
Computational Intelligence, Volume 20, Number 2, 2004

SOFT CONSTRAINT PROPAGATION AND SOLVING
IN CONSTRAINT HANDLING RULES

S. BISTARELLI

Dipartimento di Scienze, Universitá “D’Annunzio” di Chieti-Pescara, Italy
Istituto di Informatica e Telematica, C.N.R., Pisa, Italy

T. FRÜHWIRTH

Fakultät für Informatik, Universität Ulm, Germany

M. MARTE

Institut für Informatik, Ludwig-Maximilians-Universität München, Germany

F. ROSSI

Dipartimento di Matematica Pura ed Applicata, Università di Padova, Italy

Soft constraints are a generalization of classical constraints, which allow for the description of preferences
rather than strict requirements. In soft constraints, constraints and partial assignments are given preference or
importance levels, and constraints are combined according to combinators which express the desired optimization
criteria. On the other hand, constraint handling rules (CHR) constitute a high-level natural formalism to specify
constraint solvers and propagation algorithms. We present a framework to design and specify soft constraint solvers
by using CHR. In this way, we extend the range of applicability of CHR to soft constraints rather than just classical
ones, and we provide a straightforward implementation for soft constraint solvers.

Key words: constraint solving, constraint propagation, soft constraints, constraint languages.

1. INTRODUCTION

Many real-life problems are naturally described via constraints that state the necessary
requirements of the problems. However, usually such requirements are not hard, and could
be more faithfully represented as preferences, which should preferably be followed but not
necessarily. Moreover, real-life problems are often over-constrained, because it is impossible
to satisfy all their constraints. These scenarios suggest the use of preferences or in general
of soft constraints rather than classical constraints.

Generally speaking, a soft constraint is just a classical constraint plus a way to associate,
either to the entire constraint or to each assignment of its variables, a certain element, which
is usually interpreted as a level of preference or importance. We will use with the same
meaning the terms preference, preference value, level of preference, weight, and semiring
value. Moreover, when higher preferences are worse, we also call them costs. Such levels
are usually ordered, and the order reflects the idea that some levels are better than others.
Moreover, one has also to say, via a suitable combination operator, how to obtain the level of
preference of a global solution from the preferences in the constraints.

To identify a specific class of soft constraints, one has just to select a certain combination
operator and a certain ordered set of levels of preferences. For example, one can choose the
set of all reals between 0 and 1, and the min operator (this would be the so-called fuzzy
constraints); with this framework, one can give a preference level between 0 and 1 to partial
solutions, where a higher level is considered better, and then compute the preference of a
global solution as the minimal preference on all constraints. Another example would be
obtained by choosing the set of all naturals as the preference values, ordered in a way that
higher values are worse, and sum as the combination operator; in this setting, also called
Weighted CSPs (constraint satisfaction problems), we are looking for the solutions which
minimize the sum of all the preferences (also called costs in this specific scenario). In this

C© 2004 Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA, and 9600 Garsington Road, Oxford OX4 2DQ, UK.

288 COMPUTATIONAL INTELLIGENCE

view, also classical constraints can be seen as a specific class of soft constraints, where there
are only two levels of preference false and true.

Many formalisms have been developed to describe one or more classes of soft constraints
(Borning, Maher, and Wilson 1989; Freuder and Wallace 1992; Dubois, Fargier, and Prade
1993). In this paper we refer to one which is general enough to describe most of the desired
classes. This framework is based on a semiring structure, that is, a set plus two operators:
the set contains all the preference levels, one of the operators gives the order over such a
set, while the other one is the combination operator (Bistarelli, Montanari, and Rossi 1997;
Bistarelli 2001).

It has been shown that constraint propagation and search techniques, as usually developed
for classical constraints, can be extended also to soft constraints, if certain conditions are
met (Bistarelli et al. 1997). However, while for classical constraints there are formalisms
and environments to describe search procedures and propagation schemes (Van Hentenryck
2000), as far as we know nothing of this sort is yet available for soft constraints. Such tools
would obviously be very useful, since they would provide a flexible environment where to
specify and try the execution of different propagation schemes.

We propose to use the constraint handling rules (CHR) framework (Frühwirth 1998),
which is widely used to specify propagation algorithms for classical constraints, and has
shown great generality and flexibility in many application fields. CHR describe propagation
algorithms via two kinds of rules, which, given some constraints, either replace them (in a
simplification rule) or add some new constraints (in a propagation rule). With a collection of
such rules, one can easily specify complex constraint reasoning algorithms.

We describe how to use CHR to specify propagation algorithms for soft constraints. The
advantages of using a well-tested formalism, as CHR is, to specify soft constraint propagation
algorithms are many fold. First, we get an easy implementation of new solvers for soft
constraints starting from existing solvers for classical constraints. Moreover, we obtain an
easy experimentation platform, which is also flexible and adaptable. And finally, we develop
a general implementation which can be used for many different classes of soft constraints,
and also to combine some of them.

The paper is organized as follows. In Section 2 we recall the basic notions of the soft
contraint framework based on semirings. In Section 3 we give a short introduction to CHR. In
Section 4 we describe the constraint solvers for soft constraints that we implemented in CHR
and in Section 5 we give some examples. Finally, we conclude and give some perspectives
for future work in Section 6.

2. SOFT CONSTRAINTS

In the literature there have been many formalizations of the concept of soft constraints
(Borning et al. 1989; Freuder and Wallace 1992; Dubois et al. 1993). Here we refer to a specific
one that, however, can be shown to generalize and express many of the others (Bistarelli et al.
1997). In short, a soft constraint is a constraint where each instantiation of its variables has
an associated value from a partially ordered set. Combining constraints will then have to
take into account such additional values, and thus the formalism has also to provide suitable
operations for combination (×) and projection (+) of tuples of values and constraints. This is
why this formalization is based on the concept of semiring, which is a set plus two operations.

2.1. Semirings and SCSPs

A semiring is a tuple 〈A, +, ×, 0, 1〉 such that: A is a set and 0, 1 ∈ A; + is commutative,
associative, and 0 is its unit element; × is associative, distributes over +, 1 is its unit element,
and 0 is its absorbing element.

SOFT CONSTRAINT PROPAGATION 289

In reality, we need some additional properties, leading to the notion of c-semiring (for
“constraint-based”): a c-semiring is a semiring 〈A, +, ×, 0, 1〉 such that + is idempotent, 1
is its absorbing element, and × is commutative.

Let us now consider the relation ≤S over A such that a ≤S b iff a + b = b. Then it is
possible to prove that: ≤S is a partial order; + and × are monotone on ≤S; 0 is its minimum
and 1 its maximum; 〈A, ≤S〉 is a complete lattice and + obtains the least upper bound of its
operands. Moreover, if × is idempotent, then: + distributes over ×; 〈A, ≤S〉 is a complete
distributive lattice and × obtaines the greatest lower bound of its operands. The ≤S relation
is what we will use to compare tuples and constraints: if a ≤S b it intuitively means that b is
better than a.

In this context, a soft constraint is then a pair 〈def, con〉 with con ⊆ V , where V is the
set of problem variables, and def : D|con| → A, where D is the domain of possible values of
the variables. Therefore, a constraint specifies a set of variables (the ones in con), and assigns
to each tuple of values of these variables an element of the semiring.

A soft constraint satisfaction problem (SCSP) is a pair 〈C, con〉 where con ⊆ V and C
is a set of constraints: con is the set of variables of interest for the constraint set C , which
however may concern also variables not in con.

2.1.1. Combining and Projecting Soft Constraints. Given two soft constraints c1 =
〈def1, con1〉 and c2 = 〈def2, con2〉, their combination c1 ⊗ c2 is the constraint 〈def, con〉 de-
fined by con = con1 ∪ con2 and def(t) = def1(t ↓con

con1
) × def(t ↓con

con2
), where t ↓X

Y denotes
the tuple of values over the variables in Y , obtained by projecting tuple t from X to Y . In
words, combining two soft constraints means building a new soft constraint involving all the
variables of the original ones, and which associates to each tuple of domain values for such
variables a semiring element which is obtained by multiplying the elements associated by the
original soft constraints to the appropriate sub-tuples.

Given a soft constraint c = 〈def, con〉 and a subset I of V , the projection of c over
I , written c ⇓I is the soft constraint 〈def ′, con′〉 where con′ = con ∩ I and def ′(t ′) =∑

t/t↓con
I∩con=t ′ def(t). Informally, projecting means eliminating some variables. This is done

by associating to each tuple over the remaining variables a semiring element which is the
sum of the elements associated by the original constraint to all the extensions of this tuple
over the eliminated variables.

Summarizing, combination is performed via the multiplicative operation of the semiring,
and projection via the additive operation.

2.2. Instances

Classical CSPs are SCSPs where the chosen c-semiring is Bool = 〈{false, true},
∨, ∧, false, true〉. By using this semiring we mean to associate to each tuple a boolean value,
with the intention that true is better than false, and we combine constraints via the logical
and.

Fuzzy CSPs (Dubois et al. 1993) instead can be modeled in the SCSP framework by
choosing the c-semiring SFCSP = 〈[0, 1], max, min, 0, 1〉. This means that each tuple of values
in a constraint has a preference between 0 and 1, where higher values are better. Then,
constraints are combined via the min operation and different solutions are compared via the
max operation. The ordering here reduces to the usual ordering on reals.

Example 1. Figure 1 shows the graph representation of a fuzzy CSP. Variables are X and
Y , and constraints are represented by nodes and undirected (unary for c1 and c3 and binary
for c2) arcs, and semiring values are written to the right of the corresponding tuples. The

290 COMPUTATIONAL INTELLIGENCE

FIGURE 1. A fuzzy CSP.

variables of interest (that is the set con) are represented with a double circle. Here we assume
that the domain D of the variables contains only elements a, b, and c.

If semiring values represent probability/fuzziness values then, for instance, the tuple
〈a, c〉 → 0.2 in constraint c2 can be interpreted to mean that the probability/fuzziness of X
and Y having values a and c, respectively, is 0.2.

Another interesting instance of the SCSP framework is based on set operations such
as union and intersection and uses the c-semiring Sets = 〈℘(A), ∪, ∩, ∅, A〉, where A is
any set. This means that preferences are denoted by subsets of a given set A, that con-
straint combination is performed via set intersection, and that the preference ordering is
deduced from set union. Thus the order reduces to set inclusion, and therefore, it is a partial
order.

It is also important to note that the cartesian product of two semirings is again a
semiring. This allows to reason with multiple criteria (one for each semiring) at the same
time.

If we restrict SCSPs to have a total order on the preferences, then we are equivalent to
a different preference-based framework, called Valued CSPs (Schiex, Fargier, and Verfaillie
1995), which works with a valuation structure consisting of a set and an operation to perform
constraint combination.

2.3. Solutions

The solution of an SCSP problem P = 〈C, con〉 is the constraint Sol(P) = (⊗C) ⇓con .
In words, we combine all constraints and then we project the resulting constraint onto the
variables of interest.

Example 2. Consider again the solution of the fuzzy CSP of Figure 1. It associates a semiring
element to every domain value of variable X . Such an element is obtained by first combining
all the constraints together and then projecting the obtained constraint over X .

For instance, for the tuple 〈a, a〉 (that is, X = Y = a), we have to compute the minimum
between 0.9 (which is the value assigned to X = a in constraint c1), 0.8 (which is the value
assigned to 〈X = a, Y = a〉 in c2) and 0.9 (which is the value for Y = a in c3). Hence, the
resulting value for this tuple is 0.8. We can do the same work for tuple 〈a, b〉 → 0.2, 〈a, c〉 →
0.2, 〈b, a〉 → 0, 〈b, b〉 → 0, 〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and 〈c, c〉 → 0.2.
The obtained tuples are then projected over variable X , obtaining the solution 〈a〉 → 0.8,
〈b〉 → 0.1 and 〈c〉 → 0.8.

SOFT CONSTRAINT PROPAGATION 291

Solving an SCSP is an NP-complete problem. Its complexity is in fact exponential in
time in the size of the given constraint problem.

2.4. Soft Constraint Propagation

SCSP problems can be solved by extending and adapting the techniques usually used
for classical CSPs. For example, to find the best solution we could employ a branch &
bound search algorithm (instead of the classical backtracking), and also the successfully used
propagation techniques such as arc consistency, can be generalized to be used for SCSPs.

Instead of deleting tuples, in SCSPs obtaining some form of constraint propagation means
changing the semiring values associated to some tuples or domain elements. In particular,
the change always brings these values toward the worst value of the semiring, that is, the 0.

The kind of soft constraint propagation we will consider in this paper amounts to com-
bining, at each step, a subset of the soft constraints and then projecting over some of their
variables. This is not the most general form of constraint propagation, but it strictly gen-
eralizes the usual propagation algorithms such as arc and path consistency, therefore, it is
reasonably general.

More precisely, each constraint propagation rule can be uniquely identified by just speci-
fying a subset C of the constraint set, and one particular constraint in C , say c. Then, applying
such a rule consists of performing the following operation: c := (⊗C) ⇓var (c). That is, c is
replaced by the projection, over its variables, of the combination of all the constraints in C .

It is easy to see that arc consistency over classical constraints could be modeled by
choosing the boolean semiring and selecting C as the set of constraints (two unary and one
binary) over any two variables, and c as one of the unary constraints in C .

A soft constraint propagation algorithm operates on a given set of soft constraints by
applying a certain set of constraint propagation rules until stability is reached. It is possible
to prove that any constraint propagation algorithm defined in this way has the following
properties (Bistarelli et al. 1997):

– it terminates;
– if × is idempotent, then:

� the final constraint set is equivalent to the initial one;
� the result does not depend on the order of application of the constraint propagation

rules.

Classical, fuzzy and set soft constraints have an idempotent × operator, thus soft con-
straint propagation, when applied in these frameworks, has all the properties listed above.

If the × operator is not idempotent, for example, in the semiring 〈R ∪ {+∞}, min, +,
0, +∞〉 for constraint optimizations (where we have to minimize the sum of the costs, and
thus × is the sum), we cannot be sure that constraint propagation has the above desirable
properties. However, some recent work (Schiex 2000) has shown that at least equivalence
can be preserved by applying a notion similar to classical propagation.

Even with very naive algorithms, it is possible to achieve classical constraint propagation
in O(nk), where n is the number of variables of the given problem and k is the size of the
sub-problem to be solved by each propagation rule (so, for example, arc-consistency can be
achieved in quadratic time). For soft constraint propagation, the time complexity is similar,
except that we must consider also the number of different preference levels. So, if the size of
the constraint subset to be considerd by each soft constraint propagation rule is small with
respect to the size of the whole problem, the time complexity of performing soft constraint
propagation is polynomial.

292 COMPUTATIONAL INTELLIGENCE

3. CONSTRAINT HANDLING RULES

Constraint Handling Rules (CHR) (Frühwirth 1998) are a committed-choice concurrent
constraint logic programming language consisting of multiheaded guarded rules that rewrite
constraints into simpler ones until they are solved. CHR define both simplification of and
propagation over user-defined constraints. Simplification replaces constraints by simpler
constraints while preserving logical equivalence. Propagation adds new constraints which
are logically redundant but may cause further simplification. CHR have been used in dozens
of projects worldwide to implement various constraint solvers, including novel ones such as
terminological, spatial and temporal reasoning.

In this section we quickly give syntax and semantics for CHR, for details see (Frühwirth
1998). We assume some familiarity with (concurrent) constraint (logic) programming (Van
Hentenryck 1989; Marriott and Stuckey 1998; Frühwirth and Abdennadher 2003).

A constraint is a predicate (atomic formula) in first-order logic. We distinguish between
built-in (predefined) constraints and CHR (user-defined) constraints. Built-in constraints
are those handled by a predefined, given constraint solver. For simplicity, we will regard all
(auxiliary) predicates as built-in constraints. CHR constraints are those defined by a CHR
program.

3.1. Abstract Syntax

In the following, upper case letters stand for conjunctions of constraints.
A CHR program is a finite set of CHR. There are two kinds of CHR. A simplification

CHR is of the form

N@H <=> G | B

and a propagation CHR is of the form

N@H ==> G | B,

where the rule has an optional name N followed by the symbol @. The multihead H is a con-
junction of CHR constraints. The optional guard G followed by the symbol | is a conjunction
of built-in constraints. The body B is a conjunction of built-in and CHR constraints.

A simpagation CHR is a combination of the above two kinds of rule, it is of the form

N@H1\H2 <=> G | B,

where the symbol "\" separates the head constraints into two nonempty conjunctions H1
and H2. A simpagation rule can be regarded as efficient abbreviation of the corresponding
simplification rule:

N@H1, H2 <=> G | H1, B.

3.2. Operational Semantics

The operational semantics of CHR programs is given by a state transition system. With
derivation steps (transitions, reductions) one can proceed from one state to the next. A
derivation is a sequence of derivation steps.

A state (or: goal) is a conjunction of built-in and CHR constraints. An initial state (or:
query) is an arbitrary state. In a final state (or: answer) either the built-in constraints are
inconsistent or no derivation step is possible anymore.

SOFT CONSTRAINT PROPAGATION 293

Let P be a CHR program for the CHR constraints and CT be a constraint theory for the
built-in constraints. The transition relation �−→ for CHR is as follows.

Simplify
H ′ ∧ D �−→ (H = H ′) ∧ G ∧ B ∧ D
if (H <=> G | B) in P and CT |= D → ∃x̄(H = H ′ ∧ G)

Propagate
H ′ ∧ D �−→ (H = H ′) ∧ G ∧ B ∧ H ′ ∧ D
if (H ==> G | B) in P and CT |= D → ∃x̄(H = H ′ ∧ G)

When we use a rule from the program, we will rename its variables using new symbols,
and these variables are denoted by the sequence x̄ . A rule with head H and guard G is
applicable to CHR constraints H ′ in the context of constraints D, when the condition CT |=
D → ∃x̄(H = H ′ ∧ G) holds.

In the condition, the equation (H = H ′) is a notational shorthand for equating the argu-
ments of the CHR constraints that occur in H and H ′. More precisely, by (H1 ∧ · · · ∧ Hn) =
(H ′

1 ∧ · · · ∧ H ′
n) we mean (H1 = H ′

1) ∧ · · · ∧ (Hn = H ′
n), where conjuncts can be permuted.

By equating two constraints, c(t1, . . . , tn) = c(s1, . . . , sn), we mean (t1 = s1) ∧ · · · ∧ (tn =
sn). The symbol = is to be understood as built-in constraint for syntactic equality and is
usually implemented by a unification algorithm.

Operationally, this condition requires to check first whether H ′ matches H according
to the definition of the built-in constraints in CT , i.e., whether H ′ is an instance of (more
specific than) the pattern H . The seemingly symmetric equation (H = H ′) in the condition
gives rise to matching (one-way unification) because in the context of the condition, the
equation (H = H ′) must be a logical consequence of guard D where the quantification ∃x̄
denotes only the variables from the rule. When matching, we take the context D into account
since its built-in constraints may imply that variables in H ′ are equal to specific terms. This
means that there is no distinction between, say, c(X) ∧ X = 1 and c(1) ∧ X = 1.

If H ′ matches H , we equate H ′ and H . This corresponds to parameter passing in con-
ventional programming languages, since only variables from the rule head H can be further
constrained, and all those variables are new. Finally, using the variable equalities from D and
H ′ = H , we check the guard G.

Any of the applicable rules can be applied, but it is a committed choice, that is, it cannot
be undone.

If an applicable simplification rule (H <=> G | B) is applied to the CHR constraints
H ′, the Simplify transition removes H ′ from the state and adds the body B, the equation
H = H ′, and the guard G. If a propagation rule (H ==> G | B) is applied to H ′, the
Propagate transition adds B, H = H ′, and G but does not remove H ′.

Trivial nontermination of a propagation rule is avoided by applying it at most once to the
same constraints.

Example. We define a CHR constraint for a partial order relation ≤, where syntactic
equality = is assumed to be built-in:

r1 @ X≤ X ⇔ true.
r2 @ X≤ Y ∧ Y≤ X ⇔ X= Y.
r3 @ X≤ Y ∧ Y≤ Z ⇒ X≤ Z.

The CHR program implements reflexivity (r1), antisymmetry (r2), and transitivity (r3)
in a straightforward way. The reflexivity rule r1 states that X≤ X is logically true. The

294 COMPUTATIONAL INTELLIGENCE

antisymmetry rule r2 means X≤ Y ∧ Y≤ X is logically equivalent to X= Y. The transitivity
rule r3 states that the conjunction of X≤ Y and Y≤ Z implies X≤ Z.

A computation of the goal A≤ B ∧ C≤ A ∧ B≤ C proceeds as follows (where CHR
constraints that participate in a rule application have been underlined):

A≤ B ∧ C≤ A ∧ B≤ C �→r3

A≤ B ∧ C≤ A ∧ B≤ C ∧ C≤ B �→r2

A≤ B ∧ C≤ A ∧ B= C

Now the head of the antisymmetry rule can match A≤ B ∧ C≤ A, because B= C.

A≤ B ∧ C≤ A ∧ B= C �→r2

A= B ∧ B= C

No more rules are applicable. The result says that all three variables must be the same.

4. IMPLEMENTATION

Typically, CHR are used in Java or within a CLP environment such as Eclipse, Yap or
Sicstus Prolog. This means that propagation algorithms are described via CHR, while the
underlying CLP language is used to define search procedures and auxiliary predicates. This
is the case in our implementation of soft constraints, where the underlying language is Sicstus
Prolog (Carlsson and Widen 1999). Note that the actual running code has been slightly edited
to abstract away from technicalities such as cuts and term copying.

4.1. Choice of the Semiring

The implementation is parametric with regard to the semiring. To choose one partic-
ular semiring S, the user states (i.e., asserts) the fact semiring(S) using the predicate
use semiring(S). The implementation currently supports the classical, the fuzzy, the
weighted, and the set semiring set(U) with universe U. For example, to use the fuzzy
semiring, we write use semiring(fuzzy). The cartesian product of semirings is sup-
ported too. To use the cartesian product of the fuzzy and the classical semiring, we write
use semiring((fuzzy, classical)).

Note that the cartesian product of two semirings is idempotent, if both semirings are
idempotent.

Recall that a semiring is characterized by a tuple 〈A, +, ×, 0, 1〉. While the definition
of the set A is implicit through the operations, the operations and remaining parameters are
defined by CLP clauses. In particular, the operators + and × are defined by the predicates
plus/3 and times/3. The partial semiring order is defined by the predicate leqs/2 in terms
of the additive operator, as in the definition of the semiring structure:

leqs(A, B) :- plus(A, B, B).

Finally, the top and the bottom element are defined by the predicates one/1 and zero/1.
For example, for the classical semiring (i.e., for hard constraints) we have:

plus(classical, W1, W2, W3) :- or(W1, W2, W3),
times(classical, W1, W2, W3) :- and(W1, W2, W3),
one(classical, t),
zero(classical, f).

The symbol t stands for true, f stands for false.

SOFT CONSTRAINT PROPAGATION 295

For the cartesian product of two semirings, we define the operators in terms of the
operators of the constituent semirings:

plus((S1, S2), (A1, B1), (A2, B2), (A3, B3)) :-
plus(S1, A1, A2, A3),
plus(S2, B1, B2, B3).

times((S1, S2), (A1, B1), (A2, B2), (A3, B3)) :-
times(S1, A1, A2, A3),
times(S2, B1, B2, B3).

one((S1, S2), (One1, One2)) :-
one(S1, One1), one(S2, One2).

zero((S1, S2), (Zero1, Zero2)) :-
zero(S1, Zero1), zero(S2, Zero2).

4.2. Representation of Constraints

Each constraint definition (see Section 2) is represented as a list of pairs, where each
pair consists of a tuple of values and its associated preference value. It is understood that
those value tuples that do not occur in the list are associated with the worst element of the
underlying semiring.

Constraints are stated by means of the infix operator in. The left argument of the in
operator is a tuple of problem variables and the right argument is a suitable definition, e.g.,
[X] in [[a]-2,[b]-3], and [X,Y] in [[a,b]-3,[b,c]-4].

The predicate domain/2 can be used to post several constraints at a time that do not differ
in their definition. The predicate takes a list of variable tuples and a constraint definition.

A constraint definition as in [X,Y] in [[a,b]-3,[b,c]-4] is called extensional. Yet
constraints can be defined intensionally, too, which comes handy in the case of infinite
relations. For example, [X,Y] in leq-3-1 associates the preference value 3 to all tuples
that satisfy the relation leq/2 and the value 1 to the others. Do not confuse leq, which holds
between values, with the leqs for the semiring, which holds between preferences.

Note that this is just one way to interpret intensionally defined constraints. For leq,
we have also experimented with fuzzy preferences where all pairs that satisfy the relation
have maximum preference 1, while for the other pairs the preference could be computed as
1/(1 + d) where d is the difference between the two values that do not satisfy the constraint.
Another formula we have used was inspired by work in neural networks: if the importance
level of the constraint is l, we give preference level (1 − l)ead to all the tuples that do not
satisfy the constraint, where it is assumed that the preference levels range between 0 and 1
(thus 1 − l is the dual of l), and where a is a parameter that controls the steepness of the
function.

4.3. Constraint Combination

The predicate combination/3 takes two extensionally defined constraints (Con1 in
Def1 and Con2 in Def2) and returns their combination (Con3 in Def3):

combination(Con1 in Def1, Con2 in Def2, Con3 in Def3) :-
isExtensional(Def1),
isExtensional(Def2),
semiring(S),
zero(S, Z),
union(Con1, Con2, Con3),

296 COMPUTATIONAL INTELLIGENCE

findall(Con3-W3,
(member(Con1-W1, Def1),

member(Con2-W2, Def2),
times(S, W1, W2, W3),
W3 \== Z),

Def3).

The combination is performed as follows: first, the union of Con1 and Con2, namely Con3,
is computed. Then findall/3, member/2, and times/4 are used to compute Def3 from
Def1 and Def2. More precisely, the call to findall/3 collects all value tuples along with
their preference values.

The calls to member/2 select two tuples from Def1 and Def2 that are consistent with
regard to the variables that are common to Con1 and Con2.1 In the course of these calls, all
variables in Con3 get bound and thus we obtain a new tuple the preference value of which
is computed by means of times/4. For performance reasons, tuples with zero preference
values are not collected (W3 \== Z).

For intensionally defined constraints, a variation of combination/3 is defined, called
longCombination/4. It takes an intensionally defined constraint (Con1 in Def1) and two
extensionally defined constraints (Con2 in Def2 and Con3 in Def3), and computes a new
extensionally defined constraint that represents the combination of the three original con-
straints (Con4 in Def4). Note that the two extensional constraints define the tuples, so we
can check them using the third constraint (such as during AC).

longCombination(Con1 in Def1, Con2 in Def2, Con3 in Def3,
Con4 in Def4) :-

isIntensional(Def1),
isExtensional(Def2),
isExtensional(Def3),
semiring(S),
zero(S, Z),
union(Con1, Con2, Con12),
union(Con12, Con3, Con4),
findall(Con4-W4,

(member(Con2-W2, Def2),
member(Con3-W3, Def3),
checkConstraint(Def1, Con1, W1),
times(S, W1, W2, W12),
times(S, W12, W3, W4),
W4 \== Z),

Def4).

To compute the level of preference that the intensional constraint gives to each tuple, we use
the predicate checkConstraint/3 that takes the constraint definition (Def1) and the tuple
(Con1), and returns the level of preference for the tuple (W1). For example:

checkConstraint(leq-WS-WV, [X,Y], W) :-
(X =< Y
-> W = WS
; W = WV).

1In practice, we do not use Con1, Con2, and Con3 but copies that have no constraints attached to them. Thus we avoid that
the calls to member/2 trigger any rule applications (via the introduction of new variable bindings in the course of unification).

SOFT CONSTRAINT PROPAGATION 297

checkConstraint(slq-WS-WV, [X,Y], W) :-
(X =< Y
-> W = WS
; one(ONE), W is max(WV, ONE / (X - Y + 1) * WS)).

The first clause assigns the weight WS to each tuple that satisfies the relation X =< Y, and WV
to the other tuples. The second clause defines a variant of leq, called slq, that assigns to
each tuple that violates X =< Y a weight that depends on the distance between X and Y.

4.4. Constraint Projection

Predicate projection/3 implements the projection operator. It takes an extensionally
defined constraint (Con1 in Def1) and a list of variables (Con2), and returns the result of
projecting the constraint over the list of variables (Con2 in Def2):

projection(Con1 in Def1, Con2, Con2 in Def2) :-
isExtensional(Def1),
findall(Con2-W1, member(Con1-W1, Def1), Def3),
keysort(Def3, Def4),
semiring(S),
allplus(Def4, Def2, S).

findall/3 and member/2 are used to remove those values from the tuples in Def1 that do
not correspond to any variable of interest (those in Con2). The resulting tuples are sorted so
that equal tuples are adjacent. Then the predicate allplus/3 is used to sum up the preference
values of equal tuples.

allplus([], [], _).
allplus([A-W1, A-W2|Def0], Def, S) :-

!,
plus(S, W1, W2, W3),
allplus([A-W3|Def0], Def, S).

allplus([A-W1|Def0], Def, S) :-
zero(S, W1),
!,
allplus(Def0, Def, S).

allplus([A-W1|Def0], [A-W1|Def], S) :-
allplus(Def0, Def, S).

For performance reasons, tuples with zero preference values are removed.

4.5. Node and Arc Consistency

The following rule establishes node consistency by intersecting the domains associated
with a variable using predicate combination/3:

node_consistency @ Con in Def1, Con in Def2 <=>
isExtensional(Def1), isExtensional(Def2) |
combination(Con in Def1, Con in Def2, Con in Def3),
Con in Def3.

The following simpagation rule implements arc consistency by combining binary and
unary constraints involving two variables X and Y and then projecting onto each of the two

298 COMPUTATIONAL INTELLIGENCE

variables. In effect, the two unary constraints on X and Y are tightened taking into account
the binary constraint.

arc_consistency @ [X,Y] in Def0 \ [X] in DX0, [Y] in DY0 <=>
var(X), var(Y), isExtensional(Def0) |
combination([X,Y] in Def0, [X] in DX0, [X,Y] in Def1),
combination([X,Y] in Def1, [Y] in DY0, [X,Y] in Def2),
projection1([X,Y] in Def2, [X] in DX0, [X] in DX1),
projection1([X,Y] in Def2, [Y] in DY0, [Y] in DY1),
[X] in DX1,
[Y] in DY1.

We recall here that soft arc consistency can be applied only when the multiplicative operation
of the semiring (i.e., ×) is idempotent. Otherwise, in our implementation, we apply a variation
of projection to prune the domains of X and Y. It is important to highlight that classical CSP
operation such as arc consistency (but also forward checking that is discussed in the next
section) can be naturally extended only to soft CSPs with idempotent × operators. If soft CSPs
with nonidempotent operator need to be considered, some special version of the classical
propagators have to be defined. One example is the notion of soft arc-consistency defined by
Schiex (2000).

These two cases are handled by the following predicate projection1.

projection1(Con in Def, V in DX0, V in DX1):-
projection(Con in Def, V, V in DX2),
(semiring(S), idempotent(S)
-> DX1=DX2
; findall(T-W, (member(T-W, DX0), member(T-_, DX2)), DX1).
).

The use of the predicate findall prunes those domain elements that have no support, and
leaves all other domain elements unchanged.

Another version of the arc consistency rule has been implemented that deals with in-
tensionally defined constraints. It basically differs from the rule above only in that it uses
the goal longCombination([X,Y] in Def0, [X] in DX0, [Y] in DY0, [X,Y] in
Def2) instead of the goals involving combination/3.

4.6. Forward Checking

The forward-checking rules come into play when there is a constraint Con in Def and
another constraint [X] in [[A]-W] such that X occurs in Con. In this case, we can delete
all those tuples from Con that assign to X a value other than A. If this step is performed by
means of combination, X can be eliminated from Con by means of projection.

To deal with nonidempotent semirings as well, the implementation consists of two rules.
The first rule applies only if the weight W equals the unit element One of the current semiring,
the second rule applies in all other cases. The first rule replaces Con in Def with the result
of combination and projection. In addition, the second rule replaces [X] in [[A]-W] with
[X] in [[A]-One].

In effect, this solution makes sure that the weight W of the value A is not considered more
than once in the elimination of X from nonunary constraints if the semiring is not idempotent.
(In case the times operator is idempotent, we are free to consider W in each rule application
but it is sufficient to consider W once which actually happens when the second rule is applied.)

SOFT CONSTRAINT PROPAGATION 299

fc_1 @ [X] in [[A]-W] \ Con in Def <=>
isExtensional(Def),
one(W),
delete(X, Con, ConX) |
combination([X] in [[A]-W], Con in Def, D),
projection(D, ConX, E),
E.

fc_2 @ [X] in [[A]-W], Con in Def <=>
isExtensional(Def),
not one(W),
delete(X, Con, ConX) |
one(One),
[X] in [[A]-One],
combination([X] in [[A]-W], Con in Def, D),
projection(D, ConX, E),
E.

4.7. Complete Solvers

In this section we will show how to define several complete soft constraint solvers with
CHR. A complete solver can always detect unsatisfiability of constraints, while an incomplete
solver will have to be extended with some search steps to achieve completeness.

4.7.1. Naive Solver. The predicate solve/2 implements the notion of solution. It
combines all the constraints in the constraint store and then projects over the variables of
interest (those in Con):

solve(Con, Solution) :-
findall_constraints(_ in _, Cs),
globalCombination(Cs, C),
projection(C, Con, Solution).

The predicate findall constraints/2 is a built-in primitive that facilitates the inspection
of the constraint store; it retrieves all the constraints that match the given template. The
predicate globalCombination/2 folds combination/3 over a list of constraints.

4.7.2. Solver Based on Dynamic Programming. This solver incrementally eliminates
a set of variables from the constraint store. It is started by posting the constraint dp(Con)
where Con is the list of variables that should be retained. The solver will maintain the invariant
that other variables than those in Con do not occur in the constraint store.

The solver consists of three rules. The first posts the constraint dpEliminate(X) for
each variable X that must be but has not yet been eliminated. The second rule replaces two
constraints by their combination if both contain a variable that has to be eliminated. The third
rule performs the final elimination by means of projection.

dp(Con), [X] in _ ==> not member(X, Con) | dpEliminate(X).

dpEliminate(X) \ Con1 in Def1, Con2 in Def2 <=>
member(X, Con1), member(X, Con2) |
combination(Con1 in Def1, Con2 in Def2, Con3 in Def3),
Con3 in Def3.

300 COMPUTATIONAL INTELLIGENCE

dpEliminate(X) \ Con1 in Def1 <=>
delete(X, Con1, ConX) |
projection(Con1 in Def1, ConX, Con2 in Def2),
Con2 in Def2.

4.7.3. Solver Based on Dynamic Combination of Search and Variable Elimination.
We describe our implementation of the general solving scheme, VarElimSearch, proposed by
Larrosa (2000). The implementation is also related to the bucket elimination work of Dechter
(1999).

This scheme combines search and variable elimination in an attempt to exploit the best
of each. The meta-algorithm selects a variable and attempts its elimination, but this is only
done when the elimination generates a constraint of small arity. Otherwise, it switches to
search. Namely, it branches on the variable and transforms the problem into a set of smaller
subproblems where the process is recursively repeated.

The original VarElimSearch has two parameters, S and k, where S names a specific
search algorithm and k controls the trade-off between variable elimination and search. In our
implementation we only specify the arity k. We left it to the underlying run-time system to
select the variable to eliminate, by using the built-in predicate find constraint/2.

If a variable X has been selected, its degree (the number of its neighbours in the constraint
network) is computed by means of the predicate degree/2. If the degree is smaller than k, X
is eliminated such as in dynamic programming by posting the constraint dpEliminate(X).
Otherwise, a value-weight pair A-W is chosen nondeterministically from the domain of X and
the constraint [X] in [[A]-W] is posted. Then the forward-checking rules come into play
and eliminate X. The recursion deals with the remaining variables that are not listed in Con.
Finally, solve is called for Con.

ves(K, Con, Solution) :-
find_constraint([X] in DX, _),
not member(X, Con),
!,
(degree(X, Degree), Degree<K
-> dpEliminate(X)
; member([A]-W, DX),

[X] in [[A]-W]
),
ves(K, Con, Solution).

ves(_, Con, Solution) :-
solve(Con, Solution).

4.7.4. Solver Based on Branch and Bound with Variable Labeling. This solver, called
VARBB, performs branch & bound with variable labeling in the search for a solution with
maximum weight. Given a list of variables Xs0, the solution is found in the following way:
first a variable X is selected deterministically from Xs0 according to some strategy. Second,
a value–weight pair A-AW is chosen nondeterministically from the domain of X according
to some strategy. Then the resulting unary constraint [X] in [A-AW] is imposed and, au-
tomatically, the rules for node and arc consistency are applied until the constraint store is
stable.

Then it is made sure that with this decision a better solution is possible: If there is already
a lower bound on solution quality, the resulting constraints over Con are solved using solve
and it is made sure that the solution contains a tuple the preference value of which is higher

SOFT CONSTRAINT PROPAGATION 301

than the lower bound. This check prunes the search space and makes sure that a follow-up
solution surpasses its predecessor with regard to solution quality. Finally, the recursive call
continues with the remainder of the variables Xs1.

If the list of variables is empty, the second clause for varbb computes a solution and
updates the bound to be the weight of the solution tuple.

varbb(Xs0, Con, Solution) :-
selectVariable(Xs0, X, Xs),
selectValue(X, A-AW),
[X] in [A-AW],
(bound(LB)
-> solve(Con, _ in Def),

member(_-W, Def),
W \== LB, leqs(LB, W)

; true
),
varbb(Xs, Con, Solution).

varbb([], Con, Solution) :-
solve(Con, Solution),
Solution = (_ in [_-B]),
update(bound(B)).

4.7.5. Solver Based on Branch and Bound with Constraint Labeling. This solver,
called CONBB, is a generalization of the previous one, VARBB, where constraints are
assinged tuples of values, rather than variables being assigned values from their domains.

It solves a problem as follows: First, a constraint (Con1 in Def1) is deterministically
chosen from the constraint store according to some strategy CSS. Second, a tuple is chosen
from the definition of the chosen constraint according to some strategy TSS, and it is made
sure that such a tuple does not violate the bound of the constraint, if already available. Third,
the search commits to the choice and recursively continues to look for a (better) solution.

The solver starts with the trivial, initial solution [] in [[]-One] for Solution0.

conbb(Con, CSS, TSS, Solution0, Solution) :-
Solution0 = (Con0 in Def0),
Def0 = [T0-W0],
Def1 = [_, _|_],
selectConstraint(CSS, Con1 in Def1),
!,
union(Con0, Con1, Con2),
selectTuple(TSS, Def1, Con1-W1),
times(W0, W1, W2),
(bound(LB)
-> W2 \== LB, leqs(LB, W2)
; true
),
Con1 in [Con1-W1],
conbb(Con, CSS, TSS, Con2 in [Con2-W2], Solution).

conbb(Con, _, _, _, Solution) :-
solve(Con, Solution),
Solution = (_ in [_-B]),
update(bound(B)).

302 COMPUTATIONAL INTELLIGENCE

The predicateselectConstraint/2 deterministically selects a constraint from the store
that matches the given pattern. The first argument CSS is the strategy parameter. Strategy
none does not order alternatives. Strategy dom selects one of the alternatives with the lowest
number of tuples.

The predicate selectTuple/3 nondeterministically selects a tuple-value pair from the
given constraint definition according to the given strategy. The second argument TSS is the
strategy parameter. Strategy enum (enumeration) does not order alternatives. Strategy bbf
(best bound first) prefers tuples with highest values.

5. EXAMPLES

In this section we give some examples where we use most of the concepts defined in our
implementation.

5.1. Different Solvers

We show here the input-output behaviour of the soft CHR system for one particular soft
constraint problem, on which we use different solvers: just soft constraint propagation using
node and arc consistency, branch & bound with constraint labeling, branch & bound with
variable labeling, and dynamic programming:

– Soft constraint propagation:

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]-0.1, [2]-0.2, [3]-0.3, [4]-0.1]),
[X,Y] in [[1,1]-0.1, [2,1]-0.2, [3,2]-0.3, [4,4]-0.1].

[X,Y] in [[1,1]-0.1,[2,1]-0.2,[3,2]-0.3,[4,4]-0.1],
[X] in [[1]-0.1,[2]-0.1,[3]-0.2,[4]-0.1],
[Y] in [[1]-0.1,[2]-0.2,[4]-0.1] ? ;

no

Note how the answer of the system shows new preference values for some domain ele-
ments, due to the application of soft arc consistency. For example, X = 2 has passed from
preference 0.2 to preference 0.1, X = 3 has passed from preference 0.3 to preference 0.2,
and Y = 3 has passed from preference 0.3 to preference 0 (and it is not shown in the final
domain of Y). Note also that soft constraint propagation in this example is not powerful
enough to solve the problem, so we are left with smaller domains but no solution is given.

– Branch & bound with constraint labeling (same Def as above):

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]-0.1, [2]-0.2, [3]-0.3, [4]-0.1]),
[X,Y] in [[1,1]-0.1, [2,1]-0.2, [3,2]-0.3, [4,4]-0.1],
conbb([X,Y], dom, bbf, S).

S = [X,Y] in [[3,2]-0.2],
[X] in [[3]-0.2],
[Y] in [[2]-0.2],
[X,Y] in [[3,2]-0.3] ? ;

no

SOFT CONSTRAINT PROPAGATION 303

In this case, the branch & bound solver, which is a complete solver, finds an optimal
solution, given by X = 3 and Y = 2, with global preference value 0.2. The answer also
shows the preference level of each constraint of the problem corresponding to the solution:
0.2 in the domain of X, 0.2 in the domain of Y, and 0.3 in the binary constraint. The
fuzzy semiring takes the minimum of the preference levels, so the global preference
is 0.2.

– Branch & bound with variable labeling (same Def and same binary constraint):

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]-0.1, [2]-0.2, [3]-0.3, [4]-0.1]),
[X,Y] in [[1,1]-0.1, [2,1]-0.2, [3,2]-0.3, [4,4]-0.1],
varbb([X,Y], [X,Y], S).

S = [X,Y] in [[1,1]-0.1],
[X,Y] in [[1,1]-0.1,[2,1]-0.2,[3,2]-0.3,[4,4]-0.1],
[X] in [[1]-0.1],
[Y] in [[1]-0.1] ? ;

S = [X,Y] in [[3,2]-0.2],
[X,Y] in [[1,1]-0.1,[2,1]-0.2,[3,2]-0.3,[4,4]-0.1],
[X] in [[3]-0.2],
[Y] in [[2]-0.2] ? ;

no

This solver finds the same solution as above (X = 3, Y = 2, and preference 0.2), but
before finding this optimal solution it also finds a sub-optimal solution: X = 1, Y =
1, with preference 0.1. This is due to the different labeling strategy used by the two
solvers.

– Dynamic programming (same Def and same binary constraint):

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]-0.1, [2]-0.2, [3]-0.3, [4]-0.1]),
[X,Y] in [[1,1]-0.1, [2,1]-0.2, [3,2]-0.3, [4,4]-0.1],
dp([X]).

dp([X]),
dpEliminate(Y),
[X] in [[1]-0.1,[2]-0.1,[3]-0.2,[4]-0.1] ? ;

no

This solver combines the constraints and projects them over variable X. Since there are
only two variables, the combination performs the same work as soft arc consistency (see
first example of this list). Then, the projection over X is, for this example, just the deletion
of the information concerning Y, since each domain value of X is consistent with just
one domain value of Y. Thus the returned final domain of X is the same as in the first
example of this list: X = 1 with preference 0.1, X = 2 with preference 0.1, X = 3 with
preference 0.2, and X = 4 with preference 0.1.

– Solver based on dynamic combination of search and variable elimination (same Def and
same binary constraint):

304 COMPUTATIONAL INTELLIGENCE

| ?- use_semiring(fuzzy),
domain([[X], [Y]],[[1]-0.1, [2]-0.2, [3]-0.3, [4]-0.1]),
[X,Y] in [[1,1]-0.1, [2,1]-0.2, [3,2]-0.3, [4,4]-0.1],
ves(1, [X], S).

S = [X] in [[1]-0.1,[2]-0.1],
[X] in [[1]-0.1,[2]-0.1] ? ;

S = [X] in [[3]-0.2],
[X] in [[3]-1] ? ;

S = [X] in [[4]-0.1],
[X] in [[4]-1] ? ;

no

The solution is returned step by step because the choice of k (k = 1) does not allow for
variable elimination in a dynamic-programming fashion. Instead the solver branches on
Y and returns a partial solution for Y = 1, Y = 2, and Y = 4, respectively. (There is no
solution for Y = 3 because there is no tuple with Y = 3 in the binary constraint.)

5.2. Robot Dressing

We now pass to a more realistic example, where we describe a problem via soft constraints
and we ask the soft CHR system to solve it via one of its solvers.

The problem we consider here concerns a robot that has to choose its clothes: it can
choose one shirt, one pair of trousers, and one pair of shoes. The original version of the
problem has been developed by Freuder and Wallace (1992) and used by Ruttkay (1994) for
her fuzzy solver. Then it has been adapted by Georget and Codognet (1998) for his soft CLP
language clp(fd,S) over the fuzzy semiring.

The assertion fuzzy(10) refers to a fuzzy semiring with integer values from 0 to 10.

robot([Footwear,Trousers,Shirt]) :-
use_semiring(fuzzy(10)),
[Footwear] in [[sneakers]-10,[cordovans]-10],
[Shirt] in [[white]-10,[lightgrey]-10],
[Trousers] in [[denim]-10,[blue]-10,[grey]-10],
[Footwear,Trousers] in
[[sneakers,denim]-10,[sneakers,blue]-4,[sneakers,grey]-2,
[cordovans,grey]-8,[cordovans,blue]-5],
[Footwear,Shirt] in
[[sneakers,lightgrey]-10,[sneakers,white]-7,
[cordovans,white]-10,[cordovans,lightgrey]-1],
[Trousers,Shirt] in
[[denim,white]-10,[denim,lightgrey]-7,[blue,white]-10,
[blue,lightgrey]-4,[grey,lightgrey]-10,[grey,white]-6].

The constraints are all defined extensionally: each pair of values of the variables is asso-
ciated to a preference value. Preference values are between 1 and 10, internally normalized
between 0 and 1 to use the fuzzy semiring.

SOFT CONSTRAINT PROPAGATION 305

A possible solution, computed using the CONBB solver follows. This is best solution
according to Ruttkay’s (1994) fuzzy solver.

| ?- robot([Footwear,Trousers,Shirt]),
conbb([Footwear,Trousers,Shirt], SOLUTION).

SOLUTION = [Footwear,Trousers,Shirt]in[[sneakers,denim,lightgrey]-7],
[Shirt]in[[lightgrey]-10],
[Footwear]in[[sneakers]-10],
[Trousers]in[[denim]-7] ? ;

no

5.3. Dinner Menu

This example concerns the choice of a complete menu in a restaurant. One can choose
a main dish (Dish) among three possible dishes (fish, wildboar, sauerkraut), a
drink (Drink) among four drinks (whitewine, redwine, beer, water), an appetizer
(Entree) among five (salmon, caviar, foiegras, oysters, no starter), and a
dessert (Dessert) among four (applepie, ice, fruit, no dessert).

The original problem has been formulated by Schiex (1992) for his fuzzy constraint
solver, then it has been adapted by Georget and Codognet (1998) for clp(fd,S) over the fuzzy
semiring.

menu([Starter,Entree,Dessert,Drink]) :-
use_semiring(fuzzy),
[Starter] in [[salmon]-10,[caviar]-10,[foiegras]-10,[oysters]-4,

[no_starter]-6],
[Entree] in [[fish]-8,[wildboar]-8,[sauerkraut]-10],
[Drink] in [[whitewine]-10,[redwine]-10,[beer]-10,[water]-5],
[Dessert] in [[applepie]-10,[ice]-10,[fruit]-10,[no_dessert]-6],
c1(Entree,Drink),
c2(Starter,Entree),
c3(Starter,Entree,Drink),
c4(Entree,Dessert),
c5(Starter,Dessert).

c1(Entree,Drink) :-
[Entree,Drink] in
[[fish,whitewine]-10, [fish,redwine]-10,
[fish,beer]-10, [fish,water]-10,
[wildboar,whitewine]-1, [wildboar,redwine]-10,
[wildboar,beer]-1, [wildboar,water]-1,
[sauerkraut,whitewine]-2, [sauerkraut,redwine]-2,
[sauerkraut,beer]-7, [sauerkraut,water]-2
].

For sake of brevity, the other constraints c2, c3, c4, and c5 have been omitted.
Two possible solutions, computed using the CONBB solver, follow. The second one is

the best one according to Schiex (1992).

306 COMPUTATIONAL INTELLIGENCE

| ?- menu([Entrance,Dish,Dessert,Drink]),
conbb([Entrance,Dish,Dessert,Drink],SOLUTION).

SOLUTION = [Entrance,Dish,Dessert,Drink] in
[[caviar,fish,applepie,beer]-1],
[Dessert]in[[applepie]-10],
[Dish]in[[fish]-10],
[Drink]in[[beer]-1],
[Entrance]in[[caviar]-1] ? ;

SOLUTION = [Entrance,Dish,Dessert,Drink] in
[[foiegras,fish,applepie,whitewine]-8],
[Dish]in[[fish]-8],
[Dessert]in[[applepie]-10],
[Entrance]in[[foiegras]-8],
[Drink]in[[whitewine]-10] ? ;

no

6. CONCLUSIONS

We have implemented a generic soft constraint environment where it is possible to work
with any class of soft constraints, if they can be cast within the semiring-based framework.
Once the semiring features have been stated via suitable clauses, the various solvers we have
developed in CHR and Sicstus Prolog will take care of solving such soft constraints.

We have implemented semirings for classical, fuzzy, set, and Cartesian-product soft
constraints. Our solvers include propagation-based node and arc consistency solvers as well
as the several complete solvers using branch & bound with variable or constraint labeling or
dynamic programming.

The solvers are available online at http://www.pms.informatik.uni-muenchen.de/˜
webchr/, follow the link to Soft Constraints. The code should also run in Yap Prolog.

We plan to predefine more classes of soft constraints and to develop other soft propagation
algorithms and solvers for soft constraints.

We also plan to compare our approach to the one followed by the soft constraint program-
ming language clp(fd,S) (Georget and Codognet 1998). Of course we do not expect to show
the same efficiency as clp(fd,S), but we claim the same generality, and a very natural envi-
ronment to develop new propagation algorithms and solvers for soft constraints. Moreover,
we did not need to add anything, except the rules and clauses shown in this paper with regard
to the existing CHR environment and CLP language of choice. On the other hand, clp(fd,S)
needed a new implementation and abstract machine with regard to clp(fd) (Codognet and
Diaz 1996), from which it originated.

REFERENCES

BISTARELLI, S. 2001. Soft constraint solving and programming: A general framework. Ph.D. Thesis, Dipartimento
di Informatica, University of Pisa.

BISTARELLI, S., U. MONTANARI, and F. ROSSI. 1997. Semiring-based constraint solving and optimization. Journal
of ACM, 44(2): 201–236.

SOFT CONSTRAINT PROPAGATION 307

BORNING, A., M. MAHER, A. MARTINDALE, and M. WILSON. 1989. Constraint hierarchies and logic programming.
In Proceedings of the 6th International Conference on Logic Programming. Edited by M. Martelli and G. Levi.
MIT Press, MA, pp. 149–164.

CARLSSON, M., and J. WIDEN. 1999. SICStus Prolog User’s Manual. Swedish Institute of Computer Science
(SICS). Available at http://www.sics.se/sicstus/.

CODOGNET, P., and D. DIAZ. 1996. Compiling constraints in CLP(FD). Journal of Logic Programming, 27(3):185–
226.

DECHTER, R. 1999. Bucket elimination: A unifying framework for reasoning. Artificial Inteligence, 113:41–85.

DUBOIS, D., H. FARGIER, and H. PRADE. 1993. The calculus of fuzzy restrictions as a basis for flexible constraint
satisfaction. In Proceedings of the IEEE International Conference on Fuzzy Systems. IEEE, pp. 1131–1136.

FREUDER, E. C., and R. J. WALLACE. 1992. Partial constraint satisfaction. AI Journal, 58:21–70.

FRÜHWIRTH, T. 1998. Theory and practice of constraint handling rules, special issue on constraint logic program-
ming. Edited by P. J. Stuckey and K. Marriot. Journal of Logic Programming, 37(1–3):95–138.

FRÜHWIRTH, T., and S. ABDENNADHER. 2003. Essentials of Constraint Programming. Springer, New York.

GEORGET, Y., and P. CODOGNET. 1998. Compiling semiring-based constraints with clp(FD,S). In Proceedings of
CP’98. Springer, New York.

LARROSA, J. 2000. Boosting search with variable elimination. In Proceedings of CP’00. Springer, New York.

MARRIOTT, K., and P. J. STUCKEY. 1998. Programming with Constraints: An Introduction. MIT Press, Cambridge,
MA.

RUTTKAY, Z. 1994. Fuzzy constraint satisfaction. In Proceedings of the Third IEEE International Conference on
Fuzzy Systems. IEEE, Orlando, FL.

SCHIEX, T. 1992. Possibilistic constraint satisfaction problems, or “How to handle soft constraints?” In Proceedings
of the Eigth Conference of Uncertainty in AI, Morgan Kaufman, Stanford, CA.

SCHIEX, T., H. FARGIER, and G. VERFAILLIE. 1995. Valued constraint satisfaction problems: Hard and easy
problems. In Proceedings of IJCAI95. Morgan Kaufmann, pp. 631–637.

SCHIEX, T. 2000. Arc consistency for soft constraints. In Proceedings of CP’00. Springer, New York.

VAN HENTENRYCK, P. 1989. Constraint Satisfaction in Logic Programming. MIT Press, MA.

VAN HENTENRYCK, P., T. Pesson, and J. L. Poget. 2000. Search and strategies in OPL. ACM Transactions on
Computational Logic, 1(2):285–320.

