
Combining Branch&Bound and SBDD to solve Soft CSPs∗

Stefano Bistarelli†

Dipartimento di Scienze
Universit̀a di Chieti-Pescara, Italy

bista@sci.unich.it
Istituto di Informatica e Telematica, C.N.R.

Pisa, Italy
stefano.bistarelli@iit.cnr.it

Barry O’Sullivan
Cork Constraint Computation Centre

Department of Computer Science
University College Cork

Ireland
b.osullivan@cs.ucc.ie

Abstract

As constraint processing applications are becoming
more widespread in areas such as electronic com-
merce, configuration, etc., it is becoming increas-
ingly important that we can reason about prefer-
ences as efficiently as possible. In this paper we
extend some existing results dealing with symmetry
in the semiring framework for soft constraints. In
particular we extend existing definitions of symme-
try to partial instantiations. We also present Soft-
SBDD, a generalization of Symmetry Breaking via
Dominance Detection, and present theoretical re-
sults demonstrating that symmetry breaking in soft
constraint satisfaction problems improves the effi-
ciency of search.

1 Introduction
Exploiting symmetry in constraint satisfaction problems
has become a very popular topic of research in recent
times[Backofen and Will, 1999; Benhamou, 1994; Fleneret
al., 2002; Gent and Smith, 2000; McDonald and Smith, 2002;
Puget, 2002; Fahleet al., 2001; Focacci and Milano, 2001].
The existence of symmetry in a problem has the effect of ar-
tificially increasing the size of the search space that is ex-
plored by search algorithms. Therefore, a typical approach is
to break the symmetries in the problem so that only unique
solutions are returned (i.e. that only one exemplar of each
symmetric equivalence class of solutions is returned). The
complete set of solutions can be trivially computed using the
symmetry in the problem. The significant advantage is that
not only do we return fewer solutions, but we also reduce the
search effort required to find these solutions by eliminating
symmetric branches of the search tree.

Another significant topic of research in the constraint pro-
cessing community is the ability to reason about prefer-

∗This work has received support from Enterprise Ireland un-
der their Basic Research Grant Scheme (Grant Number SC/02/289)
and their International Collaboration Programme (Grant Number
IC/2003/88). It has also received support from Science Foundation
Ireland (Grant Number 00/Pl.1/C075).

†Part of this research was carried out while this author was vis-
iting the Cork Constraint Computation Centre, University College
Cork, Ireland.

ences[Bistarelliet al., 1999; Junker, 2001]. It has been shown
how preferences can be modeled as constraints[Bistarelli et
al., 1997; Domshlaket al., 2003]. As constraint processing
applications are becoming more widespread in areas such as
electronic commerce, configuration, etc., it is becoming in-
creasingly important that we can reason about preferences in
as efficient a manner as possible. One obvious avenue to be
explored here are notions of symmetry in preferences. For
example, we might seek to find a “diverse” set of solutions to
a soft CSP, where diversity might be interpreted as the pre-
sentation of a set of solutions which are members of different
symmetric equivalence classes.

In this paper we extend the approach to dealing
with symmetry in the semiring framework for soft con-
straints[Bistarelli et al., 1997; 2002; Bistarelli, 2004] pre-
sented in[Bistarelli et al., 2003b], giving new important re-
sults. In particular we extend existing definitions of symme-
try to partial instantiations. We present Soft-SBDD, a gen-
eralization of Symmetry Breaking via Dominance Detection,
and present theoretical results demonstrating that symmetry
breaking in soft constraint satisfaction problems improves the
efficiency of search.

The remainder of the paper is structured as follows. Sec-
tion 2 presents a review of soft constraints and of symmetry
breaking in crisp and soft CSPs. We present the new theo-
retical results of our approach to symmetry breaking in soft
CSPs in Section 3. Theoretically we demonstrate the utility of
symmetry breaking in SCSPs in Section 4. Some concluding
remarks are made in Section 5.

2 Background
Before recalling our approach to dealing with symmetry in
soft CSPs[Bistarelli et al., 2003b], we present a review of
the state-of-the-art in symmetry breaking (Section 2.1) and in
soft constraints (Section 2.2).

2.1 Symmetry Breaking

There is significant interest within the constraint program-
ming community in exploiting symmetry when solving con-
straint satisfaction problems. As a consequence, a grow-
ing number of techniques are being reported in the litera-
ture. Benhamou[Benhamou, 1994] presented an early anal-
ysis of symmetry-breaking and placed it in the context of
Freuder’s work on interchangeability, a special case of sym-

metry[Freuder, 1991].
A common approach to symmetry breaking involves care-

fully modeling the problem so that symmetries have been
removed. For example, Crawfordet al. [Crawford et al.,
1996] have demonstrated how constraints can be added to the
model in order to break symmetries. Puget[Puget, 1993] has
presented a formal approach to symmetry breaking that in-
volves the addition of ordering constraints to break symme-
tries. Fleneret al. [Fleneret al., 2002] adopt a similar ap-
proach by adding ordering constraints to break symmetries in
matrix models. Fleneret al. [Fleneret al., 2002] also remind
us that symmetry detection is graph-isomorphism complete in
the general case, pointing to the work of Crawford[Crawford,
1992].

Brown et al. [Brown et al., 1988] have presented a mod-
ified backtracking algorithm that breaks symmetry by prun-
ing branches of the search tree dynamically. This is done by
ensuring that only one solution from each symmetric equiv-
alence class is computed. Similarly, a general method for
eliminating symmetries, known as symmetry breaking during
search (SBDS), has been proposed by Gent and Smith[Gent
and Smith, 2000]. The SBDS approach is based on earlier
work by Backofen and Will[Backofen and Will, 1999]. Both
of these methods can be regarded as examples of a class of
approaches to handling symmetries that involve the addition
of constraints during search to avoid symmetrical states in the
search space. An implementation of SDBS based on the GAP
computational abstract algebra system has been presented by
Gentet al. [Gentet al., 2002].

Meseguer and Torras[Meseguer and Torras, 2001] have
reported the use of search ordering heuristics to avoid sym-
metries during search. However, the method is less general
than SBDS[Gent and Smith, 2000].

The notion of partial symmetry breaking has been explored
by McDonald and Smith[McDonald and Smith, 2002]. They
show that there is a break-even point to be considered when
breaking symmetries during search; there is a point where the
benefit in reducing search from removing more symmetries
is outweighed by the extra overhead incurred. By breaking
a subset of the possible symmetries in a problem, rather than
breaking all of them, significant savings in runtime can be
accomplished. It is worth noting that most static symmetry-
breaking schemes (e.g. those of Fleneret al. [Fleneret al.,
2002]) are partial.

Finally, symmetry breaking based on nogood recording
methods have been presented by Fahleet al. [Fahleet al.,
2001] and Focacci and Milano[Focacci and Milano, 2001].
The approach presented by the former is known as symmetry-
breaking via dominance detection (SBDD) and it has been
shown to compare well with SBDS; the latter approach is
known as the global cut framework. Puget has presented an
improvement on these approaches by using an auxiliary CSP
for performing dominance checks based on nogood record-
ing [Puget, 2002].

Recently, inspired by the development of the global cut
framework/SBDD, Focacci and Shaw showed that dominance
detection cannot only be used to prune under symmetric dom-
inance, but under any dominance relation, especially under
dominance of objective cost (they used this idea to exploit

local search in a complete solver for the TSP with time win-
dows)[Focacci and Shaw, 2002].

However, dominance has also been exploited in other con-
texts. For example, the pure literal rule used in SAT solvers
can be regarded as a form of dominance exploitation.

2.2 Soft CSPs

Several formalizations of the concept ofsoft constraintsare
currently available. In the following, we refer to the one based
on c-semirings[Bistarelli, 2001; Bistarelliet al., 1995; 1997;
2002], which can be shown to generalize and express many
of the others[Bistarelliet al., 1999]. A soft constraint may be
seen as a constraint where each instantiations of its variables
has an associated value from a partially ordered set which
can be interpreted as a set of preference values. Combining
constraints will then have to take into account such additional
values, and thus the formalism has also to provide suitable
operations for combination (×) and comparison (+) of tuples
of values and constraints. This is why this formalization is
based on the concept of c-semiring, which is just a set plus
two operations.

Semirings. A semiring is a tuple〈A,+,×,0,1〉 such that:
1. A is a set and0,1 ∈ A; 2. + is commutative, associa-
tive and0 is its unit element; 3.× is associative, distributes
over+, 1 is its unit element and0 is its absorbing element.
A c-semiring is a semiring〈A,+,×,0,1〉 such that:+ is
idempotent,1 is its absorbing element and× is commutative.
Let us consider the relation≤S overA such thata ≤S b iff
a + b = b. Then it is possible to prove that (see[Bistarelli et
al., 1997]): 1.≤S is a partial order; 2.+ and× are monotone
on≤S ; 3. 0 is its minimum and1 its maximum; 4.〈A,≤S〉
is a complete lattice and, for alla, b ∈ A, a + b = lub(a, b)
(wherelub is theleast upper bound). Moreover, if× is idem-
potent, then:+ distributes over×; 〈A,≤S〉 is a complete
distributive lattice and× its glb (greatest lower bound). In-
formally, the relation≤S gives us a way to compare semiring
values and constraints. In fact, when we havea ≤S b, we
will say thatb is better than a. In the following, when the
semiring will be clear from the context,a ≤S b will be often
indicated bya ≤ b.

Constraint Problems. Given a semiring S =
〈A,+,×,0,1〉 and an ordered set of variablesV over
a finite domainD, aconstraintis a function which, given an
assignmentη : V → D of the variables, returns a value of
the semiring. By using this notation we defineC = η → A
as the set of all possible constraints that can be built starting
from S, D andV .

Note that in thisfunctionalformulation, each constraint is
a function (as defined in[Bistarelli et al., 2002]) and not a
pair (as defined in[Bistarelli et al., 1995; 1997]). Such a
function involves all the variables inV , but it depends on the
assignment of only a finite subset of them. So, for instance,
a binary constraintcx,y over variablesx andy, is a function
cx,y : V → D → A, but it depends only on the assignment of
variables{x, y} ⊆ V . We call this subset thesupportof the
constraint. More formally, consider a constraintc ∈ C. We
define its support assupp(c) = {v ∈ V | ∃η, d1, d2.cη[v :=

d1] 6= cη[v := d2]}, where

η[v := d]v′ =
{

d if v = v′,

ηv′ otherwise.

Note thatcη[v := d1] meanscη′ whereη′ is η modified with
the assignmentv := d1 (that is the operator[] has precedence
over application). Note also thatcη is the application of a
constraint functionc : V → D → A to a functionη : D →
A; what we obtain, is a semiring valuecη = a.

A soft constraint satisfaction problemis a pair〈C, con〉
where con ⊆ V and C is a set of constraints:con is
the set of variables of interest for the constraint setC,
which may concern also variables not incon. Note that
a classical CSP is a SCSP where the chosen c-semiring is:
SCSP = 〈{false, true},∨,∧, false, true〉. Fuzzy CSPs
[Bowen et al., 1992; Schiex, 1992] can instead be mod-
eled in the SCSP framework by choosing the c-semiring
SFCSP = 〈[0, 1],max, min, 0, 1〉. Many other “soft” CSPs
(Probabilistic, weighted, . . .) can be modeled by using a
suitable semiring structure (Sprob = 〈[0, 1],max,×, 0, 1〉,
Sweight = 〈R,min, +,+∞, 0〉, . . .).

Figure 1 shows the graph representation of a fuzzy CSP.
Variables and constraints are represented respectively by
nodes and by undirected (unary forc1 andc3 and binary for
c2) arcs, and semiring values are written to the right of the
corresponding tuples. The variables of interest (that is the set
con) are represented with a double circle. Here we assume
that the domainD of the variables contains only elementsa
andb and c.

X Y

PSfrag replacements

���������
	 ����������	 �
��������
	 � ���������
	 �
���������
	 � ���������
	 �

�������������	 �
�������������	 �

�������������
	 �
������������
	 �

������������

������������

�������������	 �

�������������
	 �

�������������
	 �

� �

� �

���

Figure 1: A fuzzy CSP.

Combining and projecting soft constraints. Given the set
C, the combination function⊗ : C × C → C is defined as
(c1 ⊗ c2)η = c1η ×S c2η. Informally, combining two con-
straints means building a new constraint whose support in-
volves all the variables of the original ones, and which as-
sociates with each tuple of domain values for such variables
a semiring element which is obtained by multiplying the el-
ements associated by the original constraints to the appro-
priate sub-tuples. It is easy to verify thatsupp(c1 ⊗ c2) ⊆
supp(c1) ∪ supp(c2).

Given a constraintc ∈ C and a variablev ∈ V , theprojec-
tion of c overV − {v}, written c ⇓(V −{v}) is the constraint
c′ s.t. c′η =

∑
d∈D cη[v := d]. Informally, projecting means

eliminating some variables from the support. This is done by
associating with each tuple over the remaining variables a se-
miring element which is the sum of the elements associated
by the original constraint to all the extensions of this tuple

over the eliminated variables. In short, combination is per-
formed via the multiplicative operation of the semiring, and
projection via the additive one.

Solutions. A solutionof an SCSPP = 〈C, con〉 is the con-
straintSol(P) = (

⊗
C) ⇓con. That is, we combine all con-

straints, and then project over the variables incon. In this
way we get the constraint with support (not greater than)con
which is “induced” by the entire SCSP. Note that when all
the variables are of interest we do not need to perform any
projection.

For example, the solution of the fuzzy CSP of Figure 1 as-
sociates a semiring element to every domain value of variable
x. Such an element is obtained by first combining all the con-
straints together. For instance, for the tuple〈a, a〉 (that is,
x = y = a), we have to compute the minimum between0.9
(which is the value assigned tox = a in constraintc1), 0.8
(which is the value assigned to〈x = a, y = a〉 in c2) and
0.9 (which is the value fory = a in c3). Hence, the result-
ing value for this tuple is0.8. We can do the same work for
tuple 〈a, b〉 → 0.2, 〈a, c〉 → 0.2, 〈b, a〉 → 0, 〈b, b〉 → 0,
〈b, c〉 → 0.1, 〈c, a〉 → 0.8, 〈c, b〉 → 0.2 and〈c, c〉 → 0.2.
The obtained tuples are then projected over variablex, ob-
taining the solution〈a〉 → 0.8, 〈b〉 → 0.1 and〈c〉 → 0.8.

When solving a crisp CSP we refer only to either finding
one solution or finding all solutions. In the context of Soft
CSP, solving can assume several meanings. Specifically, de-
pending on the application and context, we may want to find:

1. all best solutions;

2. one from amongst all best solutions;

3. all best solutions amongst all solutions whose semiring
value is greater than a given boundα;

4. one best solution from amongst all solutions whose se-
miring value is greater than a given boundα;

5. all best solutions, given that we know their semiring
levelα;

6. one best solution, given that we know their semiring
levelα;

Mapping the solution process for crisp CSPs into the above
classification results in the two last categories (usingtrue as
the threshold levelα). In Section 4 we will study how remov-
ing symmetries in each of the above categories of problems
affects search.

2.3 Symmetry in Soft CSPs

Using an approach similar to[Benhamou, 1994], in [Bistarelli
et al., 2003b] we defined two notions ofsemantic symmetry:
symmetry for satisfiabilityandsymmetry for all solutions.

Informally, two domain valuesa andb aresymmetrical for
satisfiability if whenever the assignmentv := a (v := b)
leads to a solution with semiring valueα, we can also ob-
tain a solution with the same valueα using the assignment
v := b (v := a), i.e. we say thatb anda aresymmetrical for
satisfiability (a ≈ b) if and only if

∀α, ∃η, η′ :
⊗

Cη[v := a] = α ⇐⇒
⊗

Cη′[v := b] = α

When we want to indicate thata andb are symmetrical for
satisfiability viaη andη′ we will write a ≈η,η′

b.
Informally, two domain valuesa andb are insteadsymmet-

rical for all solutions (w.r.t. the constraintsC) if whenever we
have the assignmentη[v := a] with semiring valueα, there is
also an assignmentη′[v := b] with the same semiring value,
whereη′[v := b] = φ(η[v := a]) (for some bijective mapping
φ), and vice versa. Therefore, we say thatb anda aresym-
metrical (w.r.t. the constraintsC) for all solutions (a ' b) if
and only if

∃φ,η′, η′′ :

∀η : φ(η[v := a]) = η′[v := b]

∧ φ(η[v := b]) = η′′[v := a]

∧
⊗

Cη[v := a] =
⊗

Cφ(η[v := a])

∧
⊗

Cη[v := b] =
⊗

Cφ(η[v := b]).

When we want to indicate thata andb are symmetrical for all
solutions via the specific symmetry functionφ we will write
a 'φ b.

Clearly symmetry for all solutions implies symmetry for
satisfiability[Bistarelliet al., 2003b].

Threshold Symmetries

Symmetries in SCSPs are rarer than in classical CSPs. For
this reason (using a notion of threshold similar to that defined
by Bistarelli et al. [Bistarelli et al., 2003a]) in [Bistarelli et
al., 2003b] we defined an approximate notion of symmetry.
We say thatb anda areαsymmetrical for satisfiability (a ≈α

b) if and only if

∀ᾱ ≥ α,∃η, η′ :⊗
Cη[v := a] = ᾱ ⇐⇒

⊗
Cη′[v := b] = ᾱ

When we want to indicate thata andb areαsymmetrical for
satisfiability viaη andη′ we will write a ≈η,η′

α b. Informally,
two domain valuesa andb areαsymmetrical for satisfiability
if whenever the assignmentv := a (v := b) leads to a solution
with valueᾱ ≥ α, then, there is also a way to obtain a solution
with the same valuēα using the assignmentv := b (v := a).

We say thatb and a are αsymmetrical for all solutions
(a 'α b) if and only if

∃φ,η′, η′′, ᾱ, ᾱ′ ≥ α : ∀η :

φ(η[v := a]) = η′[v := b]

∧ φ(η[v := b]) = η′′[v := a]

∧
⊗

Cη[v := a] = ᾱ

∧
⊗

Cφ(η[v := a]) = ᾱ

∧
⊗

Cη[v := b] = ᾱ′

∧
⊗

Cφ(η[v := b]) = ᾱ′.

When we want to indicate thata andb areαsymmetrical for
all solutions via the mappingφ we will write a 'φ

α b. In-
formally, two domain valuesa and b are αsymmetrical for

all solutionsif whenever the assignmentη[v := a] leads to
a solution whose semiring value isα′ ≥ α, there is also
a solutionη′[v := b] with the same semiring value, where
η′[v := b] = φ(η[v := a]) (for some bijective mappingφ),
and vice versa.

We proved[Bistarelli et al., 2003b] that the number of
symmetries increases when we increase the threshold level.
By using that result we also easily have1:

Corollary 1 Given two domain elementsa and b and a
thresholdα, then,
• if a ≈ b, thena ≈α b;
• if a ' b, thena 'α b.

3 Extending Symmetry for Soft CSPs

All of the previous definitions of symmetry in terms of a sin-
gle variable can be easily extended to assignments of more
than a single variable. This notion will be useful in Section 4
where we will show that symmetry breaking is indeed very
useful in solving soft CSPs.

Note that the semiring projection operator can also be used
to compute the semiring value associated with partial instan-
tiations. If we have a partial instantiationη′ : V ′ → D, and a
constraintc s.t. V ′ ⊂ supp(c), the semiring value associated
with cη′ is computed by first projectingc over the variables
V ′ and then computing the semiring value of the resultant
constraint. That iscη′ = c ⇓V ′ η′ 2.

Definition 1 (Symmetry for Partial Instantiations)
Consider two partial assignmentsη1 and η2 over the same
set of variables̄V ⊆ V and the set of constraintsC:

• we say thatη1 andη2 are symmetrical for satisfiability
(η1 ≈ η2) if and only if

∀α, ∃η, η′ :
⊗

Cη[η1] = α ⇐⇒
⊗

Cη′[η2] = α

• we say thatη1 andη2 are symmetrical for all solutions
(w.r.t. the constraintsC) (η1 ' η2) if and only if

∃φ,η′, η′′ :

∀η : φ(η[η1]) = η′[η2]

∧ φ(η[η2]) = η′′[η1]

∧
⊗

Cη[η1] =
⊗

Cφ(η[η1])

∧
⊗

Cη[η2] =
⊗

Cφ(η[η1]).

Since finding the mappingφ is one of the most important
and difficult steps in order to exploit symmetry, it could be
useful to give some equivalent (sometimes easier) conditions
to check.

1Proofs for all theorems can be found in[Bistarelli and
O’Sullivan, 2004].

2The definition of how to compute semiring values for partial in-
stantiations was not defined in[Bistarelli et al., 1997; 2002]. How-
ever, this is one of the most natural ways to compute them.

Proposition 1 Symmetry for all solutions (η1 ' η2) (equa-
tion 1) holds iff equation 2 holds iff equation 3 holds:

∃φ1, η
′, η′′ : (1)

∀η : φ1(η[η1]) = η′[η2]

∧ φ1(η[η1]) = η′′[η2]

∧
⊗

Cη[η1] =
⊗

Cφ1(η[η1])

∧
⊗

Cη[η2] =
⊗

Cφ1(η[η2]);

∃φ2,∀η :
⊗

Cη[η1] =
⊗

Cφ2(η[η1])[η2] ∧ (2)⊗
Cη[η2] =

⊗
Cφ2(η[η2])[η1];

∃φ3,∀η :
⊗

Cη[η1] =
⊗

Cφ3(η)[η2] ∧ (3)⊗
Cη[η2] =

⊗
Cφ3(η)[η1];

We can prove some interesting properties when
adding/removing assignments to two partial instantiationsη1

andη2.

Theorem 1 (Extended symmetry for satisfiability) Given
two partial instantiations η1, η2 over the same set of
variablesV̄ ⊆ V , and a variablev ∈ V − V̄ , we have

η1∪{v := a} ≈η,η′
η2∪{v := b} ⇐⇒ η1 ≈η[v:=a],η′[v:=b] η2.

Theorem 2 (Extended symmetry for all solutions)Given
two partial instantiationsη1, η2 over the same set of variables
V̄ ⊆ V , and a variablev ∈ V − V̄ . If φ is decomposable3

we have

η1 'φ η2 =⇒ η1 ∪ {v := a} 'φ η2 ∪ φ({v := a}).

Notice that threshold symmetries can also be defined over
partial instantiations in a manner similar to Definition 1. Re-
lating thresholds and symmetries over partial instantiations
leads to some interesting theorems that will be used to prune
the search space in Section 4.

Corollary 2 (Extended αsymmetries for satisfiability)
Given two partial instantiationsη1, η2 over the same set of
variablesV̄ ⊆ V , and a variablev ∈ V − V̄ , we have

{η1 ∪ {v := a}} ≈η,η′

α {η2 ∪ {v := b}}

⇐⇒ η1 ≈η[v:=a],η′[v:=b]
α η2.

and

η1 'φ
α η2 =⇒ η1 ∪ {v := a} 'φ

α η2 ∪ φ({v := a}).

Theorem 3 (Symmetries and SCSP solution levels (1))
Given a constraints problem over the constraint setC and
given two partial instantiationsη1, η2 over the same set of
variablesV̄ ⊆ V s.t. Cη1 < α, andCη2 < α then we have
η1 ≈α η2 andη1 'α η2.

3A mappingφv : D → D is decomposable if anyφ(V →
D) → (V → D) is defined as the composition of severalφvi ,
with v1, . . . , vi, . . . , vn ∈ V s.t. φ(v1 := a1, . . . , vn := an) =
φv1(a1), . . . , φvn(an).

Corollary 3 Given a constraints problem over the constraint
setC. If for all η we have

⊗
Cη < α, then for anyη1, η2

over the same set of variables̄V ⊆ V we haveη1 ≈α η2 and
η1 'α η2.

Theorem 4 (Symmetries and SCSP solutions levels (2))
Given two partial instantiationsη1, η2 over the same set of
variablesV̄ ⊆ V , and a variablev ∈ V − V̄ , we have

∀ai, (η1 ∪ v := ai) 'α (η2 ∪ φ(v := ai)) =⇒ η1 'α η2

The previous theorem proves to be very important in the next
section where it will be used to cut computation branches dur-
ing search.

4 Exploiting Symmetry Breaking in
Branch&Bound

In this section we show how symmetry breaking can im-
prove the amount of pruning performed by a classical
Branch&Bound algorithm. In particular, we will define Soft-
SBDD extending the classical definition[Fahleet al., 2001].

4.1 Soft-SBDD
SBDD uses the notion of dominance amongst partial instan-
tiations of variables. Using our notation we can say that a
partial instantiationη1 is dominated bya partial instantiation
η2 if η1 ⊆ η2 (that is ifη2 extends the instantiationη1). When
given a symmetryφ, the dominance relation can be extended,
by noting that ifη1 is dominated byη2 (η1 ⊆ η2) andη3 is
symmetric withη2 (η3 = φ(η2)), thenη1 is dominated under
the symmetryφ by η3.

More precisely, we can define two partial orders on par-
tial instantiations, based on the notions of symmetry for sat-
isfiability (≈) and symmetry for all solutions (') defined in
Section 3.

Definition 2 (Dominance under symmetry) Consider
three partial assignmentsη1, η2, η3;

• we say thatη1 is dominated under symmetry for satis-
fiability by η3 (η1 / η3) if and only if η1 ⊆ η2 and
η2 ≈ η3;

• we say thatη1 is dominated under symmetry for all solu-
tionsbyη3 (η1 . η3) if and only ifη1 ⊆ η2 andη2 ' η3;

• we say thatη1 is αdominatedunder symmetry for sat-
isfiability by η3 (η1 /α η3) if and only ifη1 ⊆ η2 and
η2 ≈α η3;

• we say thatη1 is αdominatedunder symmetry for all
solutionsby η3 (η1 .α η3) if and only if η1 ⊆ η2 and
η2 'α η3;

We can easily show that/, ., /alpha and.alpha are par-
tial orders.

Theorem 5 /, ., /alpha and.alpha are partial orders.

The nodes in the search tree can be represented as partial
instantiations. At each step SBDD checks if there exists an
already visited nodeη′ s.t. η . η′, i.e. we use the thresh-
old definition of symmetry. If this is the case the algorithm
backtracks and prunes all the branches rooted atη.

If we want to use SBDD to solve Soft CSPs, we have to
modify it in order to be able to perform pruning with respect
a thresholdα. We will refer to this modified version of SBDD
as Soft-SBDD.

Using Soft-SBDD, a node of the search space can be rep-
resented by partial instantiations plus the semiring value for
each instantiation. As in SBDD, Soft-SBDD checks at each
step if there exists an already visited nodeη′ s.t. η . η′. If
this is the case the algorithm backtracks and prunes all the
branches rooted atη.

Moreover, when a complete assignmentη′ is found, with
associated semiring valueα, this is used as a bound. For each
new visited nodeη, we check ifη .α η′. When the result of
this check is positive, the algorithm can backtrack and prune
all the branches rooted atη.

We now consider an example to show that symmetry break-
ing can prune branches of the search tree that are not pruned
by a Branch&Bound algorithm.

Example 1 Consider an SCSP over the semiringSweight =
〈R,min, +,+∞, 0〉 with variablesV = {x, y, z}, each with
the same domainD = {a, b, c}, there are the following unary
and binary constraints,C = {cx, cy, cz, cyz}, defined as fol-
lows:

cx = {〈a〉 → 4, 〈b〉 → 5, 〈c〉 → 4};
cy = {〈a〉 → 3, 〈b〉 → 3, 〈c〉 → 10};
cz = {〈a〉 → 6, 〈b〉 → 8, 〈c〉 → 5};

cyz = {〈a, a〉 → 0, 〈a, b〉 → 0, 〈a, c〉 → 0,

〈b, a〉 → ∞, 〈b, b〉 → ∞, 〈b, c〉 → 0,

〈c, a〉 → 0, 〈c, b〉 → 0, 〈c, c〉 → 0}

We assume that there are other constraints in the problem giv-
ing the following symmetryφ s.t. {x := a, y := a} '12

{x := a, y := b}. Let’s also assume that we will use a vari-
able ordering heuristic that considers the variables in the or-
der x, y, andz. Domain elements are selected in the order
a, b, andc. Assume also that the estimate of the cost of a
partial instantiation is the minimum of the sum of the com-
plete assignment using the projection operator defined at the
beginning of Section 3. We are seeking all best solutions.

Let’s consider the situation once we have reached the state
represented in Figure 2. In the figure, the grey nodes repre-
sent fully explored branches, while the white ones are nodes
yet to be fully explored. The search at this point has found
three complete instantiations{x := a, y := a, z := a},
{x := a, y := a, z := b} and{x := a, y := a, z := c}
with associated semiring levels13, 15 and12, respectively.
Therefore, at this stage,12 is the current bound used by the
Branch&Bound algorithm to prune branches of the search
tree.

Suppose we now backtrack and make the instantiation
y := b leading to the state represented by the partial assign-
ment{x := a, y := b}. The approximation computed for this
instantiation by the Branch&Bound algorithm for this node is
12 (computed by summing the cost for the two instantiated
constraintscx = a → 4 andcy = b → 3 and the best possi-
ble value forz which has cost 5). Since the approximation is

12

x:=a

z:=b

z:=c

y:=c

z:=a

y:=a
y:=b

12 19

121513

B&B

<~

Figure 2: Search tree after some steps.

not worse than the actual bound (remember we are minimiz-
ing and trying to find all best solutions, we cannot prune this
branch at this stage.

However, if we use SBDD, we can check if the current
node is dominated by some of the nodes that have already
been expanded (that is we have to check if there exists a (par-
tial) instantiationη s.t. {x := a, y := b} . η. This is what
classical SBDD does.

In our case, since we have a bound (12) we can use it in
order to perform more pruning. To do that we have to check
if there exists a (partial) instantiationη s.t. {x := a, y :=
b} .12 η. By hypothesis we have a symmetryφ with {x :=
a, y := b} .12 {x := a, y := a}. Since the node{x :=
a, y := b} .12 {x := a, y := a} is completely explored,
we can prune node{x := a, y := b} because we are sure
that all the nodes in this branch represent either a solution
with semiring level worse than12 or a solution with semiring
level 12, symmetric to{x := a, y := a, z := c} (and easily
computed fromφ({x := a, y := a, z := c})).

At the next step, when instantiatingy := c we move to the
state{x := a, y := c}. Since the approximation of the cost of
this branch is19 and since19 > 12, we can prune this node
using Branch&Bound. 4

Therefore, this example shows how the pruning of
Branch&Bound can be improved by using SBDD. Notice that
SBDD and Branch&Bound have two different partial orders
for pruning. Soft-SBDD uses., while Branch&Bound uses
the v order induced by the semiring order≤. Both par-
tial orders rely on the fact that instantiating more variables
leads to a solution which is no better from the perspective of
consistency; for SBDD this is due to its definition, and for
Branch&Bound from the fact that constraints are monotonic
(the more variables we instantiate, the more constraints are
defined, and the worse will be their combination).

Using Soft-SBDD, we combine together Branch&Bound
and symmetry breaking. We will see in the following how
using.α will prune more than classic Branch&Bound.

However, even if we have a perfect heuristic for
Branch&Bound, i.e. a heuristic that would compute the true
best semiring value for a given search tree node, does it per-
form better than Soft-SBDD? We can prove the following:

Theorem 6 Branch&Bound with a “perfect” heuristic can-
not prune all of the branches pruned by a “perfect” Soft-
SBDD.

We can also prove something stronger. In Figure 2 the
branch{x := a, y := c} is pruned by Branch&Bound be-
cause the current estimated cost was worse than the bound.
However, can that node be removed by symmetry?

In general the answer to this question is no. Finding sym-
metry functions in a problem is fact one of the main draw-
backs of applying symmetry breaking. We usually need to
have a deep understanding of the problem in order to iden-
tify all its symmetries. However, if all the symmetries of a
problem were known, Soft-SBDD could perform better than
classical Branch&Bound.

Theorem 7 If all the αsymmetries of a problem are known,
Soft-SBDD can prune more than a classical Branch&Bound.

Example 2 As an example consider Figure 3. Node{x :=
a, y := c} has been extended to{x := a, y := c, z := a},
{x := a, y := c, z := b} and{x := a, y := c, z := a},
with the associated cost of20, 22 and19. By definition of
αsymmetry we have:{x := a, y := a, z := c} '12 {x :=
a, y := c, z := a}, {x := a, y := a, z := c} '12 {x :=
a, y := c, z := b}, {x := a, y := a, z := c} '12 {x :=
a, y := c, z := c} 4. By using the results of Theorem 4, we
can also say that{x := a, y := a} '12 {x := a, y := c}, so,
in the case where we know all the symmetries in a problem,
we can prune at node{x := a, y := c} using Soft-SBDD,
because{x := a, y := c} .12 {x := a, y := a}. 4

x:=a

z:=b

z:=c

y:=c

z:=a

y:=a
y:=b

12 19

121513

z:=a z:=b

z:=c

20

22

19

12<~
12<~

12<~

12<~

12<~

12<~

Figure 3: Soft-SBDD can perform better than B&B.

4In fact, the definition ofαsymmetry takes into account the se-
miring level of the solution. If the solution is worse than12, they
are by definition12symmetric.

4.2 Applying Soft Symmetry Breaking

Symmetry breaking is used to remove symmetrical instan-
tiations in order to reduce the search space. Many of the
methodologies described in Section 2.1 remove solutions
symmetric to those already found (we will call thissymmetry
breaking on success). Others, instead, remove branches of
the search tree corresponding to non-solutions already found
(we will call thissymmetry breaking on failure).

In the following we will consider each of the six optimiza-
tion problems in SCSPs (see end of Section 2.2) and we will
indicate how symmetry breaking can be used to reduce the
size of the search space in each case. We will also highlight
when the amount of pruning performed by Soft-SBDD (that
can be seen as symmetry breaking plus Branch&Bound) im-
proves that of the classic Branch&Bound algorithm, that can
be used to solve an SCSP.

Proposition 2 When looking for one best solution, given that
we know its semiring levelα, soft symmetry breaking per-
forms more pruning than classic Branch&Bound due to sym-
metry breaking on failure only.

Essentially, if we know the semiring level of the best so-
lution, once we have found it we are done. However, as we
search we find solutions below the desired threshold. The
symmetric equivalents of these solutions can be pruned using
symmetry breaking, thus reducing the amount of redundant
work that Branch&Bound has to perform.

Proposition 3 When looking for one best solution from
amongst all solutions greater than a given boundα, soft
symmetry breaking performs more pruning than classic
Branch&Bound due to both symmetry breaking on success
and failure.

Since the best semiring level of the solution is unknown we
have to explore the entire search space to decide if the best
solution that has been found to date is the best one. Sym-
metry breaking on success can be used to exclude from the
search space equivalent solutions that we do not want to col-
lect. However, such pruning will usually be quite weak in
comparison to the pruning that can be performed by symme-
try on failure.

Proposition 4 When looking for one solution among all best
solutions, soft symmetry breaking performs more pruning
than classic Branch&Bound due to both symmetry breaking
on success and failure.

In this case an approximation of the semiring level of the
best solution is not known. This implies that it is not possible
to perform initial symmetry breaking on failure. However,
as soon as we have found a solution with semiring levelα
we can use this threshold to perform symmetry breaking on
success and failure.

Proposition 5 When looking for all best solutions, either
with or without specified bounds on the semiring level,
soft symmetry breaking performs more pruning than classic
Branch&Bound due to both symmetry breaking on success
and failure.

If we wish to find all the best solutions, symmetry breaking
on success becomes more useful. It is important to notice
that in this, and all the previous cases, symmetry breaking
on failure is much more useful whenever the heuristic used
in Branch&Bound is not perfect. In the theoretical case of
dealing with a perfect heuristic, symmetry breaking on failure
is not useful, but, when all the solutions are needed, symmetry
breaking on success remains useful.

5 Conclusions and Future Work
While symmetry breaking has been studied widely in the con-
text of crisp constraint satisfaction, it has received very little
attention in the context of soft constraints. We make contri-
butions to this topic in this paper.

One of the most powerful techniques used in symmetry
breaking is based on dominance detection. In this paper we
have extended an existing approach to symmetry breaking
for soft constraints in order to exploit dominance amongst
partial instantiations. This provides a basis for a generaliza-
tion of Symmetry Breaking via Dominance Detection for soft
constraint satisfaction problems called Soft-SBDD, which we
have theoretically shown to be beneficial when solving soft
CSPs.

Soft-SBDD provides a basis for exploiting symmetry
amongst preferences, which has applications in a num-
ber of fields such as preference-based configuration and e-
commerce. As part of our future work we plan to implement
Soft-SBDD in the context of a branch & bound solver, fol-
lowing the approach of[Gentet al., 2002; 2003] in order to
fully evaluate it on real-world problems.

References
[Backofen and Will, 1999] R. Backofen and S. Will. Exclud-

ing symmetries in concurrent constraint programming. In
Proceedings of CP-99, LNCS 1520, pages 72–86, 1999.

[Benhamou, 1994] B. Benhamou. Study of symmetry in
constraint satisfaction problems. InProc. CP’94, 1994.

[Bistarelli and O’Sullivan, 2004] S. Bistarelli and
B. O’Sullivan. Combining Branch&Bound and SBDD to
solve Soft CSPs, May 2004. Available from:
http://www.cs.ucc.ie/˜osullb/pubs/ercim2004proofs.pdf .

[Bistarelliet al., 1995] S. Bistarelli, U. Montanari, and
F. Rossi. Constraint Solving over Semirings. InProc. IJ-
CAI95, pages 624–630, San Francisco, CA, USA, 1995.
Morgan Kaufman.

[Bistarelliet al., 1997] S. Bistarelli, U. Montanari, and
F. Rossi. Semiring-based Constraint Solving and Opti-
mization.Journal of the ACM, 44(2):201–236, Mar 1997.

[Bistarelliet al., 1999] S. Bistarelli, H. Fargier, U. Monta-
nari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-
based CSPs and Valued CSPs: Frameworks, properties,
and comparison.Constraints, 4(3), 1999.

[Bistarelliet al., 2002] S. Bistarelli, U. Montanari, and
F. Rossi. Soft concurrent constraint programming. InProc.
ESOP, April 6 - 14, 2002, Grenoble, France, LNCS, pages
53–67. Springer-Verlag, 2002.

[Bistarelliet al., 2003a] S. Bistarelli, B. Faltings, and
N. Neagu. A definition of interchangeability for soft csps.
In Recent Advances in Constraints, LNAI 2627. Springer,
2003.

[Bistarelliet al., 2003b] S. Bistarelli, J. Kelleher, and
B. O’Sullivan. Symmetry breaking in soft csps. InPro-
ceedings of AI-2003, the Twenty-third SGAI International
Conference on Knowledge-Based Systems and Applied Ar-
tificial Intelligence, 2003.

[Bistarelli, 2001] S. Bistarelli. Soft Constraint Solving and
programming: a general framework.PhD thesis, Diparti-
mento di Informatica, Università di Pisa, Italy, mar 2001.
TD-2/01.

[Bistarelli, 2004] S. Bistarelli. Semirings for Soft Con-
straint Solving and Programming, volume 2962 ofLNCS.
Springer, 2004.

[Bowenet al., 1992] J. Bowen, R. Lai, and D. Bahler. Lex-
ical imprecision and fuzzy constraint networks. InPro-
ceedings of AAAI-92, pages 616–621, July 1992.

[Brownet al., 1988] C.A. Brown, L. Finkelstein, and P.W.
Purdon Jr. Backtrack searching in the presence of symme-
try. In T. Mora, editor,Applied Algebra, Algebraic Algo-
rithms and Error-Correcting Codes, volume 357 ofLNCS,
pages 99–110. Springer-Verlag, 1988.

[Crawfordet al., 1996] J. Crawford, G. Luks, M. Ginsberg,
and A. Roy. Symmetry breaking predicates for search
problems. InProc. KR-96, pages 148–159, 1996.

[Crawford, 1992] J. Crawford. A theoretical analysis of rea-
soning by symmetry in first-order logic. InProceedings of
the AAAI-92 Workshop on Tractable Reasoning, 1992.

[Domshlaket al., 2003] C. Domshlak, F. Rossi, B. Venable,
and T. Walsh. Reasoning about soft constraints and condi-
tional preferences: complexity results and approximation
techniques. InProceedings of IJCAI-2003, August 2003.

[Fahleet al., 2001] T. Fahle, S. Schamberger, and M. Sell-
mann. Symmetry breaking. InProceedings of CP-01,
LNCS 2239, pages 93–107, 2001.

[Fleneret al., 2002] P. Flener, A. Frisch, B. Hnich, Z. Kizil-
tan, I. Miguel, J. Pearson, and T. Walsh. Breaking row and
column symmetries in matrix models. InProceedings of
CP-02, LNCS 2470, pages 462–476, 2002.

[Focacci and Milano, 2001] F. Focacci and M. Milano.
Global cut framework for removing symmetries. InPro-
ceedings of CP-01, LNCS 2239, pages 75–92, 2001.

[Focacci and Shaw, 2002] Filippo Focacci and Paul Shaw.
Pruning sub-optimal search branches using local search. In
Narendra Jussien and François Laburthe, editors,Proceed-
ings of CP-AI-OR’02, pages 181–189, Le Croisic, France,
March, 25–27 2002.

[Freuder, 1991] E.C. Freuder. Eliminating interchangeable
values in constraint satisfaction problems. InProceedings
of the AAAI, pages 227–233, 1991.

[Gent and Smith, 2000] I.P. Gent and B.M. Smith. Symme-
try breaking in constraint programming. In W. Horn, edi-
tor,Proceedings of ECAI-2000, pages 599–603. IOS Press,
2000.

[Gentet al., 2002] I.P. Gent, W. Harvey, and T. Kelsey.
Groups and constraints: Symmetry breaking during
search. InProceedings of CP-02, LNCS 2470, pages 415–
430, 2002.

[Gentet al., 2003] I.P. Gent, W. Harvey, T. Kelsey, and
S. Linton. Generic SBDD using computational group the-
ory. In Proc. CP2003, volume 2833 ofLNCS, pages 333–
347. Springer, 2003.

[Junker, 2001] U. Junker. Preference programming for con-
figuration. InProceedings of the 4th International Work-
shop on Configuration (IJCAI-01), pages 50–56, August
2001.

[McDonald and Smith, 2002] I. McDonald and B. Smith.
Partial symmetry breaking. InProceedings of CP-02,
LNCS 2470, pages 431–445, 2002.

[Meseguer and Torras, 2001] P. Meseguer and C. Torras. Ex-
ploiting symmetries within constraint satisfaction search.
Artificial Intelligence, 129(1–2):133–163, 2001.

[Puget, 1993] J.-F. Puget. On the satisfiability of symmetri-
cal constrained satisfaction problems. InProceedings of
ISMIS-93, LNAI 689, pages 350–361, 1993.

[Puget, 2002] J.-F. Puget. Symmetry breaking revisited. In
Proceedings of CP-02, LNCS 2470, pages 446–461, 2002.

[Schiex, 1992] T. Schiex. Possibilistic constraint satisfaction
problems, or “how to handle soft constraints?”. InProc.
8th Conf. of Uncertainty in AI, pages 269–275, 1992.

