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Abstract. Many “semiring-like” structures are used in Soft Con-
straint Satisfaction Problems (SCSPs). We review a few properties of
semirings that are useful for dealing with soft constraints, highlight-
ing the differences between alternative proposals in the literature.

We then extend the semiring structure by adding the notion ofdi-
visionas a weak inverse operation of product. In particular, division
is needed to apply constraint relaxation when the product operation
of the semiring is not idempotent. The division operator is introduced
via residuationand it is also able to deal with partial orders, general-
izing the approach given for Valued CSPs.

1 Introduction
Several formalizations of the concept ofsoft constraintsare currently
proposed in the literature. In general terms, a soft constraint may be
seen as a function associating to each assignment (i.e., instantiation
of the variables occurring in it) a value in a partially ordered setA,
which can be interpreted as a set of preference values or costs. Com-
bining constraints then has to take into account such additional val-
ues, and thus the formalism must provide suitable operations for the
combination and the comparison of tuples of values and constraints.

The paper focuses on semiring-based frameworks: Assignments
take values in a semiring, the order is the one associated to the +
operator of the semiring, and the combination is the× operator. We
review the basics of semiring theory and identify a few properties
that are needed to deal with constraints. These properties boil down
to the notion of commutative, absorptive semiring, an instance of
well-known tropical semirings [23]. Based on this characterization,
a comparison between several proposals is performed, namely valu-
ation structures [26],c-semirings [4, 7] and semiring valuations [27].

Soft constraint satisfaction problems can be solved by extending
and adapting the techniques used for their classical version. For ex-
ample, a branch and bound search algorithm can be used, instead of
backtracking, for finding the best solution. A pivotal component of
this generalization is the search for algorithms of constraint relax-
ation, in order to obtain some form of local consistency (i.e., such
that changing the semiring values associated to an assignment does
not change the overall solution). More to the point, in this paper we
define a technique to move valuation (cost) information fromcon-
straints involving multiple variables to simpler, possible unary ones,
resulting in an upper bound on the problem valuation.

Elaborating on a proposal by Cooper and Schiex [11, 12, 25], we
propose improvements on classical local consistency techniques, in
order to apply the framework also whenever the constraint composi-
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tion operator is not idempotent. To this end, we extend the semiring
structure by adding the notion ofdivisionas a weak inverse operation
of product. The solution we pursue for characterizing that operator is
based onresiduation theory[8], a standard tool on so-calledtropical
arithmetics. It allows for obtaining a division operatorvia an approx-
imate solution to the equationb× x = a.

2 On semirings
Slightly different presentation for the notion ofsemiringoccur in the
literature. The less constrained definition we are aware of (compare
e.g. the survey [24]) is given by a setA equipped with two binary op-
erators, the sum+ and the product×, such that+ is associative and
commutative (that is, the pair〈A, +〉 is a commutative semigroup),
and the product operator× distributes over+.

In soft constraints literature the cost/preference associated to each
variable instance is modeled as an element of a semiring, andthe
constraint combination is defined via the semiring product opera-
tor [4, 5, 7, 27]. Most often, the sum operator is used just forthe
induced pseudo order4, given bya ≤ b iff a + b = b.

Which properties should be required for constraint combination?
• Since satisfaction problems are defined by “sets” of constraints,

the order of the constraints combination has to be irrelevant. This
leads to theassociativityandcommutativityfor the× operator;

• since adding constraints decreases the number (and the quality)
of the solutions, the combination of constraints has to worsen the
value of the operands. This means that the ordering has to beab-
sorptive(a + (a× b) = a + (b× a) = a);

• when dealing with soft constraints there might be the need ofrep-
resenting crisp features. That is, there must be an element in the
semiring that has the crisp meaning of total dislike of any solution
that involve a specific assignment. Thus, an element0 ∈ A called
zeroor annihilator element (a× 0 = 0× a = 0);

• similarly, there must be an element that has the crisp meaning of
“indifference”, i.e., the satisfaction of the specified constraint does
not change the overall level of preference for a given tuple.Such
an element1 ∈ A is calledunit (a× 1 = 1× a = a).
We adopt a terminology inspired by [14] and, in lesser degree,

by [24], aiming at a smooth presentation of the main conceptsto the
reader.

Definition 1 (semirings) A commutative semiring is a five-tupleK =
〈A,+,×,0,1〉 such thatA is a set,1, 0 ∈ A, and+,× : A×A→
A are binary operators making the triples〈A, +,0〉 and 〈A,×,1〉
commutative monoids (semigroups with identity), satisfying

(distributivity) ∀a, b, c ∈ A.a× (b + c) = (a× b) + (a× c);
(annihilator) ∀a ∈ A.a× 0 = 0.

4 A pseudo order is a transitive, antisymmetric, possibly notreflexive relation.



Proposition 1 (absorptive semirings [24, Corollary 2.1]) LetK be
a commutative semiring. Then, these properties are equivalent

(absorptiveness)∀a, b ∈ A.a + (a× b) = a,
(top element) ∀a ∈ A.a + 1 = 1.

Semirings verifying the above properties are known asabsorptive
(or simple) [10] and represent the structure we put at the base of our
proposal since they satisfy the properties absorptiveness, zero and
unit element that seem pivotal for any soft constraint framework.

We can now state a simple characterization result linking absorp-
tiveness to idempotency and to the notion of top element.

Proposition 2 (tropical semirings) LetK be a commutative semir-
ing. If K is absorptive, then the sum operator is idempotent.

The former result is well-know in the literature, and commuta-
tive semirings such that the sum operator is idempotent are called
dioids or tropical semirings5. These structures are well-studied in
the literature [1, 2, 23, 24], and we take advantage of some classical
constructions in the following sections. Notice in fact that absorptive
semirings are just tropical semirings with top element.

2.1 Alternative approaches
We now have a look at some order structures proposed in the liter-
ature for interpreting constraints, showing their similarity and high-
lighting absorptive semirings as a common algebraic structure. More
precisely, the section provides a comparison withc-semiring [4, 6, 7],
valuation structures [26], and semiring valuations [27].

2.1.1 c-semirings

The starting point of our excursus arec-semirings [4, 7]: according
to our notation, they are tropical semirings with top element. Our
analysis, as summed up in Proposition 2, suggests that the intrinsic
quality of c-semirings is the the absorptiveness of the order, whilst
idempotency of the sum is merely a side-effect, in the sense that it is
implied by the other properties (see Proposition 2).

Note also that most results on local consistency forc-semirings re-
quire the idempotency of the× operator [4]. This assumption results
in a stronger structure, sincea × b coincides with the greatest lower
bound ofa andb. Indeed, the focus of this article is also the extension
of some algorithms proposed in thec-semirings formalism, in order
to deal also with non-idempotent product operators.

2.1.2 Valuation structures

Adopting our terminology, avaluation structure[26] is a five-tuple
〈A,≤,×,0, 1〉 such that〈A,×,1〉 is a commutative monoid,〈A,≤〉
is a total order (with0 and1 as minimun and maximum, respec-
tively),× is monotonic and0 is its annihilator element.

As noted in [5], a commutative semiring can be associated to each
valuation structure by defining the sum operator asa+b = max{a, b},
obtaining an absorptive semiring. Moreover, the order in the resulting
semiring coincides with the original order of the valuationstructure.
In fact, note that in a tropical semiring the induced ordering≤ is total
iff a+ b ∈ {a, b} for all a, b ∈ A, so that there is a one-to-one corre-
spondence between valutation structures and those tropical semirings
(known in the literature asadditively extremalsemirings [14, p.11])
such that the associated order≤ is total. We further discuss the prop-
erties of these structures later on, when comparing our notion of in-
verse for the product operator with the proposal in [12].

5 The adjective “tropical” was coined by French mathematicians [23] in honor
of the Brazilian Imre Simon. The terminology “dioid” is adopted in [15, 17]
to highlight that the structure can not be a ring, but it is “twice a monoid”.

2.1.3 Semiring valuations

Semiring valuations[27] are constraint satisfaction problems taking
values in a commutative semiring, where the ordering is the transitive
relationa ≤′ b iff ∃c.a + c = b. The two alternative definitions of
orderings coincide for tropical semirings, in the sense that a ≤ b iff
a ≤′ b for all idempotent elementsa, b.

The lack of idempotency for the sum operator results in a weaker
structure than absorptive semirings, that has proved useful whenever
counting the number of solutions is of interest, as for special compu-
tations in Bayesian networks. However, the associated reflexive and
transitive relation≤′ satisfies relatively few properties, since adding
constraints does not lead to worsen the solution, thus resulting in a
non-monotonic framework (because of the absence of the absorptive
property). These remarks are summed up by the result below.

Proposition 3 Let K be a commutative semiring. If≤′ is a partial
order and∀a, b ∈ A.a× b ≤′ a, thenK is absorptive.

Semirings such that the relation≤′ is a partial order are known
in the literature asuniquely difference ordered[14, Section 2]. For
these structures, whenever the× operator worsens the solution, the
sum operator is idempotent and thus≤′ equals≤.

3 Adding division
The search for optimal solutions on constraint satisfaction problems
has been mostly based on the idempotency of the× operator. While
the resulting heuristics may have a neat presentation and behavior,
many relevant examples fall outside its scope. As we shall see, the
viability of local consistency algorithms can be recoveredby requir-
ing the existence of a suitable inverse operator.

Among the possible solutions for ensuring the relevant structure,
symmetrisationembeds the semiring in a larger structure containing
an inverse for each element. The approach is quite standard in trop-
ical arithmetics (see e.g. [2, Section 3.4.1.1] and [13, Section 3.8]):
the derived semiring has pairs(a, b) as elements, accordingly de-
rived operators, and a minus operator, defined as−(a, b) = (b, a). A
related approach is suggested in [11] for obtaining an inverse opera-
tor for×, starting from astrictly monotonicvaluation structure (i.e.,
such that∀a, b, c ∈ A.(a < b) ∧ (c 6= 0) =⇒ a× c < b× c).

These constructions are similar and the properties of the derived
inverse operator basically hold due to the totality of the order on val-
uation structures. This proposal is used in [12, Example 2] as a mech-
anism for recovering what the authors callfair evaluation structures.

The solution we pursue here is based onresiduation theory[8],
a standard tool on tropical arithmetics (see e.g. [2, Section 4.4.2]
and [14, Chapter 4]), which allows for obtaining a division operator
via an approximate solution to the equationb × x = a. Differently
with respect to the use of a completion procedure, no new element
is added, leaving the same set of preferences to the user. It is note-
worthy that by using the newly defined division operators, suitable
consistency algorithms are devised also for non idempotentproducts.

3.1 Basic definitions and results
This section introduces our notion of invertibility for absorptive semir-
ings: three alternative properties are identified, and theyare listed
below in the same order of their strength.

Definition 2 LetK be an absorptive semiring. Then
• K is invertible if there exists elementc ∈ A such thatb × c = a

for all elementsa, b ∈ A such thata ≤ b;
• it is weakly uniquelyinvertible ifc is unique whenevera < b;
• it is uniquelyinvertible ifc is unique wheneverb 6= 0.



Note that the former definitions do not require the existencefor
each elementa of an inverse, i.e., of an elementa−1 verifying a ×
a−1 = 1. In fact, the absorptiveness conditiona× b ≤ a guarantees
that no element, except1 itself, has an inverse.

We now present two results that establish conditions for ensuring
invertibility of an absoprtive semiring. The first proposition concerns
multiplicative idempotent semirings and their order structure.

Proposition 4 Let K be an absorptive, multiplicative idempotent
semiring. Then,K is invertible. Moreover, if≤ is a total order, then
K is weakly uniquely invertible.

The second proposition is forcancellativesemirings, i.e., such that
∀a, b, c ∈ A.(a× c = b× c) ∧ (c 6= 0) =⇒ a = b.

Proposition 5 LetK be an absorptive, invertible semiring. Then,K

is uniquely invertible iff it is cancellative.

3.2 On division on residuated semirings
Residuation theoryis concerned with the study of sub-solutions of
the equationb × x = a. Note that on tropical semirings the relaxed
equationb× x ≤ a always has a solution (it is enough to setx to 0).

Definition 3 Let K be a tropical semiring. Then,K is residuatedif
the set{x ∈ A | b × x ≤ a} admits a maximum for all elements
a, b ∈ A, denoteda÷ b.

Note that the previous definition actually suggests an algorith-
mic heuristics for approximating such a maximal element, intuitively
given by the (possibly infinite) sum of all the elements satisfying the
inequation [2]. The key point is that the set of sub-solutions of an
equation contains also the possible solutions, whenever they exist,
and in that case the maximal element is also a solution.

More properties hold if the semiring is absorptive, such as that
b ≤ a =⇒ a÷ b = 1. This fact leads to our notion of invertibility.

Definition 4 Let K be an absorptive, invertible semiring. Then,K

is invertible by residuationif the set{x ∈ A | b × x = a} admits a
maximum for all elementsa, b ∈ A such thata ≤ b.

With an abuse of notation, the maximal element among solutions
is denoteda÷b. This choice is not ambiguous: if an absorptive semir-
ing is invertible and residuated, then it is also invertibleby residua-
tion, and the two definitions yield the same value.

3.3 On complete semirings
Being residuated is implied by a sometimes easier to check property,
namely, the existence of elements representing infinite sums.

Definition 5 LetK be a tropical semiring. Then,K is completeif it
is closed with respect to infinite sums, and the distributivity law holds
also for an infinite number of summands.

Also associativity and commutativity need to be generalized, and
we refer the reader to e.g. [14, Section 3].

Proposition 6 ([2, Theorem 4.50]) Let K be a tropical semiring. If
K is complete, then it is residuated.

The above proposition ensures that all classical soft constraint in-
stances (see Section 4.1) are residuated (because complete) and the
notion of division can be applied to all of them.

3.4 Further comparison with valuation structures
We now compare our definition of division with the proposal by
Cooper and Schiex in [12, Definition 3.1]. A valuation structure is
calledfair if the set{x ∈ A | b× x = a} has a minimum whenever
a ≤ b [12, Definition 3.1]. Hence, the division operator is definedas

a÷′
b =

(

min{x | b× x = a} if a ≤ b,

undefined otherwise.

Let us say that an absorptive semiring isfair if it is invertible and
the operator÷′ above is well defined. How does fairness compare
with residuation? By definition{x | b × x = a} ⊆ {y | b × y ≤
a}, so that the operationa ÷′ b returns a smaller value thana ÷ b.
Nevertheless, the two notions sometimes coincides, e.g. ifa semiring
is uniquely invertible, hence whenever the× operator is cancellative
(equivalently, whenever a valuation structure is strictlymonotonic).

Proposition 7 (cancellativeness)LetK be an absorptive, cancella-
tive semiring. Then,K is fair iff it is invertible by residuation, and in
such a casea÷′ b = a÷ b for all elementsa, b such thata ≤ b.

A weakly uniquely invertible semiring is invertible by residuation
but it is not necessarily fair: the operationa÷′a might not be defined,
whilea÷a = 1 always holds. In fact, the two operators usually differ
for the division of an element by itself, since e.g.a÷′a = a holds for
multiplicative idempotent semirings. Combined with Proposition 4,
relating weakly invertibility and multiplicative idempotency, the re-
mark above establishes the correspondence result below.

Proposition 8 (idempotency) Let K be an absorptive, multiplica-
tive idempotent semiring. Then,K is fair. Moreover, if≤ is a to-
tal order, thenK is invertible by residuation, and in such a case
a÷ b = a÷′ b = a for all elementsa, b such thata < b.

For those semirings where≤ is total, the proposition also yields
thatb× (a÷′ b) = b× (a÷ b) = a for all a, b such thata ≤ b.

We provide no general correspondence result between the two
properties. Note however that by definition a residuated fair semir-
ing is invertible by residuation, hence the proposition below follows.

Proposition 9 (completeness)LetK be an absorptive, complete semir-
ing. If K is fair, then it is invertible by residuation.

In general, the two operations returns different values, asit hap-
pens for the set-based CSPs presented in Section 4.1.4. Notethat
most case studies in the literature satisfy the completeness property,
and are either multiplicative idempotent or cancellative:this fact hold
for all the examples presented in Section 4.1.

4 Soft constraints and local consistency
Several formalizations ofsoft constraintsare currently available. The
first part of this section briefly introduces the semiring-based formal-
ism, directly borrowing from thec-semirings approach [4, 7]. The
second part of this section represents another technical contribution
of our work: It presents an extension of local consistency techniques
for invertible semirings, thus generalizing those previously proposed
for those cases where the× operator is idempotent.

4.1 Constraint problems
LetK = 〈A, +,×,0,1〉 be an absorptive semiring;V a finite (possi-
bly ordered) set of variables; andD a chosen domain of interpretation
for V . Then, aconstraint(V → D)→ A is a function associating a
value inA to each assignmentη : V → D of the variables.



We defineC as the set of constraints that can be built starting from
K, V and D. Note that even if a constraint involves all the vari-
ables inV , it must depend on the assignment of a finite subset of
them. For instance, a binary constraintcx,y over variablesx, y is a
function cx,y : (V → D) → A which depends only on the assign-
ment of variables{x, y} ⊆ V . We call this subset thesupportof the
constraint. Often, ifV is ordered, an assignment (over a support of
cardinalityk) is concisely presented by a tuple inDk.

More formally, letc ∈ C be a constraint. We define its support as
supp(c) = {v ∈ V | ∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

(

d if v = v′

ηv′ otherwise

While cη is the application of a constraint functionc : (V → D)→
A to a functionη : V → D, obtaining a semiring value,cη[v := d1]
meanscη′ whereη′ is η modified with the assignmentv := d1.

Later on we implicitly restrict to finitely supported constraints.

4.1.1 Classical CSPs

Classical (crisp) satisfaction problems may be recast to deal with soft
constraints by considering the semiringKCSP = 〈{0, 1},∨,∧, 0, 1〉.

The semiring is finite, hence complete (and residuated by Proposi-
tion 6). Moreover, the× operator is idempotent, then the semiring is
invertible, and since the order is total, it is weakly uniquely invertible
(by Proposition 4). By instantiating the definition of division we get

a÷ b = max{x | b ∧ x ≤ a} = (b =⇒ a)

where =⇒ is the logic implication.

4.1.2 Fuzzy CSPs

Fuzzy CSPs (FCSPs) extend the standard notion by allowing non-
crispness features, and can be modeled by the semiringKF CSP =
〈[0, 1], max,min, 0, 1〉.

The semiring is clearly complete (and residuated by Proposition 6).
Moreover, the× operator is idempotent, then the semiring is invert-
ible, and since the order is total, it is weakly uniquely invertible (by
Proposition 4). By instantiating the definition of divisionwe obtain

a÷ b = max{x | min{b, x} ≤ a} =

(

1 if b ≤ a

a if a < b

4.1.3 Weighted CSPs

While fuzzy CSPs associate a level of preference, in weighted CSPs
(WCSPs) tuples come with an associated cost to be minimized.The
associated semiring structure is in this caseKWCSP = 〈R+ ∪
{∞}, min, +̂,∞, 0〉 for +̂ the sum of reals.

The semiring is clearly complete (and residuated by Proposition 6).
The× operator is not idempotent, but the semiring is nevertheless in-
vertible, as it can be easily proved by checking the definition itself.
Moreover, the semiring is cancellative, hence it is uniquely invertible
by Proposition 5. By instantiating the definition of division we obtain

a÷ b = min{x | b+̂x ≥ a} =

(

0 if b ≥ a

a−̂b if a > b

where−̂ is the arithmetic difference ofa andb.

4.1.4 Set-based CSPs

An interesting class of instances of the soft constraint framework is
based on set operations like union and intersection, using the semir-
ing Kset = 〈℘(A),∪,∩, ∅, A〉, whereA is any set: the order≤Kset

reduces to set inclusion, and therefore it is partial.

The semiring is clearly complete (and residuated by Proposition 6).
The× operator is idempotent, then it is invertible; but the orderis not
total, so that it is not uniquely invertible (Proposition 4 can not be ap-
plied). By instantiating the definition of division we obtain

a÷ b =
[

{x | b ∩ x ⊆ a} = (A \ b) ∪ a

where\ is the set difference operator.

4.2 Combining and projecting soft constraints
Thecombinationfunction⊗ : C×C→ C is defined as(c1⊗c2)η =
c1η × c2η. Thus, combining two constraints means building a new
constraint whose support involves all the variables of the original
pairs, and which associates with each tuple of domain valuesfor
such variables a semiring element which is obtained by multiplying
the elements associated by the original constraints to the appropriate
subtuples. Letc ∈ C be a constraint andv ∈ V a variable. Thepro-
jectionof c overV − {v}, writtenc ⇓v, is the constraintc′ such that
c′η =

P

d∈D
cη[v := d]. Informally, projecting means eliminating

some variables from the support.

4.3 Local consistency
The main point in the generalization of local consistency techniques
to soft CSPs concerns the fact that, instead of removing tuples, local
consistency means changing the semiring values associatedto them.
In particular, the change always brings these values towards the worst
element of the semiring, that is,0.

Arc-consistency [3, 16] (AC) is an instance of local consistency
where the information present in the constraints is propagated over
the variables. In fact, an arc-consistency rule considers aconstraint,
say with support over variablesx, y1, . . . , yn, and all unitary con-
straints over these variables (that is, constraints whose support is one
of the variables), and combines all these constraints to getsome in-
formation (by projecting) over one of the variables, sayx.6

Such alocal consistency rule[7] involves a constraintc with sup-
port over the set of variablesX and a unary constraintcx with sup-
port over the variablex ∈ X, and consists of three phases
• the computation of the solution of the subproblem{cx, c} by com-

putingcx ⊗ c,
• the projection of the computed solution over variablex by com-

putingc′x = (cx ⊗ c) ⇓x= cx ⊗ (c ⇓x), and then
• substituting the original constraintcx overx with the new one by

the assignmentcx ← c′x.
The application of a local consistency rule leads to an equivalent

problem if multiplicative idempotency holds [7]. We relax this con-
dition by performing two assignments at each step of the new rule.

Definition 6 (local consistency rule) A local consistency ruleinvolv-
ing a constraintc and a unary constraintcx withsupp(cx) = {x} ⊂
supp(c) consists of the following phases
• substituting the original constraintcx withc′x, computed as usual [7]

c
′

x = cx ⊗ (c ⇓x)

• modifying the constraintc in a new constraintc′ that takes into
account the changes performed oncx

7

c
′ = c	÷(c ⇓x),

where the constraint division function	÷ : C × C → C is defined as
(c1	÷c2)η = c1η ÷ c2η.

6 Note that this notion represents a generalized form of arc-consistency, since
it was originally defined for binary constraints only [22].

7 Since constraintcx is combined withc ⇓x, c′ is divided by the same value.



Notice that the two steps of Definition 6 corresponds to the steps
performed by theprojectoperator used in fair valued CSPs (see e.g.
Algorithm 1 in [12, p.207]). Theextendoperator is instead not con-
sidered here, but it is worth to notice that it can be emulatedby using
constraint removal and combination.

The main result of this section is that the application of theabove
local consistency rules does not change the solution of softconstraint
satisfaction problems defined on invertible by residuationsemirings.

Proposition 10 (preserving solutions)Let K be an absorptive, in-
vertible by residuation semiring, and let us consider a softconstraint
satisfaction problem on it. Then, the application of the local consis-
tency rules in Definition 6 does not change the solution of theprob-
lem, that iscx ⊗ c = c′x ⊗ c′.

5 Conclusions and further work
Our work represents an investigation on the semiring-basedapproaches
to soft constraints. After revising some basics of (tropical) semirings
and of residuation theory, we show how to define a suitable division
operator, proving how the latter can be used to generalize current
algorithm for local consistency.

The papers that are most related to our study are those by Cooper
and Schiex [11, 12, 25]. These authors propose a generalizedversion
of arc-consistency for valued CSPs [5, 26], by defining a difference
operation which is the inverse of the aggregation operation(corre-
sponding to our× operator). As shown in Section 3.4, the two pro-
posals share many similarities. However, our solution differs in two
aspects. First of all, it has been explicitly devised for obtaining a to-
tal operation that can be applied to absorptive semirings where the
induced ordering is partial, such as those arising in set-based CSPs.

More importantly, though, by relying on the notion of residuation,
our solution may take advantage on the large family of studies on
tropical arithmetics, in particular in finding general criteria establish-
ing when a semiring is invertible by residuation, and for obtaining an
algorithmic procedure for the calculus of the result of the division
operation (considered as the resolution of a linear equation), as it is
illustrated e.g. in [2, Section 4.5]. We consider mandatorya future,
exhaustive comparison of our formalism with fair valued CSPs.

Further algorithmic considerations should then be taken into ac-
count before proposing an actual implementation of our local con-
sistency rules. For example, note that if the value of a constraint c

should coincide with that of its projectionc ⇓x, than the value of
the constraintc′ in Definition 10 would be1, thus possibly increas-
ing, hence the chaotic iteration applied to our rules could possibly
not terminate. Using a set ofguardedrules that never perform such
(useless) divisions would however guarantee in this case termination.

The papers by Brown, Larrosa, Meseguer, Schiex and Verfaillie
consider max and weighted CSPs and define local consistency algo-
rithms also in the presence of a non-idempotent aggregationopera-
tor [9, 18, 19, 20, 21]. Our work shares the same aim, even if wedo
not consider one specific formalism but instead the whole semiring-
based approach. It is a matter of further investigation if their propos-
als could be generalized and applied to our framework.

Current work is now devoted to the introduction of an inverseof
the sum operator, and the definition of a framework for soft con-
straint databases, as well as a throughout analysis of the relationship
between these operators in absorptive semirings.
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