

 $\exists T \in \mathsf{P}, G, B, \mathcal{U} \text{ s.t. } \mathbf{A}(T, G, B, \mathcal{U}), \\ \forall T_r \in \mathsf{P} \text{ extending } T, \\ \forall G', B', \mathcal{U}' \text{ s.t. } B' \subset G \cup \mathcal{U} \text{ and} \\ \mathcal{B} \subset G' \cup \mathcal{U}'$

Appears suitable for model checking

Detection

A protocol P allows *detection* of an attack A by \mathcal{B} if

 $\forall T \in \mathsf{P}, G, \mathcal{B}, \mathcal{U} \text{ s.t. } \mathbf{A}(T, G, \mathcal{B}, \mathcal{U}),$ $\forall T_r \in \mathsf{P} \text{ s.t. } T/G = T_r/G$ $\mathsf{holds} \mathbf{A}(T_r, G', \mathcal{B}', \mathcal{U}')$

Appears suitable for theorem proving...

No Detection

A protocol P allows *no detection* of an attack A by \mathcal{B} if

 $\exists T \in \mathsf{P}, G, \mathcal{B}, \mathcal{U} \text{ s.t. } \mathbf{A}(T, G, \mathcal{B}, \mathcal{U}),$ $\exists T_r \in \mathsf{P} \text{ s.t. } T/G = T_r/G \text{ and } T_r \neq T$ $\mathsf{holds} \neg \mathbf{A}(T_r, G', \mathcal{B}', \mathcal{U}')$

Appears suitable for model checking...

Suspicion

A protocol P allows suspicion of an attack A if $\forall T \in P, G, B, U$ s.t. A(T, G, B, U), $\forall T_{r} \in P$ s.t. $T/G = T_{r}/G$ $\exists B', U'$ s.t. $B' \neq B$ and $U' \neq U$ s.t. $A(T_{r}, G, B', U')$

Appears suitable for theorem proving...

No Suspicion

A protocol P allows *no suspicion* of an attack A if

 $\exists T \in \mathsf{P}, G, B, \mathcal{U} \text{ s.t. } \mathbf{A}(T, G, B, \mathcal{U}),$ $\exists T_r \in \mathsf{P} \text{ s.t. } T/G = T_r/G$ $\forall B', \mathcal{U}' \text{ s.t. } B' \neq B \text{ and } \mathcal{U}' \neq \mathcal{U}$ $\mathsf{holds} \neg \mathbf{A}(T_r, G, B', \mathcal{U}')$

Appears suitable for model checking...

Conclusions

- There's life after attacks take place!
- Life that is worth investigating
- More complex properties of traces: at least two quantifiers (possibly alternated) where we used to have one only
- Theory now adapted. Can we adapt mechanised tool support?