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Abstract.
straint Satisfaction Problems (SCSPs). We review a feweqatgs of
semirings that are useful for dealing with soft constraihtghlight-
ing the differences between alternative proposals in teeafiure.
We then extend the semiring structure by adding the notiafi-of
visionas a weak inverse operation of product. In particular, dinis
is needed to apply constraint relaxation when the produetaijon
of the semiring is not idempotent. The division operatonisdduced

Many “semiring-like” structures are used in Soft Con- tion operator is not idempotent. To this end, we extend therieg

structure by adding the notion divisionas a weak inverse operation
of product. The solution we pursue for characterizing tiperator is
based onesiduation theory8], a standard tool on so-callépical
arithmetics. It allows for obtaining a division operatda an approx-
imate solution to the equatidnx = = a.

2 Onsemirings

via residuationand it is also able to deal with partial orders, general- Slightly different presentation for the notion sémiringoccur in the

izing the approach given for Valued CSPs.
1 Introduction

Several formalizations of the conceptsafft constraintsre currently
proposed in the literature. In general terms, a soft comstnaay be
seen as a function associating to each assignment (i.@ntraion
of the variables occurring in it) a value in a partially orelgrsetA,

which can be interpreted as a set of preference values @. @ain-
bining constraints then has to take into account such aditival-
ues, and thus the formalism must provide suitable opeafianthe
combination and the comparison of tuples of values and caings.

The paper focuses on semiring-based frameworks: Assigismene

take values in a semiring, the order is the one associatelete- t
operator of the semiring, and the combination is theperator. We
review the basics of semiring theory and identify a few prtpe
that are needed to deal with constraints. These propenieddwn
to the notion of commutative, absorptive semiring, an imstaof
well-known tropical semirings [23]. Based on this chardesgion,
a comparison between several proposals is performed, paale-

ation structures [26];-semirings [4, 7] and semiring valuations [27].

Soft constraint satisfaction problems can be solved bynefitbe
and adapting the techniques used for their classical verfior ex-
ample, a branch and bound search algorithm can be usechdnsite
backtracking, for finding the best solution. A pivotal compat of
this generalization is the search for algorithms of comstnaelax-
ation, in order to obtain some form of local consistency.,(iseich
that changing the semiring values associated to an assigraones
not change the overall solution). More to the point, in thapgr we
define a technique to move valuation (cost) information fr@mn-
straints involving multiple variables to simpler, possibinary ones,
resulting in an upper bound on the problem valuation.

literature. The less constrained definition we are awareahpare

e.g. the survey [24]) is given by a sétequipped with two binary op-

erators, the sum- and the produck, such thatt is associative and

commutative (that is, the pa{t4, +) is a commutative semigroup),
and the product operator distributes overt.

In soft constraints literature the cost/preference assedito each
variable instance is modeled as an element of a semiringttand
constraint combination is defined via the semiring produysra-
tor [4, 5, 7, 27]. Most often, the sum operator is used justtifier
induced pseudo ordgrgiven bya < biff a + b = b.

Which properties should be required for constraint continng

Since satisfaction problems are defined by “sets” of comgta

the order of the constraints combination has to be irretevidris

leads to theassociativityandcommutativityfor the x operator;

e since adding constraints decreases the number (and thigyjjual
of the solutions, the combination of constraints has to eihe
value of the operands. This means that the ordering has ab-be
sorptive(a + (a x b) = a+ (b X a) = a);

e when dealing with soft constraints there might be the neadmf
resenting crisp features. That is, there must be an elemehei
semiring that has the crisp meaning of total dislike of arlytsan
that involve a specific assignment. Thus, an elerentA called
zeroor annihilatorelement ¢ x 0 = 0 x a = 0);

e similarly, there must be an element that has the crisp mgaofin
“indifference”, i.e., the satisfaction of the specified straint does
not change the overall level of preference for a given tuplech
an element € Ais calledunit(a x 1 =1 x a = a).

We adopt a terminology inspired by [14] and, in lesser degree
by [24], aiming at a smooth presentation of the main conceptise
reader.

Elaborating on a proposal by Cooper and Schiex [11, 12, 2&], w Definition 1 (semirings) A commutative semiring is a five-tugle=

propose improvements on classical local consistency tgabs, in
order to apply the framework also whenever the constraimipsi-
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(A,+,x,0,1) such thatd isaset1,0 € A,and+, x : Ax A —
A are binary operators making the triplési, 4+, 0) and (A4, x, 1)
commutative monoids (semigroups with identity), satigfyi

(distributivity) Va,b,c€ A.ax (b+¢) = (a xb) + (a x ¢);
(annihilator) Va € A.a x 0 = 0.

4 A pseudo order is a transitive, antisymmetric, possiblyrafiéxive relation.



Proposition 1 (absorptive semirings [24, Corollary 2.1]) LetX be 2.1.3 Semiring valuations

a commutative semiring. Then, these properties are e al Semiring valuation$27] are constraint satisfaction problems taking

(absorptiveness)Va,b € A.a + (a x b) = a, values in a commutative semiring, where the ordering isrtmesttive
(top element) Va € Aa+1=1. relationa <’ biff Ic.a + ¢ = b. The two alternative definitions of
orderings coincide for tropical semirings, in the sense éhe b iff
Semirings verifying the above properties are knowmsorptive o <’ b for all idempotent elements, b.
(or simplg [10] and represent the structure we put at the base of our The lack of idempotency for the sum operator results in a weak
proposal since they satisfy the properties absorptiversss and  structure than absorptive semirings, that has proved usbinever

unit element that seem pivotal for any soft constraint framoné. counting the number of solutions is of interest, as for sgleimpu-
We can now state a simple characterization result linkirpgiy  tations in Bayesian networks. However, the associatedxiefl@nd
tiveness to idempotency and to the notion of top element. transitive relation<’ satisfies relatively few properties, since adding

N . . . _ constraints does not lead to worsen the solution, thustieguh a
Proposition 2 (tropical semirings) LetX be a commutative semir-  non-monotonic framework (because of the absence of thejathan
ing. If X is absorptive, then the sum operator is idempotent. property). These remarks are summed up by the result below.

The former result is well-know in the Iiterature, and comaut Proposition 3 Let K be a commutative Semiring. ﬁ’ is a partia|
tive semirings such that the sum operator is idempotent @iedc  order andva,b € A.a x b <’ a, thenX is absorptive.
dioids or tropical semirings. These structures are well-studied in

the literature [1, 2, 23, 24], and we take advantage of soassizal Semirings such that the relatiof’ is a partial order are known
constructions in the following sections. Notice in facttthbsorptive  in the literature asiniquely difference orderefl4, Section 2]. For
semirings are just tropical semirings with top element. these structures, whenever tkeoperator worsens the solution, the

2.1 Alternative approaches sum operator is idempotent and thaSequals<.

We now have a look at some order structures proposed in #re lit 3 Adding division
ature for interpreting constraints, showing their simijaand high-  The search for optimal solutions on constraint satisfactimblems
lighting absorptive semirings as a common algebraic siracMore  has been mostly based on the idempotency of<taperator. While
precisely, the section provides a comparison witlemiring [4, 6,7],  the resulting heuristics may have a neat presentation anaviue,
valuation structures [26], and semiring valuations [27]. many relevant examples fall outside its scope. As we shell the
2.1.1 c-semirings ylablllty of_ local con5|ste_ncy algonthms can be recovebbgdequir-
ing the existence of a suitable inverse operator.
The starting point of our excursus aresemirings [4, 7]: according  Among the possible solutions for ensuring the relevanicstre,
to our notation, they are tropical semirings with top elem@ur  symmetrisatioembeds the semiring in a larger structure containing
analysis, as summed up in Proposition 2, suggests thattifiesio  a inverse for each element. The approach is quite standardg-
quality of c-semirings is the the absorptiveness of the order, whilsticg| arithmetics (see e.g. [2, Section 3.4.1.1] and [13}i6e®.8]):
idempotency of the sum is merely a side-effect, in the semetdittis  the derived semiring has paita, b) as elements, accordingly de-
implied by the other properties (see Proposition 2). rived operators, and a minus operator, defined @s b) = (b, a). A
Note also that most results on local consistency:feemirings re-  rejated approach is suggested in [11] for obtaining an svepera-

quire the idempotency of the operator [4]. This assumption results tor for x, starting from astrictly monotoniovaluation structure (i.e.,
in a stronger structure, sineex b coincides with the greatest lower sych thatva, b,c € A.(a < b) A (c £ 0) = a x ¢ < b x 0).

bound Ofa andb. Indeed, the fOCUs Of thIS article iS a|SO the extension These Constructions are Sim”ar and the properties of thga]ﬂa

of some algorithms proposed in thesemirings formalism, in order  jnverse operator basically hold due to the totality of théeoon val-
to deal also with non-idempotent product operators. uation structures. This proposal is used in [12, Example 2]mech-
2.1.2 Valuation structures anism for recovering what the authors dalr evaluation structures.
The solution we pursue here is basedresiduation theony8],
a standard tool on tropical arithmetics (see e.g. [2, Sectid.2]
and [14, Chapter 4]), which allows for obtaining a divisigmeoator
via an approximate solution to the equatibrx = = a. Differently
with respect to the use of a completion procedure, no newesiem
is added, leaving the same set of preferences to the usemdité-
worthy that by using the newly defined division operatorstasile
consistency algorithms are devised also for non idempgt@aaiucts.

Adopting our terminology, aaluation structurd26] is a five-tuple
(A, <, x,0,1) suchtha{ A, x, 1) isa commutative monoid A, <)

is a total order (with0 and1 as minimun and maximum, respec-
tively), x is monotonic and is its annihilator element.

As noted in [5], a commutative semiring can be associateddh e
valuation structure by defining the sum operatoi-#é = max{a, b},
obtaining an absorptive semiring. Moreover, the orderé@résulting
semiring coincides with the original order of the valuatgtructure.
In fact, note that in a tropical semiring the induced ordgrinistotal 3.1  Basic definitions and results

iff a+b € {a,b}foralla,b € A, sothatthere is a one-to-one corre- Thjs section introduces our notion of invertibility for aisptive semir-

spondence between valutation structures and those tfspitarings  ings: three alternative properties are identified, and teylisted
(known in the literature aadditively extremasemirings [14, p.11])  pelow in the same order of their strength.

such that the associated ordeis total. We further discuss the prop-
erties of these structures later on, when comparing ouonatf in- Definition 2 LetX be an absorptive semiring. Then
verse for the product operator with the proposal in [12]. e X is invertibleif there exists elementc A such thath x ¢ = a

5 The adjective “tropical” was coined by French mathematisig23] in honor To_r all elemem_m’ b e A su_ch t!’]atq = b .
of the Brazilian Imre Simon. The terminology “dioid” is aded in [15,17]  ® itis weakly uniquelyinvertible ifc is unique whenever < b;
to highlight that the structure can not be a ring, but it isitva monoid”. e itis uniquelyinvertible ifc is unique whenever # 0.




Note that the former definitions do not require the existeioce 3.4 Further Comparison with valuation structures
each element of an inverse, i.e., of an elemeat! verifying a x
a~! = 1. In fact, the absorptiveness conditionx b < a guarantees
that no element, exceptitself, has an inverse.

We now present two results that establish conditions foureng
invertibility of an absoprtive semiring. The first propadsit concerns
multiplicative idempotent semirings and their order stioe. ) {

a+ b=

We now compare our definition of division with the proposal by
Cooper and Schiex in [12, Definition 3.1]. A valuation stuuretis
calledfair if the set{z € A | b x x = a} has a minimum whenever
a < b[12, Definition 3.1]. Hence, the division operator is defirzead

min{z |bxxz=a} ifa<b,

Proposition 4 Let X be an absorptive, multiplicative idempotent undefined otherwise

semiring. ThenX is invertible. Moreover, iK is a total order, then

] - ) ; Let us say that an absorptive semirindag if it is invertible and
X is weakly uniquely invertible.

the operator-" above is well defined. How does fairness compare
with residuation? By definitiofz | b x x = a} C {y | bx y <

a}, so that the operatiom <+’ b returns a smaller value than- b.
Nevertheless, the two notions sometimes coincides, eageamiring

is uniquely invertible, hence whenever tkeoperator is cancellative
(equivalently, whenever a valuation structure is striatignotonic).

The second proposition is feancellativesemirings, i.e., such that
Va,b,c€e A(laxc=bxc)AN(c#0) = a=hb.

Proposition 5 LetX be an absorptive, invertible semiring. Thég,
is uniquely invertible iff it is cancellative.

L . .. Proposition 7 (cancellativeness)Let X be an absorptive, cancella-
3.2 Ondivision on residuated semirings tive semiring. TheriK is fair iff it is invertible by residuation, and in
Residuation theorys concerned with the study of sub-solutions of such a case +' b = a + b for all elements:, b such thatz < b.
the equatiorb x = a. Note that on tropical semirings the relaxed ) . i o . .
equationb x = < a always has a solution (it is enough to s€D 0). A weakly uniquely invertible semiring is invertible by resiation
but it is not necessarily fair: the operatior-'a might not be defined,
Definition 3 LetX be a tropical semiring. Ther is residuatedf ~ Whilea=-a = 1 always holds. In fact, the two operators usually differ

the set{z € A | b x # < a} admits a maximum for all elements for the division of an element by itself, since eug="a = a holds for
a,b € A, denoteds + b. B multiplicative idempotent semirings. Combined with Prsition 4,

relating weakly invertibility and multiplicative idempency, the re-

Note that the previous definition actually suggests an #tgor Mark above establishes the correspondence result below.
mic heuristics for approximating such a maximal elementiiively
given by the (possibly infinite) sum of all the elements $gitig) the
inequation [2]. The key point is that the set of sub-solwiaf an
equation contains also the possible solutions, wheneesr ekist,
and in that case the maximal element is also a solution.

More properties hold if the semiring is absorptive, suchtesd t
b <a = a-+b=1.This fact leads to our notion of invertibility.

Proposition 8 (idempotency) Let X be an absorptive, multiplica-
tive idempotent semiring. Thef is fair. Moreover, if< is a to-
tal order, thenX is invertible by residuation, and in such a case
a-+b=a-+"b=aforall elements:, b such thata < b.

For those semirings where is total, the proposition also yields
thatb X (a =" b) = b x (a =+ b) = aforall a,b such thatz < b.

We provide no general correspondence result between the two
properties. Note however that by definition a residuatedsamir-
ing is invertible by residuation, hence the propositiorotefollows.

Definition 4 Let X be an absorptive, invertible semiring. Thek,
is invertible by residuatiorif the set{z € A | b x z = a} admits a
maximum for all elements b € A such thata < b.
Proposition 9 (completeness)LetX be an absorptive, complete semir-
With an abuse of notation, the maximal element among saisitio ing. If K is fair, then it is invertible by residuation.
is denoted:+-b. This choice is not ambiguous: if an absorptive semir-

ing is invertible and residuated, then it is also invertibjeresidua- In general, the two operations returns different valuest hap-
tion, and the two definitions yield the same value. pens for the set-based CSPs presented in Section 4.1.4.tiNdte
3.3 On complete semirings most case studies in the literature satisfy the complesepesperty,

and are either multiplicative idempotent or cancellatités fact hold
for all the examples presented in Section 4.1.

4 Soft constraints and local consistency

Definition 5 LetX be a tropical semiring. Ther¥ is completeif it Several formalizations afoft constraintsire currently available. The
is closed with respect to infinite sums, and the distribtytiaw holds  first part of this section briefly introduces the semiringéxhformal-
also for an infinite number of summands. ism, directly borrowing from the-semirings approach [4, 7]. The
second part of this section represents another technicalilootion
Also associativity and commutativity need to be generdliznd  of our work: It presents an extension of local consistencinéjues
we refer the reader to e.g. [14, Section 3]. for invertible semirings, thus generalizing those presigyproposed
for those cases where theoperator is idempotent.

4.1 Constraint problems

LetX = (A, +, x, 0, 1) be an absorptive semiriny; a finite (possi-
The above proposition ensures that all classical soft canstin- bly ordered) set of variables; aiéla chosen domain of interpretation
stances (see Section 4.1) are residuated (because congpldtthe  for V. Then, aconstraint(V — D) — A is a function associating a
notion of division can be applied to all of them. value inA to each assignment: V' — D of the variables.

Being residuated is implied by a sometimes easier to chemkepty,
namely, the existence of elements representing infinitessum

Proposition 6 ([2, Theorem 4.50]) Let X be a tropical semiring. If
X is complete, then it is residuated.



We defineC as the set of constraints that can be built starting from  The semiring is clearly complete (and residuated by Préposs).
X, V and D. Note that even if a constraint involves all the vari- The x operator is idempotent, thenitis invertible; but the oliderot
ables inV, it must depend on the assignment of a finite subset oftotal, so that it is not uniquely invertible (Propositionahmot be ap-

them. For instance, a binary constraint, over variablest, y is a

functionc,,, : (V. — D) — A which depends only on the assign-

ment of variablez,y} C V. We call this subset theupportof the

constraint. Often, ifi” is ordered, an assignment (over a support of

cardinalityk) is concisely presented by a tuplefirf.

plied). By instantiating the definition of division we ohtai
a%b:U{m|bﬂm§a}:(A\b)Ua

where\ is the set difference operator.

More formally, letc € C be a constraint. We define its support as 4.2 Combining and projecting soft constraints

supp(c) = {v € V' | In,d1,d2.cnfv := d1] # enfv := da]}, where

Nl = dv’ = {

While ¢n is the application of a constraint functien (V' — D) —

Ato afunctionn : V. — D, obtaining a semiring valuep[v := d1]

meanscr’ wherer’ is n modified with the assignment:= d;.
Later on we implicitly restrict to finitely supported corsitits.

4.1.1 Classical CSPs

Classical (crisp) satisfaction problems may be recastabwlih soft
constraints by considering the semiriiig:sp = ({0, 1}, V, A, 0, 1).
The semiring is finite, hence complete (and residuated bydie

d ifv="1

nv’  otherwise

tion 6). Moreover, thex operator is idempotent, then the semiring is

invertible, and since the order is total, it is weakly unilguavertible
(by Proposition 4). By instantiating the definition of diie we get

a+b=maz{z |bAz<a}=(b = a)
where = is the logic implication.
4.1.2 Fuzzy CSPs

Thecombinatiorfunction® : € x € — Cis defined agc; ® c2)n =
c1m X cam. Thus, combining two constraints means building a new
constraint whose support involves all the variables of thgimal
pairs, and which associates with each tuple of domain vaioes
such variables a semiring element which is obtained by plyitig
the elements associated by the original constraints togpeopriate
subtuples. Let € € be a constraint and € V' a variable. Thepro-
jectionof c overV — {v}, writtenc |}, is the constraint’ such that
dn =3 epenlv := d]. Informally, projecting means eliminating
some variables from the support.

4.3 Local consistency

The main point in the generalization of local consistenchigques
to soft CSPs concerns the fact that, instead of removingsupbcal
consistency means changing the semiring values assotietieem.
In particular, the change always brings these values tatheworst
element of the semiring, that i8,

Arc-consistency [3, 16] (AC) is an instance of local coresisty
where the information present in the constraints is profabaver
the variables. In fact, an arc-consistency rule consideanatraint,
say with support over variables y1, ..., y», and all unitary con-

Fuzzy CSPs (FCSPs) extend the standard notion by allowing no straints over these variables (that is, constraints whageast is one

crispness features, and can be modeled by the senfifingsr =
([0, 1], mazx, min, 0, 1).
The semiring is clearly complete (and residuated by Prdijpos).

of the variables), and combines all these constraints te@®ae in-
formation (by projecting) over one of the variables, s
Such docal consistency rul§7] involves a constraint with sup-

Moreover, thex operator is idempotent, then the semiring is invert- port over the set of variableX and a unary constraint, with sup-

ible, and since the order is total, it is weakly uniquely itise (by
Proposition 4). By instantiating the definition of divisiare obtain

1 ifb<a
tb= in{ba}y <ay =4 =
a maz{x | min{b,z} < a} {a o <b

4.1.3 Weighted CSPs

While fuzzy CSPs associate a level of preference, in weitt®®Ps

(WCSPs) tuples come with an associated cost to be minimizesl.

associated semiring structure is in this cdég-csp = (RT U
{0}, min, +, oo, 0) for + the sum of reals.

The semiring is clearly complete (and residuated by Proipos).
The x operator is not idempotent, but the semiring is nevertisates
vertible, as it can be easily proved by checking the definitiself.
Moreover, the semiring is cancellative, hence it is uniguimlertible
by Proposition 5. By instantiating the definition of divisiwe obtain

0 ifb>a

+b=mi bix>a} =< .
¢ minte | bt 2 a} {a—b ifa>b

whereZ is the arithmetic difference af andb.
4.1.4 Set-based CSPs

An interesting class of instances of the soft constrainhéaork is
based on set operations like union and intersection, ubmgéemir-
ing Kser = (p(A4),U,N, 0, A), whereA is any set: the ordet x
reduces to set inclusion, and therefore it is partial.

set

port over the variable € X, and consists of three phases

e the computation of the solution of the subproblém, ¢} by com-
putinge, ® c,

e the projection of the computed solution over variabley com-
putingcl, = (cz ® ¢) o= cz @ (c {=), and then

e substituting the original constraint overx with the new one by
the assignment,, « c.,.
The application of a local consistency rule leads to an edent

problem if multiplicative idempotency holds [7]. We rel&xig con-

dition by performing two assignments at each step of the ndsv r

Definition 6 (local consistency rule) Alocal consistency rulevolv-
ing a constraint and a unary constraint, with supp(c,) = {z} C
supp(c) consists of the following phases

e substituting the original constraint, with c,,, computed as usual [7]

e =z ® (c )

e modifying the constraint in a new constraint’ that takes into
account the changes performed @

' =co(c ),

where the constraint division functiah : € x € — € is defined as
(c1®c2)n = c1n =+ can.

6 Note that this notion represents a generalized form of ansistency, since
it was originally defined for binary constraints only [22].
7 Since constraint,, is combined withe |}, ¢’ is divided by the same value.



Notice that the two steps of Definition 6 corresponds to tkpst
performed by therojectoperator used in fair valued CSPs (see e.g.
Algorithm 1 in [12, p.207]). Theaxtendoperator is instead not con-

=

(1]

sidered here, but it is worth to notice that it can be emulbtedsing 2]
constraint removal and combination.

The main result of this section is that the application ofaheve [3]
local consistency rules does not change the solution oteofitraint 4]
satisfaction problems defined on invertible by residuasemirings.
Proposition 10 (preserving solutions)Let X be an absorptive, in- 5]
vertible by residuation semiring, and let us consider a softstraint
satisfaction problem on it. Then, the application of thealomonsis- [6]
tency rules in Definition 6 does not change the solution oftiob-
lem, thatisc, ® c=c, ® c. 7]
5 Conclusions and further work 8]

Our work represents an investigation on the semiring-bapptbaches

to soft constraints. After revising some basics of (troPisamirings (9]

and of residuation theory, we show how to define a suitablisidiv [10]

operator, proving how the latter can be used to generalipemmu

algorithm for local consistency. [11]
The papers that are most related to our study are those bye€oop

and Schiex [11, 12, 25]. These authors propose a generakzsibn [12]
of arc-consistency for valued CSPs [5, 26], by defining sedéffice  [13]
operation which is the inverse of the aggregation operdiionre-
sponding to ourx operator). As shown in Section 3.4, the two pro-
posals share many similarities. However, our solutioredsffin two [14]
aspects. First of all, it has been explicitly devised foraiting a to-

tal operation that can be applied to absorptive semiringsrevkhe  [15)
induced ordering is partial, such as those arising in seedh&SPs.

More importantly, though, by relying on the notion of resition,
our solution may take advantage on the large family of stidie
tropical arithmetics, in particular in finding general erit establish- (1)
ing when a semiring is invertible by residuation, and foraiting an
algorithmic procedure for the calculus of the result of tidsibn
operation (considered as the resolution of a linear equlgtas it is Hg
illustrated e.g. in [2, Section 4.5]. We consider mandagfuture,
exhaustive comparison of our formalism with fair valued GSP

Further algorithmic considerations should then be takém at-
count before proposing an actual implementation of ourllooa- (19]
sistency rules. For example, note that if the value of a caimtc 20]
should coincide with that of its projection |}., than the value of
the constraint’ in Definition 10 would bel, thus possibly increas-
ing, hence the chaotic iteration applied to our rules cowssibly
not terminate. Using a set gluardedrules that never perform such 21]
(useless) divisions would however guarantee in this casgnation.

The papers by Brown, Larrosa, Meseguer, Schiex and Vegfaill
consider max and weighted CSPs and define local consistégmy a
rithms also in the presence of a non-idempotent aggregapena- (22]
tor [9, 18, 19, 20, 21]. Our work shares the same aim, even iflave 23]
not consider one specific formalism but instead the wholarssga
based approach. It is a matter of further investigationafrtbropos-  [24]
als could be generalized and applied to our framework.

Current work is now devoted to the introduction of an invesse  [29)
the sum operator, and the definition of a framework for soft-co
straint databases, as well as a throughout analysis of ldtéreship
between these operators in absorptive semirings. [26]
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