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Abstract encedBistarelliet al., 1999; Junker, 20411t has been shown

how preferences can be modeled as constréBitgarelli et

As constraint processing applications are becoming
more widespread in areas such as electronic com-
merce, configuration, etc., it is becoming increas-
ingly important that we can reason about prefer-
ences as efficiently as possible. In this paper we
extend some existing results dealing with symmetry
in the semiring framework for soft constraints. In
particular we extend existing definitions of symme-
try to partial instantiations. We also present Soft-
SBDD, a generalization of Symmetry Breaking via
Dominance Detection, and present theoretical re-
sults demonstrating that symmetry breaking in soft

al., 1997; Domshlalet al, 2003. As constraint processing
applications are becoming more widespread in areas such as
electronic commerce, configuration, etc., it is becoming in-
creasingly important that we can reason about preferences in
as efficient a manner as possible. One obvious avenue to be
explored here are notions of symmetry in preferences. For
example, we might seek to find a “diverse” set of solutions to
a soft CSP, where diversity might be interpreted as the pre-
sentation of a set of solutions which are members of different
symmetric equivalence classes.

In this paper we extend the approach to dealing
with symmetry in the semiring framework for soft con-

constraint satisfaction problems improves the effi-

. straints[Bistarelli et al, 1997; 2002; Bistarelli, 20Q4pre-
ciency of search.

sented inBistarelli et al, 20034, giving new important re-
. sults. In particular we extend existing definitions of symme-
1 Introduction try to partial instantiations. We present Soft-SBDD, a gen-

Exploiting symmetry in constraint satisfaction problems €ralization of Symmery Breaking via Dominance Detection,

has become a very popular topic of research in recen@nd present theoretlcal_ resul_ts demonstratlng that symmetry

times[Backofen and Will, 1999: Benhamou, 1994: Fleser brggklng in soft constraint satisfaction problems improves the

al., 2002; Gent and Smith, 2000; McDonald and Smith, 2002&fficiency of search. .

Puget, 2002; Fahlet al, 2001; Focacci and Milano, 20p1 The remainder of t_he paper is structgred as follows. Sec-

The existence of symmetry in a problem has the effect of arfion 2 presents a review of soft constraints and of symmetry

tificially increasing the size of the search space that is exbreaking in crisp and soft CSPs. We present the new theo-

plored by search algorithms. Therefore, a typical approach i&etical results of our approach to symmetry breaking in soft

to break the Symmetries in the prob'em (e} that On|y uniqu&sps n SeCtIOI’].3. Theoreucal.ly we d.emonstl’ate the Ut|||ty.0f

solutions are returned (i.e. that only one exemplar of eacymmetry breaking in SCSPs in Section 4. Some concluding

symmetric equivalence class of solutions is returned). Théemarks are made in Section 5.

complete set of solutions can be trivially computed using th

symmetry in the problem. The significant advantage is thaeg Background

not only do we return fewer solutions, but we also reduce th@efore recalling our approach to dealing with symmetry in

search effort required to find these solutions by eliminatingsoft CSPdBistarelli et al, 20034, we present a review of

symmetric branches of the search tree. the state-of-the-art in symmetry breaking (Section 2.1) and in
Another significant topic of research in the constraint pro-soft constraints (Section 2.2).

cessing community is the ability to reason about prefer-

2.1 Symmetry Breaking
*This work has received support from Enterprise Ireland un-

der their Basic Research Grant Scheme (Grant Number SC/OZ/ZSJhere IS Slgnlfltca_nt Intelr_et_st within thte COﬂStramtl program-
and their International Collaboration Programme (Grant Numbe Ing community in exploiing symmetry when solving con-

IC/2003/88). It has also received support from Science Foundatioftraint satisfaction problems. As a consequence, a grow-
Ireland (Grant Number 00/P1.1/CO75). ing number of techniques are being reported in the litera-
fPart of this research was carried out while this author was visture. BenhamoilBenhamou, 19%4presented an early anal-
iting the Cork Constraint Computation Centre, University Collegeysis of symmetry-breaking and placed it in the context of
Cork, Ireland. Freuder's work on interchangeability, a special case of sym-



metry[Freuder, 1991L local search in a complete solver for the TSP with time win-
A common approach to symmetry breaking involves caredows)[Focacci and Shaw, 2002

fully modeling the problem so that symmetries have been However, dominance has also been exploited in other con-

removed. For example, Crawforet al. [Crawfordet al,  texts. For example, the pure literal rule used in SAT solvers

1994 have demonstrated how constraints can be added to thean be regarded as a form of dominance exploitation.

model in order to break symmetries. Puffetiget, 199Bhas

presented a formal approach to symmetry breaking that in2.2 Soft CSPs

volves the addition of ordering constraints to break symme-, o .

tries. Fleneret al. [Fleneret al, 2004 adopt a similar ap- Several formalizations of the concept sifft constraintsare

roach by adding ordering constraints to break symmetries igUrently available. In the following, we refer to the one based
pmatrix mgdels. Igleneet alg[FIeneret al, 2007 alsg remind 9" c-semiringgBistarelli, 2001; Bistarellet al, 1995; 1997;

us that symmetry detection is graph-isomorphism complete “2002], which can be shown to generalize and express many

the general case, pointing to the work of Crawfbdawford of the othergBistarelliet al., 1999. A soft constraint may be
1997 ’ ' seen as a constraint where each instantiations of its variables

has an associated value from a partially ordered set which
can be interpreted as a set of preference values. Combining

ing branches of the search tree dynamically. This is done bgonstraints will then have to take into account such additional
ensuring that only one solution from each symmetric equiv- alues, and thus the formalism has also to provide suitable

alence class is computed. Similarly, a general method fOP|foera|1tions fo(; combtinatitom(zrﬂnd_con:}patrri?or;ﬁ() of ;c.uplt_es .
eliminating symmetries, known as symmetry breaking duringga\slgI du?)?l ?P?e ccgr?(‘:seratlr(])fst.:-serlr?irli?\ w v)\//hicﬁ i:r'[Jnsa': I;ile?cn ;SS
search (SBDS), has been proposed by Gent and $@iht ; P 9 J P
and Smith, 2000 The SBDS approach is based on earliertWO operations.
work by Backofen and Wil[Backofen and Will, 199p Both  semirings. A semiring is a tuple4, +, x, 0, 1) such that:
of these methods can be regarded as examples of a classpf 4 is a set and),1 € 4; 2. + is commutative, associa-
approaches to handling symmetries that involve the additiofye ando is its unit element; 3x is associative, distributes
of constraints during search to avoid symmetrical states in thgyer +, 1 is its unit element an@ is its absorbing element.
search space. Animplementation of SDBS based on the GAR ¢-semiring is a semiring A, +, x,0,1) such that: + is
computational abstract algebra system has been presentedi@émpotenty is its absorbing element andis commutative.
Gentet al.[Gentet al, 2003. Let us consider the relatiofi s over A such thatn <g b iff
Meseguer and TorralMeseguer and Torras, 200bave 4, = p. Then it is possible to prove that (sEistarelli et
reported the use of search ordering heuristics to avoid symy|. 1997): 1. <q is a partial order; 2+ and x are monotone
metries during search. However, the method is less genergh <.: 3. 0 is its minimum andl its maximum; 4(A,<g)
than SBDYGent and Smith, 2000 is a complete lattice and, forallb € A, a + b = lub(a, b)
The notion of partial symmetry breaking has been exploregwherelub is theleast upper boun)d Moreover, ifx is idem-
by McDonald and SmitfMcDonald and Smith, 2002They  potent, then:+ distributes overx; (A4, <g) is a complete
show that there is a break-even point to be considered whegstributive lattice andx its gib (greatest lower bounyd In-
breaking symmetries during search; there is a point where thﬁbrmally, the relatior< g gives us a way to compare semiring
benefit in reducing search from removing more symmetriesalues and constraints. In fact, when we have s b, we
is outweighed by the extra overhead incurred. By breakingyill say thatb is better than a In the following, when the
a subset of the possible symmetries in a problem, rather thagemiring will be clear from the context, <s b will be often
breaking all of them, significant savings in runtime can bejndicated bya < b.
accomplished. It is worth noting that most static symmetry-

Brown et al. [Brown et al, 1989 have presented a mod-
ified backtracking algorithm that breaks symmetry by prun-

breaking schemes (e.g. those of Fleaeal. [Fleneret al,  Constraint Problems. Given a semiring S =

2002) are partial. (A,+,x,0,1) and an ordered set of variablds over
Finally, symmetry breaking based on nogood recordingg finite domainD, aconstraintis a function which, given an

methods have been presented by Fatl@l. [Fahleet al, ~ assignment) : V' — D of the variables, returns a value of

2001 and Focacci and MilanfFocacci and Milano, 20§1  the semiring. By using this notation we defiie= n — A

The approach presented by the former is known as symmetryas the set of all possible constraints that can be built starting

breaking via dominance detection (SBDD) and it has beedrom S, D andV'.

shown to compare well with SBDS; the latter approach is Note that in thisunctionalformulation, each constraint is

known as the global cut framework. Puget has presented am function (as defined ifBistarelli et al, 2004) and not a

improvement on these approaches by using an auxiliary CSpair (as defined idBistarelli et al, 1995; 1997). Such a

for performing dominance checks based on nogood recordunction involves all the variables v, but it depends on the

ing [Puget, 200p assignment of only a finite subset of them. So, for instance,
Recently, inspired by the development of the global cuta binary constraint,, , over variables: andy, is a function

framework/SBDD, Focacci and Shaw showed that dominance, , : V' — D — A, but it depends only on the assignment of

detection cannot only be used to prune under symmetric domvariables{z,y} C V. We call this subset theupportof the

inance, but under any dominance relation, especially undesonstraint. More formally, consider a constrainE C. We

dominance of objective cost (they used this idea to exploidefine its support asupp(c) = {v € V' | In,dy,ds.cnfv :=



dy] # enfv := ds]}, where over the eliminated variables. In short, combination is per-
) , formed via the multiplicative operation of the semiring, and
o == djv’ = {d if v =/, projection via the additive one.

) .
v’ otherwise Solutions. A solutionof an SCSFP = (C, con) is the con-

Note thaten[v := d,] meansey’ wherer is ) modified with ~ straintSol(P) = (& C) Jcon. That is, we combine all con-
the assignment := d; (that is the operatdi] has precedence Sstraints, and then project over the variables:an. In this

over application). Note also that is the application of a Way we get the constraint with support (not greater than)
constraint functior: : V — D — A to a functionp : D — which is “induced” by the entire SCSP. Note that when all

A; what we obtain, is a semiring valug = a. the variables are of interest we do not need to perform any
A soft constraint satisfaction probleis a pair (C,con)  Projection. _ _
wherecon C V and C is a set of constraints:con is For example, the solution of the fuzzy CSP of Figure 1 as-

the set of variables of interest for the constraint 66t  sociates a semiring element to every domain value of variable
which may concern also variables not éinn. Note that z. Such an element is obtained by first combining all the con-
a classical CSP is a SCSP where the chosen c-semiring istraints together. For instance, for the tuplea) (that is,
Scsp = ({false,true},V, A, false,true). Fuzzy CSPs = =y = a), we have to compute the minimum betweeh
[Bowen et al, 1992; Schiex, 1992can instead be mod- (which is the value assigned o= « in constraintc;), 0.8
eled in the SCSP framework by choosing the c-semiringWhich is the value assigned to = a,y = a) in ¢;) and
Srcsp = ([0, 1], max, min,0,1). Many other “soft” CSPs 0.9 (which is the value fory = a in ¢3). Hence, the result-
(Probabilistic, weighted, ...) can be modeled by using dng value for this tuple i$.8. We can do the same work for
suitable semiring structureSf,., = ([0,1], mazx, x,0,1),  tuple{a,b) — 0.2, {a,c) — 0.2, (b,a) — 0, (b,b) — 0,
Sweight = (R, min, +,4+00,0), ...). (b,¢) — 0.1, {¢,a) — 0.8, {¢,b) — 0.2 and{c,c) — 0.2.
Figure 1 shows the graph representation of a fuzzy CSP he obtained tuples are then projected over variableb-
Variables and constraints are represented respectively Bgining the solutior{a) — 0.8, (b)) — 0.1 and(c) — 0.8.
nodes and by undirected (unary farandcz and binary for When solving a crisp CSP we refer only to either finding
c2) arcs, and semiring values are written to the right of theone solution or finding all solutions. In the context of Soft
corresponding tuples. The variables of interest (that is the séESP, solving can assume several meanings. Specifically, de-
con) are represented with a double circle. Here we assumpending on the application and context, we may want to find:
that the domairD of the variables contains only elements 1. all best solutions:

andb and c. )
2. one from amongst all best solutions;
(a) = 0.9

(b - 0.1 (a,a) » 0.8 {a) = 0.9 3. all best solutions amongst all solutions whose semiring

(b) = 0.5 . >
N_’ N za, b; - 22 (C)ym value is greater than a given boungd
1 a,c) = 0. c3
: 4

@ (b,a) > 0 @ . one best solution from amongst all solutions whose se-
(6,8 =0 co miring value is greater than a given bound
(b,c) = 0.1 . . . ..
(c,a) = 0.8 5. all best solutions, given that we know their semiring
(e, b) — 0.2 level Q,

(c,ec) = 0.2
6. one best solution, given that we know their semiring
Figure 1: A fuzzy CSP. level a;
Mapping the solution process for crisp CSPs into the above
classification results in the two last categories (using: as
the threshold levek). In Section 4 we will study how remov-

?, tge c;)mglnatlog funCtloIKrﬁo:rrSaﬁ Gc:mgir:isndetw:go?ls- ing symmetries in each of the above categories of problems
€1 ® c2)n = c1n X5 Can). Y, 9 affects search.

straints means building a new constraint whose support in-
volves all the variables of the original ones, and which as2.3 Symmetry in Soft CSPs

sociates with each tuple of domain values for such variable?J . h similar f@enh 10%4in [Bi li
a semiring element which is obtained by multiplying the el- Sing an approach similar leenhamou, +In [Bistarell

ements associated by the original constraints to the apprdgt &l» 20034 we defined two notions afemantic symmetry
priate sub-tuples. It is easy to verify thaipp(c, ® cs) C symmetry for satlsflabll_ltymdsymmetry for all solutlpns
supp(c1) U supp(cz). - Informally, two domain valuea andb aresymmetrical for
Given a constraint € € and a variable € V, theprojec-  Satisfiability if whenever the assignment := a (v := )
tion of ¢ overV — {v}, writtenc (.1, is the constraint leads to a solution with semiring valug we can also ob-
¢ st.cn =Y ,.p cnlv = d). Informally, projecting means tain a solution with the same value using the assignment
1. . = d). :

eliminating some variables from the support. This is done by’ t: fl.) (l;}'l':t: a),Li'l?' .;Ne Zay tlhaf anda aresymmetrical for
associating with each tuple over the remaining variables a seatishabiity G~ b)ifand only i

miring element which is the sum of the elements associate . o4 T
by the original constraint to all the extensions of this tuplega’ 1 ® Cnlvi=a]=a ®Cn [i=b]=a

Combining and projecting soft constraints. Given the set



When we want to indicate that andb are symmetrical for
satisfiability vian ands’ we will write @ ~77" b,

Informally, two domain values andb are insteadymmet-
rical for all solutions (w.r.t. the constrainis') if whenever we
have the assignmentv := a] with semiring valuey, there is
also an assignment[v := b] with the same semiring value,
wheren/[v := b] = ¢(n[v := a]) (for some bijective mapping
¢), and vice versa. Therefore, we say thatnda aresym-
metrical (w.r.t. the constraint§’) for all solutions ¢ ~ b) if

all solutionsif whenever the assignmenfv := a| leads to
a solution whose semiring value i€ > «, there is also
a solutionn’[v := b] with the same semiring value, where
n'[v = b = ¢(nv := a]) (for some bijective mapping),
and vice versa.

We proved[Bistarelli et al, 20034 that the number of
symmetries increases when we increase the threshold level.
By using that result we also easily have

and only if Corollary 1 Given two domain elements and b and a
thresholda, then,
SR e if a ~ b, thena ~, b;

v p(nv :=a]) = n'[v = b e if a ~ b, thena ~, b.

A d(nfv :=1]) =1"[v:=d]
A Q) Cnlv = a] = Q) Co(nlv = al)
A ®Cr][v =10 = ®C¢(n[v =1]).

When we want to indicate thatandb are symmetrical for alll
solutions via the specific symmetry functignwe will write
~®p
a = .
Clearly symmetry for all solutions implies symmetry for
satisfiability[Bistarelliet al., 20034.

Threshold Symmetries

3 Extending Symmetry for Soft CSPs

All of the previous definitions of symmetry in terms of a sin-
gle variable can be easily extended to assignments of more
than a single variable. This notion will be useful in Section 4
where we will show that symmetry breaking is indeed very
useful in solving soft CSPs.

Note that the semiring projection operator can also be used
to compute the semiring value associated with partial instan-
tiations. If we have a partial instantiatiof: V/ — D, and a
constraintc s.t. V' C supp(c), the semiring value associated
with ¢’ is computed by first projecting over the variables
Symmetries in SCSPs are rarer than in classical CSPs. F&f and then computing the semiring value of the resultant
this reason (using a notion of threshold similar to that defineatonstraint. That isn’ = ¢ |y 1’ 2.
by Bistarelli et al. [Bistarelli et al, 20034) in [Bistarelli et
al., 2003 we defined an approximate notion of symmetry. Definition 1 (Symmetry for Partial Instantiations)

We say thabt anda are ,symmetrical for satisfiabilityd ~,,
b) if and only if

va > o,3n,n
®C’n[v =a|=a < ®C’77’[v =b=a

When we want to indicate thatandb are ,symmetrical for
satisfiability vian andr’ we will write a zg’"/ b. Informally,

two domain valuea andb areasymmetrical for satisfiability
if whenever the assignment= a (v := b) leads to a solution
with valuea > «, then, there is also a way to obtain a solution

with the same valuea using the assignment:= b (v := a).

We say thath and a are ,symmetrical for all solutions

(a =~ b) if and only if

o', 0", a0l > a:Vn:

¢(nlv :=al) =1'[v:=b]

A d(nlv :=b]) = n"[v:=a]
/\®C77[v =al=a

AR Collvi=al) = a
A ®Cn[v =b =a

N Q) Conlv:=1b]) = o

When we want to indicate thatandb are ,symmetrical for
all solutions via the mapping we will write a ~¢ b. In-
formally, two domain values andb are ,symmetrical for

Consider two partial assignmentg and n, over the same
set of variabled” C V and the set of constraints:

e we say that); andn, are symmetrical for satisfiability
(m = ng) if and only if

Vo, In,n’ ®Cn[n1] =a <— ®Cn'[n2] =«

e we say thaty; andny are symmetrical for all solutions
(w.r.t. the constraint§) (1 ~ 7o) if and only if

3(]5,77/’ 77// .
Vi = ¢(nlml]) = n'[na]
A o(nlnz]) = 0" [m]

A ) Cnlm] = @) Conlm])
A ) Crlna] = Q) Conlm)).

Since finding the mapping is one of the most important
and difficult steps in order to exploit symmetry, it could be
useful to give some equivalent (sometimes easier) conditions
to check.

'Proofs for all theorems can be found iBistarelli and
O’Sullivan, 2004.

2The definition of how to compute semiring values for partial in-
stantiations was not defined [Bistarelli et al,, 1997; 2002. How-
ever, this is one of the most natural ways to compute them.



Proposition 1 Symmetry for all solutions)( ~ 7,) (equa-
tion 1) holds iff equation 2 holds iff equation 3 holds:

3@5177]/777”
v = r(nlml) = ' [n2]
A ¢1(nlm]) = n"[na]

A Q) Clm] = @) Cr (nlm])
A Q) Clna) = @ Con (nline));

&) Coa(nlm)n) A
= ) Coa(nlna))[m;

= @) Cos(m)na] A
= ® Cos(n)[m]

1)

I, ¥+ Q) Cnlm] =

Q) Cnlns]

s, ¥ = () Cnlm ]

&) Cnlna]

()

3)

Corollary 3 Given a constraints problem over the constraint
setC. If for all n we have® Cn < «, then for anyn;, 72
over the same set of variabl&sC V' we havey; ~, 7. and

m =a 12-

Theorem 4 (Symmetries and SCSP solutions levels (2))
Given two partial instantiationg;, n, over the same set of
variablesV C V, and a variablev € V — V, we have

Vag, (m Uv = a;) ~o (N2 U G0 :=a;)) = 11 ~a N2

The previous theorem proves to be very important in the next
section where it will be used to cut computation branches dur-
ing search.

4 Exploiting Symmetry Breaking in
Branch&Bound
In this section we show how symmetry breaking can im-

prove the amount of pruning performed by a classical
Branch&Bound algorithm. In particular, we will define Soft-

We can prove some interesting properties whenSBDD extending the classical definitipRiahleet al., 2001].

adding/removing assignments to two partial instantiatipns
andny.

Theorem 1 (Extended symmetry for satisfiability) Given
two partial instantiationsn;,n. over the same set of
variablesV C V, and a variablev € V — V, we have

mU{v := a} U nU{v:=b} <= n alvi=aln' o=t]
Theorem 2 (Extended symmetry for all solutions) Given

4.1 Soft-SBDD

SBDD uses the notion of dominance amongst partial instan-
tiations of variables. Using our notation we can say that a
partial instantiation); is dominated by partial instantiation

19 if 1 C 19 (that is ifn)o extends the instantiation ). When
given a symmetry, the dominance relation can be extended,
by noting that ify; is dominated by, (7, C 72) andns is
symmetric withne (73 = ¢(n2)), thenn; is dominated under

two partial instantiations)y, 7o overthe same set of variables the symmetryp by 7.

V C V,and avariablev € V — V. If ¢ is decomposabfe

we have

m = m = mU {v:=a} ~% py U o({v :=a}).

More precisely, we can define two partial orders on par-
tial instantiations, based on the notions of symmetry for sat-
isfiability (=) and symmetry for all solutions~) defined in
Section 3.

Notice that threshold symmetries can also be defined OVEL ciition 2 (D d trv) Consid
partial instantiations in a manner similar to Definition 1. Re- efinition 2 (Dominance under symmetry) Consider

lating thresholds and symmetries over partial |nstant|at|on§hree partial assignments, , 0z, 7s;
leads to some interesting theorems that will be used to prune e we say thatj; is dominated under symmetry for satis-
the search space in Section 4. fiability by ns (m1 < ns) if and only ifn; C 1, and

Corollary 2 (Extended , symmetries for satisfiability) 2 7~ 13,

Given two partial instantiations;, 7. over the same set of e we say that); isdominated under symmetry for all solu-

variablesV C V, and a variablev € V — V, we have tionsbyns (1 < n3) ifand only ifn; C 1o andny ~ ns;

Udv = alt a7 Ufv:=b e we say that), is ,dominatedunder symmetry for sat-

tm o= ay &7 e 7‘[{”__@] 'i}-—m isfiability by 13 (111 <a 1) if and only ify; C 7 and

%o][ =aqal,mn = 772. 772 %a ,'73,

we say thaty, is ,dominatedunder symmetry for all

solutionsby n3 (1 <, n3) if and only ifn; C 7y and

M2 o 135

<~ M
and .

m b ne = mU{vi=a} ~% npUo({v:=a}).

Theorem 3 (Symmetries and SCSP solution levels (1))
Given a constraints problem over the constraint §eand
given two partial instantiationsg);, 7, over the same set of
variablesV C V s.t. Oy < «a, andCne < o then we have

N1 Ra N2 ANA1N >4 72

°A mapping¢, : D — D is decomposable if ang(V —
D) — (V — D) is defined as the composition of several ,
with v1,...,v5,...,0p € V Sit. ¢(v1 := a1,...,0n = an) =

Py (a1), -, Pu, (an).

We can easily show that, <, Saipha aNdSapna are par-
tial orders.

Theorem 5 5, <, Saipha and Saipn, are partial orders.

The nodes in the search tree can be represented as partial
instantiations. At each step SBDD checks if there exists an
already visited node’ s.t. < 7/, i.e. we use the thresh-
old definition of symmetry. If this is the case the algorithm
backtracks and prunes all the branches rooted at



If we want to use SBDD to solve Soft CSPs, we have to O
modify it in order to be able to perform pruning with respect
a thresholdv. We will refer to this modified version of SBDD
as Soft-SBDD.

Using Soft-SBDD, a node of the search space can be rep-
resented by partial instantiations plus the semiring value for
each instantiation. As in SBDD, Soft-SBDD checks at each
step if there exists an already visited nogdes.t. n < 7/. If
this is the case the algorithm backtracks and prunes all the
branches rooted at

Moreover, when a complete assignmehis found, with
associated semiring value this is used as a bound. For each
new visited node), we check ifp <, n’. When the result of
this check is positive, the algorithm can backtrack and prune
all the branches rooted at

We now consider an example to show that symmetry break-
ing can prune branches of the search tree that are not pruned
by a Branch&Bound algorithm.

Example 1 Consider an SCSP over the semirifige;gn: = Figure 2: Search tree after some steps.

(R, min, 4+, 400, 0) with variablesV = {z,y, =}, each with

the same domail = {a, b, c}, there are the following unary not worse than the actual bound (remember we are minimiz-
and binary constraintg) = {c;, ¢y, c,cy. }, defined as fol-  ing and trying to find all best solutions, we cannot prune this
lows: branch at this stage.

However, if we use SBDD, we can check if the current

¢z = {{a) — 4, (b) — 5, (c) — 4} node is dominated by some of the nodes that have already
¢y = {{a) = 3,(b) — 3,(c) — 10} been expanded (that is we have to check if there exists a (par-
c. = {{a) — 6, (b) — 8,(c) — 5}; tial) instantiationy s.t. {z := a,y := b} < n. This is what
Cyz = {<a7a> -0, <a7 b> -0, <a’ C> -0, classical SBDD (.ZIOGS. o
In our case, since we have a bour@)(we can use it in
(b,a) — 00, (b,b) — o0, {b,c) = 0, order to perform more pruning. To do that we have to check
(¢,a) = 0,{c,b) = 0,{c,c) — 0} if there exists a (partial) instantiations.t. {z := a,y :

. b} <12 m. By hypothesis we have a symmetpywith
We assume that there are other constraints in the problem gl\&-}yN}i %} zmy?x = a,y = al. Si)r/lce thﬁygode{{j

ing the following synjmetryﬁ st. {z :=ay = a} =2 a,y = b} <15 {x := a,y := a} is completely explored,
{z :=a,y := b}. Let's also assume that we will use a vari- ;o can prune nodéz := a,y := b} because we are sure
able ordering heuristic that considers the variables in the o5t all the nodes in this branch represent either a solution
derz, y, andz. Domain elements are selected in the orderyih semiring level worse thate or a solution with semiring

a, b, andc. Assume also that the estimate of the cost of gg | 19 symmetric to{z = a,y := a,z := ¢} (and easily
partial instantiation is the minimum of the sum of the Com'comput,ed fromp({z := a, y — .z ::’C}))_

Eletg aj55|gr}ment.usmg the prOjectllc()_n opﬁrgtor de;‘mgd atthe At the next step, when instantiating— ¢ we move to the
egln'nmg ° .Sect|on 3 We are seeking all best solutions. state{z := a,y := c¢}. Since the approximation of the cost of
Let's consider the situation once we have reached the staigis pranch is9 and sincel9 > 12, we can prune this node
represented in Figure 2. In the figure, the grey nodes réPr&jsing Branch&Bound. A
sent fully explored branches, while the white ones are nodes
yet to be fully explored. The search at this point has found Therefore, this example shows how the pruning of
three complete instantiationse := a,y = a,z := a}, Branch&Bound can be improved by using SBDD. Notice that
{z := a,y := a,z := b} and{z := a,y := a,z := ¢}  SBDD and Branch&Bound have two different partial orders
with associated semiring levels, 15 and 12, respectively. for pruning. Soft-SBDD uses,, while Branch&Bound uses
Therefore, at this stagé? is the current bound used by the the C order induced by the semiring order. Both par-
Branch&Bound algorithm to prune branches of the searchial orders rely on the fact that instantiating more variables
tree. leads to a solution which is no better from the perspective of
Suppose we now backtrack and make the instantiatioonsistency; for SBDD this is due to its definition, and for
y := b leading to the state represented by the partial assigrBranch&Bound from the fact that constraints are monotonic
ment{z := a,y := b}. The approximation computed for this (the more variables we instantiate, the more constraints are
instantiation by the Branch&Bound algorithm for this node is defined, and the worse will be their combination).
12 (computed by summing the cost for the two instantiated Using Soft-SBDD, we combine together Branch&Bound
constraints:, = a — 4 andc, = b — 3 and the best possi- and symmetry breaking. We will see in the following how
ble value forz which has cost 5). Since the approximation is using <, will prune more than classic Branch&Bound.



However, even if we have a perfect heuristic for4.2 Applying Soft Symmetry Breaking
Branch&Bound, i.e. a heuristic that would compute the true, L — i
best semiring value for a given search tree node, does it pe symmetry breaking is used to remove symmetrical instan

. lations in order to reduce the search space. Many of the
- ? .
form better than Soft-SBDD? We can prove the following: methodologies described in Section 2.1 remove solutions

Theorem 6 Branch&Bound with a “perfect” heuristic can- Symmetric to those already found (we will call tisgmmetry

not prune all of the branches pruned by a “perfect” Soft- breaking on succeps Others, instead, remove branches of
SBDD. the search tree corresponding to non-solutions already found

. . (we will call this symmetry breaking on failuye

We can also prove something stronger. In Figure 2 the |n the following we will consider each of the six optimiza-
branch{z := a,y := c} is pruned by Branch&Bound be- tjon problems in SCSPs (see end of Section 2.2) and we will
cause the current estimated cost was worse than the boungdicate how symmetry breaking can be used to reduce the
However, can that node be removed by symmetry? size of the search space in each case. We will also highlight

In general the answer to this question is no. Finding symwhen the amount of pruning performed by Soft-SBDD (that
metry functions in a problem is fact one of the main draw-can be seen as symmetry breaking plus Branch&Bound) im-
backs of applying symmetry breaking. We usually need toproves that of the classic Branch&Bound algorithm, that can
have a deep understanding of the problem in order to idemye ysed to solve an SCSP.
tify all its symmetries. However, if all the symmetries of a
problem were known, Soft-SBDD could perform better thanProposition 2 When looking for one best solution, given that
classical Branch&Bound. we know its semiring level, soft symmetry breaking per-

) forms more pruning than classic Branch&Bound due to sym-
Theorem 7 If all the , symmetries of a problem are known, metry breaking on failure only.

Soft-SBDD can prune more than a classical Branch&Bound. . . -
Essentially, if we know the semiring level of the best so-

Example 2 As an example consider Figure 3. Nofte :=  |ution, once we have found it we are done. However, as we
a,y := c} has been extended {@ := a,y = ¢,z = a}, search we find solutions below the desired threshold. The
{z == a,y == ¢,z := b} and{z := a,y := ¢,z := a}, symmetric equivalents of these solutions can be pruned using
with the associated cost @f), 22 and19. By definition of  symmetry breaking, thus reducing the amount of redundant
oSymmetry we have{z := a,y := a,z := ¢} ~12 {x ==  work that Branch&Bound has to perform.

a,y = ¢,z := a}, {x == a,y := a,z = ¢} =9 {x =
a,y = ¢z b}, {z == a,y := a,z = ¢} ~9 {z = Proposition 3 When looking for one best solution from
a,y = ¢,z = c} 4. By using the results of Theorem 4, we amongst all solutions greater than a given boungd soft

can also say thdtr := a,y := a} ~5 {x :=a,y := ¢}, so, Symmetry breaking performs more pruning than classic
in the case where we know all the symmetries in a problemBranch&Bound due to both symmetry breaking on success
we can prune at nodér := a,y := c} using Soft-SBDD, and failure.

becausdz :=a,y := ¢} <12 {x :=a,y := a}.

Since the best semiring level of the solution is unknown we
have to explore the entire search space to decide if the best
solution that has been found to date is the best one. Sym-

O metry breaking on success can be used to exclude from the
search space equivalent solutions that we do not want to col-
X:=a lect. However, such pruning will usually be quite weak in

comparison to the pruning that can be performed by symme-
try on failure.

Proposition 4 When looking for one solution among all best
solutions, soft symmetry breaking performs more pruning
than classic Branch&Bound due to both symmetry breaking
on success and failure.

In this case an approximation of the semiring level of the
best solution is not known. This implies that it is not possible
to perform initial symmetry breaking on failure. However,
as soon as we have found a solution with semiring level
we can use this threshold to perform symmetry breaking on
success and failure.

Figure 3: Soft-SBDD can perform better than B&B.
Proposition 5 When looking for all best solutions, either
with or without specified bounds on the semiring level,
*In fact, the definition of symmetry takes into account the se- SOft symmetry breaking performs more pruning than classic
miring level of the solution. If the solution is worse thap, they ~ Branch&Bound due to both symmetry breaking on success
are by definition,,symmetric. and failure.



If we wish to find all the best solutions, symmetry breaking[Bistarelliet al, 20034 S. Bistarelli, B. Faltings, and
on success becomes more useful. It is important to notice N. Neagu. A definition of interchangeability for soft csps.
that in this, and all the previous cases, symmetry breaking In Recent Advances in ConstraintsNAI 2627. Springer,
on failure is much more useful whenever the heuristic used 2003.
in Branch&Bound is not perfect. In the theoretical case Of[BistareIIiet al, 20034 S. Bistarelli, J. Kelleher, and

dealing with a perfect heuristic, symmetry breaking on failure 1 LT
: : B. O'Sullivan. Symmetry breaking in soft csps. Rro-
is not useful, but, when all the solutions are needed, symmetry ceedings of Al-2003, the Twenty-third SGAI International

breaking on success remains useful. Conference on Knowledge-Based Systems and Applied Ar-
5 Conclusions and Future Work tificial Intelligence 2003.

While symmetry breaking has been studied widely in the con{Bistarelli, 2001 S. Bistarelli. Soft Constraint Solving and
text of crisp constraint satisfaction, it has received very little  programming: a general frameworkhD thesis, Diparti-
attention in the context of soft constraints. We make contri- mento di Informatica, Universitdi Pisa, Italy, mar 2001.
butions to this topic in this paper. TD-2/01.

One of the most powerful techniques used in symmetrygigiarelli, 2004 S. Bistarelli. Semirings for Soft Con-

breaking is based on dominance detection. In this paper we i 5int Solving and Programmingolume 2962 oL NCS
have extended an existing approach to symmetry breaking Springer, 2004. ’

for soft constraints in order to exploit dominance amongst

partial instantiations. This provides a basis for a generalizalBowenet al, 1994 J. Bowen, R. Lai, and D. Bahler. Lex-
tion of Symmetry Breaking via Dominance Detection for soft ical imprecision and fuzzy constraint networks. Fmo-
constraint satisfaction problems called Soft-SBDD, whichwe ceedings of AAAI-9dages 616-621, July 1992.

have theoretically shown to be beneficial when solving SOﬁ[Brown etal, 1984 C.A. Brown, L. Finkelstein, and P.W

CSPs. A
. . . Purdon Jr. Backtrack searching in the presence of symme-
Soft-SBDD provides a basis for exploiting symmetry try. In T. Mora, editor,Applied Algebra, Algebraic Algo-

amongst preferences, which has applicatiqns in a NuM- - ithms and Error-Correcting Codesolume 357 oLNCS
ber of fields such as preference-based configuration and e- pages 99—110. Springer-Verlag, 1988.

commerce. As part of our future work we plan to implement
Soft-SBDD in the context of a branch & bound solver, fol- [Crawfordet al, 1994 J. Crawford, G. Luks, M. Ginsberg,

lowing the approach dfGentet al., 2002; 2003 in order to and A. Roy. Symmetry breaking predicates for search
fully evaluate it on real-world problems. problems. InProc. KR-96 pages 148-159, 1996.
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